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Rényi’'s Problem

We have a set X of objects and a set A of labels, along with a hidden bijective labeling

o: X — A

Algorithmic task: Recover the labeling ¢ using as few queries as possible.

A query take the form of a subset B of labels. An answer to the query B is the set of objects
with labels in B: ¢~ (B).

Rényi's problem in a nutshell: How many random queries are needed to recover ¢ in its

entirety?

Object: x
1

1B~ W0 DN

Label: ¢(x)

o 0O v 0 Q.

Query: B
{a ce}
{d}
{a b cd}

Response: ¢ *(B)
{2,3,4}

{1}
{1,345}




Partition Refinement Tree View of the Rényi Process

A sequence of queries corresponds to a refinement of partitions of the item set:

Example:
b:1—d2—>e3—a,4d—c,5— b {1133'i5}
1. By = {b,d} — {1,5} {2/,3,4} {1,5\}
2. By ={a,b,d} — {1,3,5}, {2,4} |3 {1, 5}
3. By={a,c,d} — {1,3,4}, 2 4 5 1

Level 7 > 0 of the tree <= partition P;.

Right child node <= subset of objects in parent set contained in the response to the jth
query.

Singletons are only explicitly depicted in the first level in which they appear.
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Probabilistic Models for Queries

Original query model: fix a bias p > 1/2. Independently, include each label in a query with
probability p.

An inefficiency: some queries are inconclusive. They may not split all partition elements:
e.g.,

Pj - {{2’3’4}’ {1’5}}7 ¢_1(Bj> - {1737 5}7 or Cb_l(Bj) - {274}'

Eliminate inconclusiveness by refining queries before asking them:

e Start with B;, a query generated as usual: e.g., ¢~ '(B;o) = {1,3,5}.

e To construct Bj;;1 from B;;: for each label in each partition element unsplit by B,
decide again whether or not to include it independently with probability p: e.g.,

¢~H(Bj1) = {3}, 071 (B)2) = {3,5}.

e Query B; is the end result, where all partition elements are split: e.g., ¢~ '(B;) = {3,5}.



Refining Inconclusive Queries: PATRICIA Trie Correspondence

Important correspondence: Partition refinement tree for the Rényi process with
inconclusive query refinement £ 3 PATRICIA trie on n infinite random binary strings.

An object <= a string, where 1 means that the label is in a query, and 0 means that it is
not.

Example: ¢ : 1 — d,2 —¢,3 = a,4 — ¢,5 — 0.

Strings corresponding to objects: _ _ _
Queries corresponding to strings:

1. d: 111...
; 00 1. By = {b7 d} = {17 5}
. e 2. B, ={a,b,d} — {1,3,5};
3. a: 011... By = {a,d} ~ {1,3),
4. c: 0001... 3. By={a,c,d} — {1,3,4},
5. b: 110...
{1, 2,3, 4, 5}
SN
{234} {15}
/
{24} 13][5] |1




Parameters of Interest

Parameters of interest:

e Height (H,): # of queries needed to
recover ¢ entirely. {1, 2, 3, 4,5
o Fillup level (F},): # of queries needed
before the first item-label pair is
discovered. {2,3,4} {1,5}
e Typical depth (D,): # of queries /
before a randomly chosen item’s label {24 3/ |5 1
is discovered.

e External profile at level k& (B,):
Number of item-label pairs revealed by
the kth query.

In the diagram: H; =3, F5; =2, Pr[D; = 2| =3/5,Pr[D; = 3] =2/5, Bso =3, B33 = 2.



Our Results

We have the following asymptotic expansions for the typical values of H,, and F);:
Theorem 1 (Asymptotics for F), and H,). With high probability,

_)logy,n + %logp/q logn +o(loglogn) p>q=1—p 1)
" llogyn + /2Tog, 1 + o(y/Iog n) p=q=1/2
and
o logy s, n —logy, loglogn + o(logloglogn) p>g=1—p )
" logyn — logy log n + o(log log n) p=q=1/2
for large n.

Symmetric case (p = 1/2) was known, but asymmetric case (p > 1/2) is new!
Note the phase transition in the second term.

We also have results for D,, via the external profile.
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asymptotics for H,, and Fj, in the symmetric case via more probabilistic methods.

Park, Hwang, Nicodéme, Szpankowski (2009): “Profile of tries”: Precisely analyzed trie
profiles via the Poisson transform/Mellin transform/Inverse Mellin via saddle point method
pipeline.

Drmota & Szpankowski (2011): “The expected profile of digital search trees”: Similar to
above, but for digital search tree profiles.

Magner Ph.D. thesis / Magner & Szpankowski (2015): “Profiles of PATRICIA tries”: Precisely
analyzed distribution of the external profile in the central range.

This work: Requires extension of the external profile analysis to the boundaries of the
central range.



Comparison with Tries and DSTs

Only the first terms of F}, and H,, for tries and DSTs with p > ¢ are given in the literature!

For tries:

2
M e+ @)

logn, Fy, ~ logy,n.

For DSTs:

H,, ~ logy,n, Fy, ~ logy ,n.



