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Let X, be the number of steps required by Quicksort algorithm to
sort the list of values o(1),0(2),...,0(n) where ¢ is a random
permutation chosen with uniform probability from the set of all
permutations S, of order n.
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The total number of comparisons X,, satisfies the recurent relation
Xo =T Xz,1+X/_; +n—1, Xo=0,X =0

where Z,, is uniformly distributed on the set {1,2,3,..., n}.
Régnier (1989) and Rdsler (1991) proved that X, converges to

some limit law
Xn —EX,

n
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Let f(t) be the characteristic function
f(t) = Ee'tY

Tan and Hadjicostas (1995) proved that the characteristic function
f(t) has a density

o0
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Knessl and Szpankowski (1999) using heuristic approach
established a number of very precise estimates for the behavior of
p(x) at infinity.



Fill and Janson (2000) showed that that for all real p > 0 there is
such a constant ¢, that
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The infimum in the above inequality can be evaluated as
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Theorem
There is a constant n > 0 such that

f(t) = O(e Mt

as |t| — oo.
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Corollary

Quicksort distribution has a bounded density that can be extended
analytically to the vicinity of the real line |3(s)| < n by means of
formula
1 [ ,
p(s) = —/ f(t)e "™ dt.
21 J oo
Where n is the same positive number as in the formulation of
Theorem.



The main idea of the proof

Since

This yields (see Rosler (1991)) the functional equation
Y=CYr+Y(1-1)+2tlogr +2(1—1)log(l—1)+1

where 7 is independent of Y, Y’ and is uniformly distributed on
the interval [0, 1].
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1
f(t) — elt/ f(tx)f(t(l _X))e2ltx|ogx+21t(1—x) log(1—x) dx
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Hence the Laplace transform
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is analytic for all i(s) > 0 and satisfies the shift-differential
equation
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Hence the Laplace transform

w(s) — Am f(t)eQitlog te—st dt

is analytic for all i(s) > 0 and satisfies the shift-differential
equation

~¥'(s) = ¥ (s — ).
This equation leads to various upper bounds for the derivatives
v 9(s)

for the values of s located on the line iis =1



Analytic continuation of ¥ (s) to the whole complex plane
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Analytic continuation of ¥ (s) to the whole complex plane
4t
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Y(s) = V(s —i)+i [y vis—i+it)dt
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If we formally make change of variables t = ui in the integral

w(s) — /Ooo f(t)e2it|og te—st dt

then o
Yis) = / f(iu)e 2108 Ve~ (it gy
0

Proposition
Function  (s) satisfies the functional equation

—V(=8) = ¥ (s —2m).

This functional equation implies that | (s)| is symmetric with
respect to the line fis = —m.

Corollary

o0
/ |f(t)|e™" dt = co
0
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