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… because of Philippe
What am I doing here?

Philippe FLAJOLET 
(1948 - 2011)
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COMBINATORIAL MODELS OF CREATION–ANNIHILATION

PAWEL BLASIAK AND PHILIPPE FLAJOLET

Abstract. Quantum physics has revealed many interesting formal proper-
ties associated with the algebra of two operators, A and B, satisfying the
partial commutation relation AB �BA = 1. This study surveys the relation-
ships between classical combinatorial structures and the reduction to normal
form of operator polynomials in such an algebra. The connection is achieved
through suitable labelled graphs, or “diagrams”, that are composed of ele-
mentary “gates”. In this way, many normal form evaluations can be system-
atically obtained, thanks to models that involve set partitions, permutations,
increasing trees, as well as weighted lattice paths. Extensions to q-analogues,
multivariate frameworks, and urn models are also briefly discussed.
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Abstract
Weconsider a typical realization of a qubit as a single particle in two-path interferometric circuits built
fromphase shifters, beam splitters and detectors. This framework is often taken as a standard example
illustrating various paradoxes and quantum effects, including non-locality. In this paper we show that
it is possible to simulate the behaviour of such circuits in a classicalmanner using stochastic gates and
two kinds of particles, real ones and ghosts, which interact only locally. Themodel has built-in limited
information gain and state disturbance inmeasurements which are blind to ghosts.We demonstrate
that predictions of themodel are operationally indistinguishable from the quantum case of a qubit,
and allegedly ‘non-local’ effects arise only on the epistemic level of description by the agentwhose
knowledge is incomplete due to the restrictedmeans of investigating the system.

1. Introduction

Quantummechanics presents a challenge tomany classical concepts that we hold about theworld. In particular,
it defies the very essence of particle ontologywhich says that a particle is localized only in one place at a time and
interacts only with objects in its immediate vicinity. It was a profound insight of Bell [1–3] to point out that
quantummechanics admits correlations between particles which contradict the assumption of local realism. As
a consequence, to recover quantumpredictions in a realistic hidden-variablemodel one has to resort to spooky
action at a distance and thus violate the paradigmof locality. In a similarmanner it is often argued that in the case
of a single particle a kind of non-local influence is also required to account for the effects associatedwith the
collapse of thewave function. For an illustration of this type of reasoning it is enough to consider simple
interferometric setups, e.g. see the analysis of single-particle interference in theMach–Zehnder interferometer
[4, 5] or the proposal of interaction-freemeasurements [6–8]. These sorts of arguments exploit the apparent
difficulty in answering the question: how does the particle, being localized in a given path, knowwhat happens in the
other path of the interferometer? Facedwith a puzzle, conventional wisdom attributes this kind of behaviour to
non-local effects—either of the particle itself or thewave function.However, it is unclear if this is enough to
establish similar conclusions as in the Bell-type reasoning. In particular, does it imply the impossibility of local
hidden variablemodels simulating quantumbehaviour in the considered interferometric setups? In this paper,
we answer this question in the negative.

Clearly, in the Bell scenario one is concernedwith correlations between a pair of quantumparticles, whereas
in the single particle case we are concernedwith a single quantumparticle interacting with classical apparatus.
Hence the question of the hidden variable account is brought up in a different conceptual context. Thismakes it
interesting to ask if it is possible to simulate the single-particle behaviour of interferometric circuits by replacing
quantumgates with stochastic counterparts without violating the locality principle. Note that an argument of
the Bell-type does not apply in this situation, and hence it should not be very surprising if a different conclusion
is reached.

