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Rényi’s Problem

We have a set X of objects and a set A of labels, along with a hidden bijective labeling
ϕ : X → A.

Algorithmic task: Recover the labeling ϕ using as few queries as possible.

A query take the form of a subset B of labels. An answer to the query B is the set of objects
with labels in B: ϕ−1(B).

Rényi’s problem in a nutshell: How many random queries are needed to recover ϕ in its
entirety?

Object: x Label: ϕ(x)
1 d
2 e
3 a
4 c
5 b

Query: B Response: ϕ−1(B)
{ a, c, e} {2, 3, 4 }
{ d } { 1 }

{ a, b, c, d } { 1, 3, 4, 5 }

AofA 2016 1



Partition Refinement Tree View of the Rényi Process

A sequence of queries corresponds to a refinement of partitions of the item set:

Example:

ϕ : 1 → d, 2 → e, 3 → a, 4 → c, 5 → b.

1. B1 = {b, d} 7→ {1, 5}
2. B2 = {a, b, d} 7→ {1, 3, 5},
3. B3 = {a, c, d} 7→ {1, 3, 4},

{1, 2, 3, 4, 5}
{2,3,4}

{2,4}

2 4
3

{1,5}
{1, 5}

5 1

Level j ≥ 0 of the tree ⇐⇒ partition Pj.

Right child node ⇐⇒ subset of objects in parent set contained in the response to the jth
query.

Singletons are only explicitly depicted in the first level in which they appear.
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Probabilistic Models for Queries

Original query model: fix a bias p ≥ 1/2. Independently, include each label in a query with
probability p.
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Probabilistic Models for Queries

Original query model: fix a bias p ≥ 1/2. Independently, include each label in a query with
probability p.

An inefficiency: some queries are inconclusive. They may not split all partition elements:
e.g.,

Pj = {{2, 3, 4}, {1, 5}}, ϕ−1(Bj) = {1, 3, 5}, or ϕ−1(Bj) = {2, 4}.
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Eliminate inconclusiveness by refining queries before asking them:

• Start with Bj,0, a query generated as usual: e.g., ϕ−1(Bj,0) = {1, 3, 5}.
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An inefficiency: some queries are inconclusive. They may not split all partition elements:
e.g.,

Pj = {{2, 3, 4}, {1, 5}}, ϕ−1(Bj) = {1, 3, 5}, or ϕ−1(Bj) = {2, 4}.

Eliminate inconclusiveness by refining queries before asking them:

• Start with Bj,0, a query generated as usual: e.g., ϕ−1(Bj,0) = {1, 3, 5}.
• To construct Bj,i+1 from Bj,i: for each label in each partition element unsplit by Bj,i,

decide again whether or not to include it independently with probability p: e.g.,
ϕ−1(Bj,1) = {3}, ϕ−1(Bj,2) = {3, 5}.
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Probabilistic Models for Queries

Original query model: fix a bias p ≥ 1/2. Independently, include each label in a query with
probability p.

An inefficiency: some queries are inconclusive. They may not split all partition elements:
e.g.,

Pj = {{2, 3, 4}, {1, 5}}, ϕ−1(Bj) = {1, 3, 5}, or ϕ−1(Bj) = {2, 4}.

Eliminate inconclusiveness by refining queries before asking them:

• Start with Bj,0, a query generated as usual: e.g., ϕ−1(Bj,0) = {1, 3, 5}.
• To construct Bj,i+1 from Bj,i: for each label in each partition element unsplit by Bj,i,

decide again whether or not to include it independently with probability p: e.g.,
ϕ−1(Bj,1) = {3}, ϕ−1(Bj,2) = {3, 5}.

• Query Bj is the end result, where all partition elements are split: e.g., ϕ−1(Bj) = {3, 5}.
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Refining Inconclusive Queries: PATRICIA Trie Correspondence

Important correspondence: Partition refinement tree for the Rényi process with
inconclusive query refinement D= a PATRICIA trie on n infinite random binary strings.

An object ⇐⇒ a string, where 1 means that the label is in a query, and 0 means that it is
not.

Example: ϕ : 1 → d, 2 → e, 3 → a, 4 → c, 5 → b.

Strings corresponding to objects:

1. d: 111...
2. e: 000...
3. a: 011...
4. c: 0001...
5. b: 110...

Queries corresponding to strings:

1. B1 = {b, d} 7→ {1, 5}
2. B′

2 = {a, b, d} 7→ {1, 3, 5};
B2 = {a, d} 7→ {1, 3},

3. B3 = {a, c, d} 7→ {1, 3, 4},

{1, 2, 3, 4, 5}
{2,3,4}

{2,4}

2 4
3

{1,5}

5 1
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Parameters of Interest

Parameters of interest:

• Height (Hn): # of queries needed to
recover ϕ entirely.

• Fillup level (Fn): # of queries needed
before the first item-label pair is
discovered.

• Typical depth (Dn): # of queries
before a randomly chosen item’s label
is discovered.