Proof Sketch: Derivation of Height

Goal: Define k. = k.(n) = log;,,n + ¢(n). We want to determine t)(n) for which

H, = k.4 o(1p(n)).

First, we connect H,, with B, ;: H, = max{k : B, > 0}.

Then connect H,, to moments of B, via the first and second moment methods:

Var[Bn k]
PriH, > k| < > E|B,; PriH, < k| < ———5-.
I’[ ] — jgk [ 7]] I‘[ } E[Bn,k]2
So we want 1(n) to satisfy

n—oo n—oo

]E[Bn,logl/p n—l—(l—e)@(n)] — 00, ]E[Bn,logl/p n—l—(l—l—e)w(n)] — 0.



Derivation of the Height: External Profile Analysis

Ranges of behavior of E|B, ;|:

e Magner/Magner & Szpankowski (2015): Central range.

1 1
k ~ alogn, ozE( +€,—e).
log(1/q) = " log(1/p)

e This work: Boundaries of the central range.

Hy : k ~logy,n, Fy ok ~logy,n.

k =logy,n k =log,,n
k =logy,n —‘log]‘/q loglogn k= logl/i)n % %1ogp/q logn




External Profile Analysis (continued)

Basic tool chain for profile analysis:

Poissonization —| Mellin | Inverse Mellin —| De-Poissonization
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External Profile Analysis (continued)

Basic tool chain for profile analysis:

Poissonization | Mellin (= Inverse Mellin —| De-Poissonization

Poisson transform GJ.(2) for E[B,,4:

~

Gi(2) = Gr1(p2) + Gra(g2) + € 7(Gilqz) — Gira(g2)) + e (Gilpz) — Gra(p2)).

Explicit formula for Mellin transform of G/(2):

Gils) == [* 27 1Gylz) dz = (7 + g~) Auls)T(s + 1),

Fundamental strip for G (2): R(s) > —k — 1.



Inverting the Mellin Transform

Main new challenge of our analysis: estimate Gk(n) by bounding inverse Mellin transform of

Gi(s):

=~ 1 100 100
Gr(z) = — ot 27°Gh(s) ds = /p+. Ji(z,s) ds.

B A7 /P10 pP—100

where p > —k — 1 and

k .
Tlns) = 3077+ 7 T 0"+ ") ELB] — BB Dy



Main Steps of Upper Bounding the Inverse Mellin Integral

Telnss) = 2 077+ g7 8 (" + 4" EB] - E[Bm,jﬂ)m.
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Gi(n)] = O(Ji(n, p))
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Telnss) = 2 077+ g7 8 (" + 4" EB] - E[Bm,jﬂ)m.

e Exponential decay of I'(s + 1) Ay(s) along vertical lines —
Gi(n)] = O(Ji(n, p))

for p > —k — 1.
e Estimate each jth term of Jy(n, p) using upper bound on E[B,, ;] for j sufficiently close
to m:

m) 9 0, :
E[B,, | < C J°/2+]/2+0(j)
[Bn.j (m—j—l)!p

e Maximize resulting upper bound over all 5:

Jk(”; 8) S pu(n,s),

where

(s +1ogy (14 (p/q)°) + ¥(n) + 1)
2

~ logyp mlog (1 + (p/a)°) + ()2 + o(W(n)?).

v(n,s) = —



Tightening the Upper Bound on the Poisson Transform

We now know
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Tightening the Upper Bound on the Poisson Transform

We now know

ék(n) = O(Jk(n,s)) < p”(”:s)

for s € (—k —1,0).

Tighten the upper bound by minimizing over s:

e p=gq=1/2log,(1+ (p/q)°) =1, and we get

5. = —1p(n) + O(1), v(n,s.) = —logyn +1(n)*/2 + o(¢(n)?).

e p > q: logy,(1+(p/q)°) is a function of s. Lambert W function asymptotics + algebra
—

s, = —log, . logn + O(log log log n).
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Determining the Second Term of H,

We now know

Ciln) < ).

for an optimal s, exhibiting a phase transition w.r.t. p.

Determining a candidate (n):

e for p”(”’s*) to tend to 0, oo w.r.t. n, need v(n, s,) — +00, —00, respectively.

e So we need 1(n) to be such that v(n,s,) = 0.

~ |V/logyn + o(y/log n) p=q=1/2

v 1] | O(loglogl
5log,, logn + O(logloglogn) p > q.

Plugging in k = log,, n + (1 % €)1)(n) for the upper bound on Gr.(n) gives

€

p?(logp/q logn)2+0((loglogn)2) _ 07 p—%(logp/q logn)2+0((loglogn)2) s 00,

as desired.
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Possible Future Directions

e More precise asymptotics/limit laws for H,, and F},. The limiting behavior for H,, is known
for p = g (Knessl & Szpankowski (1999): “ Limit laws for height in generalized tries and
PATRICIA tries”), but not for p > q.

e More satisfying explanation of the phase transition for H,, in terms of the number and
sizes of fringe subtrees.

e How does adding noise affect the process? One natural noise model: Items are dropped
randomly from responses to queries, or extra items are added.



Thank you!