In this paper, we take a closer look at a single-particle framework for two-path interferometric setups built
fromphase shifters, beam splitters and detectors. It has a simple descriptionwhich boils down to a qubit and, as
such, is often taken as the prototypical example illustrating various paradoxes and quantum effects, see e.g.
[4–14].We show that it is possible to simulate the behaviour of such circuits in a classicalmanner using
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… are we living in a MATRIX?
Allegory of the Cave
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Flammarion engraving
Reaching further
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Best theory we’ve ever had …
Quantum mechanics

I should begin by expressing my general attitude to present-day quantum 
theory, by which I mean standard non-relativistic quantum mechanics. The 
theory has, indeed, two powerful bodies of fact in its favour, and only one thing 
against it. First, in its favour are all the marvellous agreements that the theory 
has had with every experimental result to date. Second, and to me almost as 

important, it is a theory of astonishing and profound mathematical beauty. The 
one thing that can be said against it is that it makes absolutely no sense! 

Roger Penrose 
"Gravity and State Vector Reduction” 
in: "Quantum Concepts in Space and Time" (1986) 

    

Sir Roger Penrose 
(1931)

AofA’16, Kraków 2016
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Q.M.
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Quantum mechanics
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Mathematical formalism !
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Mathematical formalism ! Operational description !
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Mathematical formalism ! … but what is the ontology ?Operational description !
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… as we have it …
Quantum mechanics



… as we have it …

7

Quantum mechanics

Lorem ipsum more info

"

AofA’16, Kraków 2016

In a strict sense, quantum theory is a set of rules allowing the computation 
of probabilities for the outcomes of tests which follow specified preparations. 

  Asher Peres in Quantum Theory: Concepts and methods (1995)

Preparation Transformation Measurement 

Mathematical formalism ! … but what is the ontology ?Operational description !

non-locality, contextuality, 
weird superposition states, 
entanglement (non-local correlations), 
waves or particles (both), 
what is the role of observer, 
no values prior to measurement, 
etc…



Einstein - Bohr debate
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Copenhagen (non-)interpretation

Albert EINSTEIN  
(1879 - 1955)

Niels BOHR 
(1885 - 1962)

Niels … Get REAL !!! Albert … look around … it’s all UNREAL !!!

AofA’16, Kraków 2016

What is the reality/story above the math? 
Is it a ‘shadow’ of something more concrete?



Occupation number representation (Fock space) 

Hilbert space      with a fixed basis: 

                     - the number states 

                        

Creation & annihilation operators: 

Commutator: 

Evolution operators: 

9

Creation—Annihilation paradigm
Occupation number representation

AofA’16, Kraków 2016

Differential operator representation 

Formal power series in one variable           : 

                           - polynomials 

                        

Multiplication & derivative operators: 

Commutator: 

Evolution operators: 



Combinatorial 

Models 

(Graphs)

Algebraic 

structures 

(Heisenberg-Weyl algebra)

Heisenberg-Weal algebra 

AAU with two generators: 

         - creation (multiplication) 

         - annihilation (derivative) 

with the relation: 

Elements of the algebra          :   

Structure constants of the algebra:

10

Normal forms
Heisenberg-Weyl algebra

AofA’16, Kraków 2016

i.e. algebra of words with rewrite rule:

basis in

ambiguous
unique
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Normal ordering problem
Heisenberg-Weyl algebra

AofA’16, Kraków 2016

Normal ordering and normal form:

Operator identity:

Change of “functional” form !!!

Combinatorial 

Models 

(Graphs)

Algebraic 

structures 

(Heisenberg-Weyl algebra)

commute (like numbers)

Normal ordering problem
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Wick’s theorem
Heisenberg-Weyl algebra

AofA’16, Kraków 2016

Find all possible contractions:  

!! NOT CONSTRUCTIVE !!
for analytical calculations ...

GOOD for computer algebra ...

Problematic for infinite series ...

Integers              Combinatorics ...

Combinatorial 

Models 

(Graphs)

Algebraic 

structures 

(Heisenberg-Weyl algebra)



A directed graph is a collection of edges       and vertices       together with two mappings 
                        prescribing how the head and tail of each edge is attached to vertices. 

Example:

13

Some definitions
Graph model

AofA’16, Kraków 2016

We shall consider classes of graphs up to isomorphism, i.e. simply pictures. 

Take plane graphs (not planar), i.e. lines going in/out of a vertex are ordered !!! 