• External profile at level k (Bn,k):
Number of item-label pairs revealed by
the kth query.

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

5 1

In the diagram: H5 = 3, F5 = 2, Pr[D5 = 2] = 3/5,Pr[D5 = 3] = 2/5, B5,2 = 3, B5,3 = 2.
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Our Results

We have the following asymptotic expansions for the typical values of Hn and Fn:
Theorem 1 (Asymptotics for Fn and Hn). With high probability,

Hn =

log1/p n + 1

2 logp/q log n + o(log log n) p > q = 1 − p

log2 n +
√

2 log2 n + o(
√

log n) p = q = 1/2
(1)

and

Fn =

log1/q n− log1/q log log n + o(log log log n) p > q = 1 − p

log2 n− log2 log n + o(log log n) p = q = 1/2
(2)

for large n.

Symmetric case (p = 1/2) was known, but asymmetric case (p > 1/2) is new!

Note the phase transition in the second term.

We also have results for Dn via the external profile.
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Prior Work

Pittel & Rubin (1990): “How many random questions are needed to identify n distinct
objects?”: Two-term asymptotics for Hn in the symmetric case (p = 1/2) via (different)
GF methods.
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Prior Work

Pittel & Rubin (1990): “How many random questions are needed to identify n distinct
objects?”: Two-term asymptotics for Hn in the symmetric case (p = 1/2) via (different)
GF methods.

Devroye (1992): “A note on the probabilistic analysis of PATRICIA trees”: Two-term
asymptotics for Hn and Fn in the symmetric case via more probabilistic methods.

Park, Hwang, Nicodème, Szpankowski (2009): “Profile of tries”: Precisely analyzed trie
profiles via the Poisson transform/Mellin transform/Inverse Mellin via saddle point method
pipeline.

Drmota & Szpankowski (2011): “The expected profile of digital search trees”: Similar to
above, but for digital search tree profiles.

Magner Ph.D. thesis / Magner & Szpankowski (2015): “Profiles of PATRICIA tries”: Precisely
analyzed distribution of the external profile in the central range.

This work: Requires extension of the external profile analysis to the boundaries of the
central range.
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Comparison with Tries and DSTs

Only the first terms of Fn and Hn for tries and DSTs with p > q are given in the literature!

For tries:

Hn ∼ 2
log(1/(p2 + q2))

log n, Fn ∼ log1/q n.

For DSTs:

Hn ∼ log1/p n, Fn ∼ log1/q n.
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Proof Sketch: Derivation of Height

Goal: Define k∗ = k∗(n) = log1/p n + ψ(n). We want to determine ψ(n) for which

Hn = k∗ + o(ψ(n)).

First, we connect Hn with Bn,k: Hn = max{k : Bn,k > 0}.

Then connect Hn to moments of Bn,k via the first and second moment methods:

Pr[Hn > k] ≤ ∑
j>k

E[Bn,j] Pr[Hn < k] ≤ Var[Bn,k]
E[Bn,k]2

.

So we want ψ(n) to satisfy

E[Bn,log1/p n+(1−ϵ)ψ(n)] n→∞−−−→ ∞, E[Bn,log1/p n+(1+ϵ)ψ(n)] n→∞−−−→ 0.
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Derivation of the Height: External Profile Analysis

Ranges of behavior of E[Bn,k]:

• Magner/Magner & Szpankowski (2015): Central range.

k ∼ α log n, α ∈
 1

log(1/q)
+ ϵ,

1
log(1/p)

− ϵ

 .

• This work: Boundaries of the central range.

Hn : k ∼ log1/p n, Fn : k ∼ log1/q n.

k = log1/q n k = log1/p n

k = log1/q n− log1/q log log n k = log1/p n + 1
2 logp/q log n
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External Profile Analysis (continued)

Basic tool chain for profile analysis:

Poissonization Mellin Inverse Mellin De-Poissonization

Poisson transform G̃k(z) for E[Bn,k]:

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k(qz) − G̃k−1(qz)) + e−qz(G̃k(pz) − G̃k−1(pz)).
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External Profile Analysis (continued)

Basic tool chain for profile analysis:

Poissonization Mellin Inverse Mellin De-Poissonization

Poisson transform G̃k(z) for E[Bn,k]:

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k(qz) − G̃k−1(qz)) + e−qz(G̃k(pz) − G̃k−1(pz)).

Explicit formula for Mellin transform of G̃k(z):

G∗
k(s) :=

∫ ∞
0 zs−1G̃k(z) dz = (p−s + q−s)kAk(s)Γ(s + 1).

