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Quantity of interest – internal profile

Interested in the internal profile (number of internal nodes) of a suffix
tree at level k

In below tree, there are 3 internal nodes of depth two, so the internal
profile at level two is 3.
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Appeal of problem

We consider variance of internal profile...why is this interesting?

Profile is interesting because it leads to lots of other parameters (most
notably total size of tree)

Variance is interesting because it’s known to be different in suffix trees
and tries
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Trie vs. suffix tree - σ of internal profile

from “q-gram analysis and urn models,” Nicodème, DMTCS 2003
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Conjecture

“Regarding variance of a suffix tree, one can derive the generating
function. . . but so far attempts to make it suitable for asymptotic
expansion of the variance have not been successful. It is conjectured
that the error term between the suffix tree and the independent tries
becomes larger than the order of the variance. . . when the alphabet
size is small.”
– Jacquet/Szpankowski, 2013

This is close – in fact, variance in tries and suffix trees has same order,
just different coefficients.
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Brief review of tries

Given collection of independent strings S1,S2, . . . , store each string at
node corresponding to shortest distinguishing prefix

Brittany, Brian, Marcy, Mike, Tom

B

r

i

ttany an

M

arcy ike

Tom
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Brief review of tries

Internal profile at level 1 is 2
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Correspondence between nodes and prefixes

Note that the node corresponding to prefix is in profile iff at least two of
the generating strings start with that prefix
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Brief review of tries

Note that the node corresponding to prefix is in profile iff at least two of
the generating strings start with that prefix

An example at level k = 2:

Brittany, Brian, Marcy, Mike, Tom
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Brief review of tries

Note that the node corresponding to substring contributes to the
internal profile iff at least two words begin with that string.

An example at level k = 3:

Brittany, Brian, Marcy, Mike, Tom
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Brief review of tries

Note that the node corresponding to substring contributes to the
internal profile iff at least two words begin with that string.

Another example back at level k = 1:

Brittany, Brian, Marcy, Mike, Tom

B
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i

ttany an
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arcy ike

Tom
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Brief review of suffix trees

Suffix trees are like tries, but built from all suffixes of a single string.

S = ararat

S(1) = ararat S(2) = rarat S(3) = arat

S(4) = rat S(5) = at S(6) = t

a

r
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t
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a
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t
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Ararat
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Suffix tree - internal profile

Construction dictates that internal profile is number of substrings of
length k that appear at least twice in base-string

S = ararat

S(1) = ararat S(2) = rarat S(3) = arat

S(4) = rat S(5) = at S(6) = t

a
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rat t
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t

Jeff Gaither (Math Biosciences Institute) AofA 2016 16 / 45



Suffix tree - internal profile

Construction dictates that internal profile is number of substrings of
length k that appear at least twice in base-string

S = ararat

S(1) = ararat S(2) = rarat S(3) = arat

S(4) = rat S(5) = at S(6) = t

a

r

a

rat t

t

r

a

rat t

t

Jeff Gaither (Math Biosciences Institute) AofA 2016 17 / 45



Strings

Our strings are infinite and built from the binary alphabet A = {a,b}.

Given any letter Si in string S, we have

P(Si = a) = p >
1
2

; P(Si = b) = q := 1− p.

“Infinite” guarantees that a.s., two suffixes taken from same tree will be
distinct (so no unending branches)

Jeff Gaither (Math Biosciences Institute) AofA 2016 18 / 45



Model suffix tree example

Suffix tree of size 6 built from string

S = bbbaabaabbbbabbabb . . .

a

a. . . b. . .

b

a

a

b

a. . . b. . .

b

a. . . b. . .
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Model suffix tree example

Profile at depth one is 2

a

a. . . b. . .

b

a

a

b

a. . . b. . .

b

a. . . b. . .
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Model suffix tree example

Profile at depth two is 2

a

a. . . b. . .

b

a

a

b

a. . . b. . .

b

a. . . b. . .
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Model suffix tree example

Profile at depth three is 1

a

a. . . b. . .

b

a

a

b

a. . . b. . .

b

a. . . b. . .
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Model suffix tree example

Etc...

a

a. . . b. . .

b

a

a

b

a. . . b. . .

b

a. . . b. . .