Following a cycle in a graph one ends at the starting point.  



It has three sorts of edges: inner, ingoing and outgoing ones 

Size of a graph:

Edges in a graph may have one of the ends free (but not both)

14

Heisenberg - Weyl graphs
Graph model

AofA’16, Kraków 2016

Definition:

Combinatorial class of Heisenberg - Weyl graphs consists of plane directed graphs 

which do not have cycles and may be partially-defined.

inner edges

outgoing edges

ingoing edges



Addition in      has the usual form: 

What about the multiplication?

15

Vector space of graphs
Graph model

AofA’16, Kraków 2016

We define      as a vector space over      spanned by the basis set  

consisting of all Heisenberg - Weyl graphs, i.e. 

Heisenberg - Weyl graph
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Composition and multiplication
Graph model

AofA’16, Kraków 2016

The number of possible compositions with    connections:

Definition:

For two graphs        and       and a matching                            the composite graph, 
denoted as                 , is constructed by joining the edges coupled by the matching     .

Definition:

Multiplication of two graphs       and       in        is just a sum over 
all possible compositions:

Proposition:

Heisenberg - Weyl graphs form an associative algebra with unit                     .  
It is non-commutative !!

matching
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Example
Graph model

AofA’16, Kraków 2016

.

.

one connection  two connections no connections 

one connection no connections 



Ingoing: 4

Outgoing: 3

We define a linear mapping                        which erases all inner structure of a graph, 

given on the basis elements as:

18

Model of the Heisenberg-Weyl algebra
Graph model

AofA’16, Kraków 2016

Definition:

Example:

Forgetful mapping                        is a surjective AAU algebra morphism.

Theorem:

Inner: 4
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Example
Graph model

AofA’16, Kraków 2016

Combinatorial Model 

Algebraic structure 

Morphism                       erases all inner structure of a graph, and preserves all relations.

Combinatorial algebra of 
Heisenberg-Weyl graphs

Heisenberg-Weyl algebra 

P. Blasiak, G. H. E. Duchamp, A. I. Solomon, A. Horzela, and K. A. Penson. Combinatorial Algebra for second-quantized Quantum Theory. Adv. Theor. Math. Phys., 14(4):1209–1243, 2010
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Example
Graph model

AofA’16, Kraków 2016

.

.
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Gates and graph labeling
Building a graph

AofA’16, Kraków 2016

r outgoing 

s ingoing 

Increasing labelling is an additional structure on graphs introduced by labelling vertices with 1,2,3,…  
such that labels are increasing along each directed path.

Each choice of gates (”basis” set):

generates a combinatorial class of graphs which have all vertices of type    .

Building blocks of a graph (gates):

r 

s 

Additional structure:

Can attach multiplicative weights         to vertices.

3 1 

2 
4 

5 

- atoms

- marker

- marker



On the level of graphs     :

22

and normal ordering
Enumeration of Graphs

AofA’16, Kraków 2016

For                                          consider the associated “basis” set: 

r 

s 
3 1 

2 
4 

5 

- atoms

- marker

- marker

Equivalence principle

increasingly labelled graphs 
built of n vertices of types

n

r 

s 

On the level of algebra     :

|

increasingly labelled graphs 
built of n vertices of types 

with k outgoing and l ingoing lines

n
k l

n k l
lk

n

n k l

Normal form !!!

n

k

l
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Constructive approach to normal ordering
Symbolic Methods & Generating Functions

AofA’16, Kraków 2016

-  combinatorial class (collection of objects with the notion of size)

objects of size      in class

-  exponential generating function of class

Disjoint union:

Cartesian product:

Set construction:

Appending min/max element:

.....  and many others, e.g. 

Set-theoretic constructions translate into generating functions.

Substitution:
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Example: Set partitions
Combinatorial structures

AofA’16, Kraków 2016

Generic graph:

Let us take          , i.e.          . Set Partitions

1  2 

3 

4 

5 

6 

7 

- atoms

- marker

- marker

Combinatorial specification:

Generating function:

On the algebraic level:
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Example: Involutions

AofA’16, Kraków 2016

Bicoloured 
  Involutions

3 

4 

6 

8 
1 

7 

2 

5 

9 

!!  BCH formula  !!