Fundamental strip for G̃k(z): ℜ(s) > −k − 1.
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Inverting the Mellin Transform

Main new challenge of our analysis: estimate G̃k(n) by bounding inverse Mellin transform of
G∗
k(s):

G̃k(z) = 1
2πi

∫ ρ+i∞
ρ−i∞ z−sG∗

k(s) ds =
∫ ρ+i∞
ρ−i∞ Jk(z, s) ds.

where ρ > −k − 1 and

Jk(n, s) =
k∑
j=0

n−s(p−s + q−s)k−j ∑
m≥j

(pm + qm)(E[Bm,j] − E[Bm,j−1])
Γ(m + s)
Γ(m + 1)

.
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Main Steps of Upper Bounding the Inverse Mellin Integral

Jk(n, s) =
k∑
j=0

n−s(p−s + q−s)k−j ∑
m≥j

(pm + qm)(E[Bm,j] − E[Bm,j−1])
Γ(m + s)
Γ(m + 1)

.

• Exponential decay of Γ(s + 1)Ak(s) along vertical lines =⇒

|G̃k(n)| = O(Jk(n, ρ))

for ρ > −k − 1.
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m≥j
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.

• Exponential decay of Γ(s + 1)Ak(s) along vertical lines =⇒

|G̃k(n)| = O(Jk(n, ρ))

for ρ > −k − 1.
• Estimate each jth term of Jk(n, ρ) using upper bound on E[Bm,j] for j sufficiently close

to m:

E[Bm,j] ≤ C
m!

(m− j − 1)!
pj

2/2+j/2+o(j).
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Main Steps of Upper Bounding the Inverse Mellin Integral

Jk(n, s) =
k∑
j=0

n−s(p−s + q−s)k−j ∑
m≥j

(pm + qm)(E[Bm,j] − E[Bm,j−1])
Γ(m + s)
Γ(m + 1)

.

• Exponential decay of Γ(s + 1)Ak(s) along vertical lines =⇒

|G̃k(n)| = O(Jk(n, ρ))

for ρ > −k − 1.
• Estimate each jth term of Jk(n, ρ) using upper bound on E[Bm,j] for j sufficiently close

to m:

E[Bm,j] ≤ C
m!

(m− j − 1)!
pj

2/2+j/2+o(j).

• Maximize resulting upper bound over all j:

Jk(n, s) ≤ pν(n,s),

where

ν(n, s) = −
(s + log1/p(1 + (p/q)s) + ψ(n) + 1)2

2
− log1/p nlog1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2).

AofA 2016 13



Tightening the Upper Bound on the Poisson Transform

We now know

G̃k(n) = O(Jk(n, s)) ≤ pν(n,s)

for s ∈ (−k − 1, 0).

Tighten the upper bound by minimizing over s:

• p = q = 1/2: log1/p(1 + (p/q)s) = 1, and we get

s∗ = −ψ(n) +O(1), ν(n, s∗) = − log2 n + ψ(n)2/2 + o(ψ(n)2).
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Tightening the Upper Bound on the Poisson Transform

We now know

G̃k(n) = O(Jk(n, s)) ≤ pν(n,s)

for s ∈ (−k − 1, 0).

Tighten the upper bound by minimizing over s:

• p = q = 1/2: log1/p(1 + (p/q)s) = 1, and we get

s∗ = −ψ(n) +O(1), ν(n, s∗) = − log2 n + ψ(n)2/2 + o(ψ(n)2).

• p > q: log1/p(1 + (p/q)s) is a function of s. Lambert W function asymptotics + algebra
=⇒

s∗ = − logp/q log n +O(log log log n).
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Determining the Second Term of Hn

We now know

G̃k(n) ≤ pν(n,s∗).

for an optimal s∗ exhibiting a phase transition w.r.t. p.
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Determining the Second Term of Hn

We now know

G̃k(n) ≤ pν(n,s∗).

for an optimal s∗ exhibiting a phase transition w.r.t. p.

Determining a candidate ψ(n):

• for pν(n,s∗) to tend to 0, ∞ w.r.t. n, need ν(n, s∗) → +∞, −∞, respectively.
• So we need ψ(n) to be such that ν(n, s∗) = 0.

ψ(n) =

√

log2 n + o(
√

log n) p = q = 1/2
1
2 logp/q log n +O(log log log n) p > q.

Plugging in k = log1/p n + (1 ± ϵ)ψ(n) for the upper bound on G̃k(n) gives

p
ϵ
2(logp/q log n)2+o((log log n)2) → 0, p

− ϵ
2(logp/q log n)2+o((log log n)2) → ∞,

as desired.
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Possible Future Directions

• More precise asymptotics/limit laws for Hn and Fn. The limiting behavior for Hn is known
for p = q (Knessl & Szpankowski (1999): “ Limit laws for height in generalized tries and
PATRICIA tries”), but not for p > q.
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• More satisfying explanation of the phase transition for Hn in terms of the number and
sizes of fringe subtrees.
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Possible Future Directions

• More precise asymptotics/limit laws for Hn and Fn. The limiting behavior for Hn is known
for p = q (Knessl & Szpankowski (1999): “ Limit laws for height in generalized tries and
PATRICIA tries”), but not for p > q.

• More satisfying explanation of the phase transition for Hn in terms of the number and
sizes of fringe subtrees.

• How does adding noise affect the process? One natural noise model: Items are dropped
randomly from responses to queries, or extra items are added.
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Thank you!
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