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Let Xn be the number of steps required by Quicksort algorithm to
sort the list of values �.1/; �.2/; : : : ; �.n/ where � is a random
permutation chosen with uniform probability from the set of all
permutations Sn of order n.
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The total number of comparisons Xn satisfies the recurent relation

Xn D
d XZn�1 C X 0n�Zn

C n � 1; X0 D 0;X1 D 0

where Zn is uniformly distributed on the set f1; 2; 3; : : : ; ng.
Régnier (1989) and Rösler (1991) proved that Xn converges to
some limit law

Xn � EXn

n
!

d Y



Let f .t/ be the characteristic function

f .t/ D Ee itY

Tan and Hadjicostas (1995) proved that the characteristic function
f .t/ has a density

f .t/ D

Z 1
�1

e itxp.x/ dx

Knessl and Szpankowski (1999) using heuristic approach
established a number of very precise estimates for the behavior of
p.x/ at infinity.
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Fill and Janson (2000) showed that that for all real p > 0 there is
such a constant cp that

jf .t/j 6
2p

2C6p

jtjp
; for all t 2 R:

The infimum in the above inequality can be evaluated as

jf .t/j 6 inf
p>0

2p
2C6p

jtjp
6 jtj3e�

log2 jtj
4 log 2 :
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Theorem
There is a constant � > 0 such that

f .t/ D O.e��jtj/

as jtj ! 1.

Corollary

Quicksort distribution has a bounded density that can be extended
analytically to the vicinity of the real line j=.s/j < � by means of
formula

p.s/ D
1

2�

Z 1
�1

f .t/e�ist dt:

Where � is the same positive number as in the formulation of
Theorem.
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The main idea of the proof

Since
Xn � EXn

n
!

d Y

This yields (see Rösler (1991)) the functional equation

Y Dd Y � C Y 0.1 � �/C 2� log � C 2.1 � �/ log.1 � �/C 1

where � is independent of Y ;Y 0 and is uniformly distributed on
the interval Œ0; 1�.
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0
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Hence the Laplace transform

 .s/ D

Z 1
0

f .t/e2it log te�st dt

is analytic for all <.s/ > 0 and satisfies the shift-differential
equation

� 0.s/ D  2.s � i/:

This equation leads to various upper bounds for the derivatives

 .j/.s/

for the values of s located on the line <s D 1
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Analytic continuation of  .s/ to the whole complex plane
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If we formally make change of variables t D ui in the integral

 .s/ D

Z 1
0

f .t/e2it log te�st dt

then

 .s/ D

Z 1
0

f .iu/e�2 log ue�.�Cs/it dt

Proposition

Function  .s/ satisfies the functional equation

� .�Ns/ D  .s � 2�/:

This functional equation implies that j .s/j is symmetric with
respect to the line <s D �� .

Corollary Z 1
0
jf .t/je�t dt D1
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