Let us take          +          , i.e.              .

Generic graph:

Combinatorial specification:

Generating function:

On the algebraic level:

- atoms

- marker

- marker

Combinatorial structures
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Combinatorial structures

Forest of 
    Binary Trees

Construction of a Tree:

1  2 

3 4  5 

6 

8 

7 

Let us take                 , i.e.          .

Generic graph:

Combinatorial specification:

Generating function:

On the algebraic level:

Example: Binary trees

- atoms

- marker

- marker
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and much more …

AofA’16, Kraków 2016

Combinatorial structures

Open/closed ZIG-ZAGS 
(alternating) permutations

1 

4  2 

3 

5 

8 

6 

7  9 

10 

13 

11 

12 

Tree varieties



28

A naive attempt at interpretation
Back to Quantum Foundations

AofA’16, Kraków 2016

Some insight into quantum evolution (Schrödinger equation)

where:

Can think as constructors acting on generating functions of combinatorial classes?

Problematic: 

What is the meaning of g.f. evaluated at a point? 

How to derive/understand the Born’s rule? 

What is the meaning of complex weights (interference phenomena)? 

Action on whole classes (no interpretation in terms of action on single objects)

where:

where: - combinatorial class

Combinatorial Model 

Algebraic structure 



"We have to remember that what we observe is not nature in itself,  
  but nature exposed to our method of questioning."  

                                                   —  Werner Heisenberg

Information is physical

29

Blind man and an elephant

AofA’16, Kraków 2016



Qubit and the Bloch ball representation

30

Quantum formalism

Representation of a qubit: 

 Pure states: 

  

 Mixed states: 

 Unitary transformations: 

 Each unitary has representation: 

 where: 

  
 Measurement in basis                                                                  :

|~n| 6 1s.t.:       

Bloch ball

AofA’16, Kraków 2016

von Neumann projection + Born’s rule



Basic toolkit

31

Quantum interferometry

Phase shifters: 

Beam splitters: 

Detectors:

Typical interferometric circuit:  

 single-mode and one-particle framework 

 two paths (spatially separated) 

(*) Mirror = phase shifter,   path blocker = detector + post-selection 

—  particle in path  “    “

—  particle in path  “    “

#

#

AofA’16, Kraków 2016



Basic toolkit

31

Quantum interferometry

Phase shifters: 

Beam splitters: 

Detectors:

Typical interferometric circuit:  

 single-mode and one-particle framework 

 two paths (spatially separated) 

(*) Mirror = phase shifter,   path blocker = detector + post-selection 

—  particle in path  “    “

—  particle in path  “    “

#

#

AofA’16, Kraków 2016



A few paradoxes for a qubit

32

Problems with the ontology

Non-locality and interaction-free measurements 
Elitzur-Vaidman bomb testing problem

Micro vs. macroscopic realism  
Leggett-Garg inequalities

Wave-particle duality  
Wheeler’s delayed-choice experiment

How the particle particle ‘changes’ its past ? How the particle ‘feels’ the other path ? How the world becomes ‘macro’ ?

#

#

?

time

AofA’16, Kraków 2016



A few paradoxes for a qubit

32

Problems with the ontology

Non-locality and interaction-free measurements 
Elitzur-Vaidman bomb testing problem

Micro vs. macroscopic realism  
Leggett-Garg inequalities

Wave-particle duality  
Wheeler’s delayed-choice experiment

Scientific American 275 72 (1996)
Nature Physics 6 401 (2010)

Science 338 621 (2012)

AofA’16, Kraków 2016



Is it possible to make sense of interferometric experiments with a qubit in ‘classical’ terms ? 

Can you see it as a stochastic process ?  Do correlations help ? What about locality ?