Jeff Gaither (Math Biosciences Institute) AofA 2016 23 / 45



Scaling depth with size

One last point: what depth k to consider? As number of strings
n→∞, any fixed level k will fill up

Answer: Following Park et al., we assume that

α := lim
n→∞

k
log(n)

exists.

Let Xn,k denote internal profile at level k of suffix tree built from n
suffixes, and consider Var(Xn,k ).
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Main results - small alpha

When limit α is small, have easy and very strong bound on the decay
of Var(Xn,k ).

Theorem

When
α <

1
− log(q)

,

there exists B > 0 such that

Var(Xn,k ) = O(e−nB
).
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Main result – saddle point regime

Theorem
Define the function

h(s) = −s + α log(p−s + q−s)

and suppose that

1
− log(q)

< α <
p2 + q2

−p2 log(p)− q2 log(q)
.

Then there exists unique ρ ∈ (−2,∞) such that h′(ρ) = 0, and we have

Var(Xn,k ) =
nh(ρ)(C1(n) + 2C2(n))√

log(n)
×
(
1 + O(log(n)−1)

)
.

where the Ci(n) are bounded, positive and with nonzero lim inf.
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Saddle point regime cont’d

Theorem

Var(Xn,k ) =
nh(ρ)(C1(n) + 2C2(n))√

log(n)
×
(
1 + O(log(n)−1)

)
,

The function C1(n) is given by

C1(n) =
(1− 2−ρ − ρ2−ρ−2)Γ(ρ+ 2)√

2πh′′(ρ)
× (1 + small fluctuations)

Remark: The C1(n) portion of our estimate is precisely the variance for
a trie, as derived in Park.
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Saddle point regime cont’d

The C2(n) portion of the variance, which is specific to suffix-trees, is
built from many different terms whose orders approach order nh(ρ) of
trie-term.

h(s) = −s + α log(p−s + q−s),

We define extension of h(s),

H(s, r , c,d) = −s + α(1− r) log(p−s + q−s)

− s
(α

k

)
log((pcq1−c)kr + (pdq1−d )kr )

with saddle point ρr ,c,d .
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Theorem

Let r = `
k , c = i

` and d = j
` . Then C2(n) has the form

C2(n) =
∑

0<`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ)
1√

2π ∂H
∂s (ρr ,c,d )

×

(∑
m≥2

Γ(ρr ,c,d + m)

m!

( piq`−ipjq`−j

piq`−i + pjq`−j

)m−1
×
[

(m − 1)2

piq`−ipjq`−j

piq`−i + pjq`−j + m(2−m) + m(ρr ,c,d + m)
piq`−ipjq`−j

(piq`−i + pjq`−j)2

])
× (1 + small fluctuations).

Also, we have
∑

`≥`0 · · · = O(n−β(`0/k)) for a β > 0
(the sum is concentrated near ` = 1.)
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Polar regime

Behavior when α > p2+q2

−p2 log(p)−q2 log(q) is pretty much the same, except
we use s = −2 in place of ρ, and a lot of terms disappear.

Theorem

Suppose α > α2 = p2+q2

−p2 log(p)−q2 log(q) . Then for some ε > 0, we have

Var(Xn,k ) = nh(−2) × (C̃1(n) + 2C̃2(n))×
(
1 + O(n−ε)

)
,

where

C̃1(n) = 1

C̃2(n) =
∑

0<`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(−2,r ,c,d)

nh(−2) ×

(
piq`−ipjq`−j

piq`−i + pjq`−j

)
.
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Considering C2(n)

We note two things about new suffix-tree variance coefficient C2(n).

1. It’s not very neat

C2(n) =
∑

0<`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ)
1√

2π ∂H
∂s (ρr ,c,d )

×

(∑
m≥2

Γ(ρr ,c,d + m)

m!

( piq`−ipjq`−j

piq`−i + pjq`−j

)m−1
×
[

(m − 1)2

piq`−ipjq`−j

piq`−i + pjq`−j + m(2−m) + m(ρr ,c,d + m)q
piq`−ipjq`−j

(piq`−i + pjq`−j)2

])
× (1 + small fluctuations).

with r = `
k , c = i

` and d = j
` .
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Considering C2(n)

Even if we compress it, it’s still got these binomial coefficient and this
weird quotient of powers of n.

C2(n) =
∑

0<`<k
0≤i,j≤`

(
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i

)(
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j

)
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Considering C2(n)

Even if we compress it, it’s still got these binomial coefficients and this
quotient of powers of n.