Plan of action

33

Building the model

REAL & GHOST particles

ONTOLOGY

Local vs. non-local gates

STOCHASTIC PROCESSES 

Limited set of stochastic gates

BASIC BUILDING BLOCKS Recovery of quantum predictions 

ANALYSIS OF THE MODEL

!

$
s

"

AofA’16, Kraków 2016



Probabilistic set-up

34

Reminder I

 Product ontic state space: 

  

 Probabilistic description: 

 Ontic states: 

 In general:

 Ontic state space: 

  

 Probabilistic description: 

 Ontic states: 

 In general:

AofA’16, Kraków 2016



Stochastic transformations

35

Reminder II

Probabilistic 

(*) Compare with:

  

 Probabilistic(*): 

 Conditional probabilities: 

 Then: 

 For a sequence : 

 we have:  

Stochastic 
matrix

 Deterministic: 

AofA’16, Kraków 2016



General set-up: Ontic state space

36

Ontology of the Model

Two paths: 

       Two kinds of particles: 

                      REAL particles: 

                      GHOST particles: 

      Key assumption: 

      Only single REAL particle present in the circuit, 

      with a GHOST in the other path or the path is EMPTY. 

t0 t1 t2 t3 t4

REAL GHOST / EMPTY
where is 

REAL particle inner state of 
REAL particle

inner state of 
GHOST particle 

or EMPTY

      Hence, the ontic state space:

AofA’16, Kraków 2016



We will consider stochastic circuits that are built 

from a few building blocks: 

 Phase shifters: 

 Beam splitters: 

 Detectors: 

Limited set of stochastic gates
Building Blocks of the Model

37

#

#

• Need to specify how they act  the ontic states. 

• Make sure that phase shifters and detectors act locally 

and only beam splitter has access to both paths.

REAL & GHOST :

REAL & EMPTY:

#

AofA’16, Kraków 2016



Action of  phase shifter                   in the     -th path: 

         rotates REAL particle around       axis by           , 

         rotates GHOST particle around       axis by           , 

         for EMPTY        does nothing. 

Phase shifter
Building Blocks

38

Phase shifter 

REAL GHOST / EMPTY

Local deterministic gate !!

AofA’16, Kraków 2016



Phase shifter
Building Blocks

39

Phase shifter 

REAL GHOST / EMPTY

Action of  phase shifter                   in the     -th path: 

         rotates REAL particle around       axis by           , 

         rotates GHOST particle around       axis by           , 

         for EMPTY        does nothing. 

Local deterministic gate !!

AofA’16, Kraków 2016



#

Detector
Building Blocks

40

Detector

Action of  detector            in the     -th path: 

        reveals (‘clicks’) whether REAL particle is in    

           -th path and if yes leaves it in state                  , 

        remains silent (‘no click’) about the GHOST 

        and removes it from the channel, 

         for EMPTY        does nothing (‘no click’).

‘click’#

#

#

#

‘click’

‘no click’

‘no click’

#

#

#

###

REAL GHOST / EMPTY

Local deterministic gate !!

AofA’16, Kraków 2016



Beam splitter
Building Blocks

41

Beam splitter

Action of  beam splitter               : 

        The gate takes both particles (REAL & GHOST) and 

        depending on their inner states                           and       

        produces probabilistic mixture of two situations: 

• particles remain in their respective channels, 

• particles are swapped, 

        changing                     and                  . 

where:                                                                               .

or

REAL GHOST

Local stochastic gate !!

AofA’16, Kraków 2016



Beam splitter
Building Blocks

42

Beam splitter

Action of  beam splitter               : 

        The gate sets                    for the REAL particle  
        creates a GHOST in the EMPTY channel  
        and acts accordingly, i.e.: 

• particles remain in their respective channels, 

• particles are swapped, 

        changing                     and                  . 

where:                                                                                    . REAL

Local stochastic gate !!

GHOST / EMPTY

or

AofA’16, Kraków 2016



Indeed, the stochastic model ’resembles‘ interferometric circuits (locality !!). 

How does it compare with quantum predictions?  Where is the wave function?

Plan of action

43

Building the model

REAL & GHOST particles

ONTOLOGY

Local vs. non-local gates

STOCHASTIC PROCESSES 

Limited set of stochastic gates

BASIC BUILDING BLOCKS Recovery of quantum predictions 
on the epistemic level

ANALYSIS OF THE MODEL

!

$
s

"
#

AofA’16, Kraków 2016



"We have to remember that what we observe is not nature in itself,  
  but nature exposed to our method of questioning."  

                                                           —  Werner Heisenberg

Blind man and an elephant

44

Ontic vs. Epistemic 

AofA’16, Kraków 2016



Agent under constraints

45

Epistemic desideratum

#

#

The agent ‘sees’ the model only through experiments 

i.e. using only a limited choice of gates .

Epistemic perspective

Available resources: 
 Phase shifters 

  Beam splitters 
 Detectors (post-selection) 
    Probabilistic mixing

Ontic perspective

where is 
REAL particle

inner state of 
REAL particle

inner state of 
GHOST particle 

or EMPTY

#

AofA’16, Kraków 2016



Agent under constraints

45

Epistemic desideratum

#

#

The agent ‘sees’ the model only through experiments 

i.e. using only a limited choice of gates .

Epistemic perspective

Available resources: 
 Phase shifters 

  Beam splitters 
 Detectors (post-selection) 
    Probabilistic mixing

Which distributions in               can be prepared 
by the agent according to the rules of the model ?

How do they transform and what information  
can be learned under the action of conceivable circuits ?

Operational description of the model

What is the minimal description which is enough 
to predict behaviour of the system as ‘seen‘ by the agent ?

What is the geometry of  
accessible states

Full probabilistic description
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#

#

How to make a circuit work, i.e. INITIALISE ? 

Make sure there is only one REAL particle in the circuit, 

with a GHOST / EMPTY in another channel. 

Initialisation
Analysis of the Model

46

      Key assumption: 

      Only single REAL particle present in the circuit, 

      possibly accompanied by a GHOST in another channel.

(*) One can use two detectors or detector and blocker.
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Some states of interest
Analysis of the Model
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     Labelling of classes

Definition.  
For each                                      , we define a class of distributions:
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     Labelling of classes

Definition.  
For each                                      , we define a class of distributions:

In particular:

For                     , we augment             to account for the EMPTY path:
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Mapping of classes

Transformation of classes
Analysis of the Model

48

Lemma 1. 

Phase shifters                 and beam splitters               do not leave outside the set                                           

and classes map in a congruent manner,  i.e.                                                        .

For any sequence of 
phase shifters and beam splitters

AofA’16, Kraków 2016
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Transformation of classes
Analysis of the Model
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More specifically:

Phase shifters 

Beam splitters

Mapping of classes

Lemma 1. 

Phase shifters                 and beam splitters               do not leave outside the set                                           

and classes map in a congruent manner,  i.e.                                                        .
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for outcome                with 

Transformation of classes
Analysis of the Model

50

Detectors

Mapping of classes

for outcome                with 

Lemma 2. 

Detectors         reveal position of the REAL particle                     (by a ‘CLICK’ / ‘NO CLICK’) 

and depending on the outcome yield a state in the respective class             or            .

More specifically:
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Indistinguishability of  
  distributions in

Accessible states & Bloch sphere
Analysis of the Model

51

Phase shifters, beam splitters 
& detectors with post-selection 

Range of accessible states:

Transformation rules on         :

Phase shifters & Beam splitters Detectors with post-selection

!Equivalent to Bloch sphere representation !!!

AofA’16, Kraków 2016

Equivalent



Agent under epistemic constraints
Summary

52

Agent subject to such constraints is 

confined in a very specific world.

REAL & GHOST particle ontology 

+ limited set of stochastic gates. 

Restricted and well structured set of 

distributions and their transformations.

Mapping of classes 

#
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Well-defined local ontology. 
Non-locality an epistemic effect.

Geometry of 
accessible states 

Bloch ball 
representation

Equivalent



Thank you
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