C2(n) =
∑

0<`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ) ×W (r , c,d)

with r = `
k , c = i

` and d = j
` .

Not a very good asymptotic coefficient. How do we even know it
converges? How do we know it doesn’t blow up? Can’t we get a
closed form?

Jeff Gaither (Math Biosciences Institute) AofA 2016 33 / 45



Considering C2(n)

Even if we compress it, it’s still got these binomial coefficients and this
quotient of powers of n.

C2(n) =
∑

0<`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ) ×W (r , c,d)

with r = `
k , c = i

` and d = j
` .

Not a very good asymptotic coefficient. How do we even know it
converges? How do we know it doesn’t blow up? Can’t we get a
closed form?

Jeff Gaither (Math Biosciences Institute) AofA 2016 33 / 45



Mathematical viability

Can show that (
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ) < 1

by showing that the map

r →
(

kr
krc

)(
kr
krd

)
nH(ρr,c,d ,r ,c,d)

is decreasing in r .
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Mathematical viability

And decay condition, that partial sum beyond any `0 is

∑
`0≤`<k
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ) W (n, r , c,d) = O(n−(`0/k)β)

is actually quite strong.

Implies that we can sum ` to log(log(k)) (or something even smaller)
rather than k ,

since

n−(log(log(k))/k)β = e− log(n)(log(log(k))/k)β) = e− log(log(k))/α.
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Aesthetics

But head of sum does contribute, so it must be included, pretty or no

The proof sheds some light on form of sum
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Quick sketch of proof

Let Iu indicate that node corresponding to word u (of length k ) appears
at least 2 times (within the first n + k − 1 characters)
Then profile can be written

Xn,k =
∑

u∈Ak

In,u,

and

Var(Xn,k ) =
∑

u∈Ak

Var(In,u) trie term C1(n)

+
∑

u,v∈Ak

u 6=v

Cov(In,u, In,v ) new suffix-tree term C2(n)
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Correlations significant

After analysis, covariances Cov(In,u, Iv), u 6= v turn out to contain
terms like

n2P(u)P(v)e−n(P(u)+P(v))(en(P(u)Cu,v (1)+P(v)Cv,u(1)) − 1)

This term
P(u)Cu,v (1) + P(v)Cv ,u(1)

appears to be a genuine novelty
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Correlation polynomials

Terms Cu,v (1) and Cv ,u(1) are correlation polynomials

They measure the degree of overlap between a and b.

Always really small, unless (rarely!) there is a really long suffix of u
that is also a prefix of v

u = baaaaaaa, v = aaaaaaaa

A classic lemma by Jacquet and Szpankowski states that this is
vanishingly improbable when u = v , except for the trivial complete
self-overlap... ∑

u∈Ak

P(u)|Cu,v (1)− 1| = O(pk/2)
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Simultaneous overlaps are negligible

We would therefore expect terms P(u)Cu,v (1) to be negligible in some
formalizable sense.

In fact, term P(u)Cu,v (1)Cv ,u(1) IS negligible,∑
u,v

P(u)Cu,v (1)Cv ,u(1) = O(pk/2)

which is to say we can ignore the possibility that Cu,v (1) and Cv ,u(1)
will simultaneously be large. . .
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The meaning of H

However, when use the approximation(
kr
krc

)(
kr
krd

)
nH(ρr,c,d ,r ,c,d)

for the contribution u, v pairs whose overlapping proportion is 1− r ,
and whose nonshared regions contain the respective proportions c
and d of a’s,

we find that this is maximized when r = 0, i.e. when the overlap is total.

Hence, all word-pairs with exceptional overlap contribute. Effect tapers
off quickly, but there’s no sharp dividing line where we can say “the
asymototic contribution ends here”
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Inevitability of sum

Thus, we must sum over at least the germ of the sum...

but as slowly divergent a germ as we like.

C2(n) ≈
∑

0<`<log(log(log(log(k))))
0≤i,j≤`

(
`

i

)(
`

j

)
nH(ρr,c,d ,r ,c,d)

nh(ρ) W (n, r , c,d)

Jeff Gaither (Math Biosciences Institute) AofA 2016 43 / 45



Acknowledgements

Thanks to Mark Daniel Ward

and to support from

Jeff Gaither (Math Biosciences Institute) AofA 2016 44 / 45



Conclusion

Thank you for your attention!
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