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What am I doing here?

... because of Philippe

Philippe FLAJOLET
(1948 - 2011)
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Séminaire Lotharingien de Combinatoire 65 (2011), Article B65c

COMBINATORIAL MODELS OF CREATION-ANNIHILATION

PAWEL BLASIAK AND PHILIPPE FLAJOLET

ABSTRACT. Quantum physics has revealed many interesting formal proper-
ties associated with the algebra of two operators, A and B, satisfying the
partial commutation relation AB — BA = 1. This study surveys the relation-
ships between classical combinatorial structures and the reduction to normal
form of operator polynomials in such an algebra. The connection is achieved
through suitable labelled graphs, or “diagrams”, that are composed of ele-
mentary “gates”. In this way, many normal form evaluations can be system-
atically obtained, thanks to models that involve set partitions, permutations,
increasing trees, as well as weighted lattice paths. Extensions to g-analogues,
multivariate frameworks, and urn models are also briefly discussed.
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What am I doing here?

... because of Philippe
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PAPER
Local model of a qubit in the interferometric setup

Pawel Blasiak
Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Krakéw, Poland

E-mail: pawel.blasiak@ifj.edu.pl

Keywords: locality, quantum interferometry, ontological models, epistemic restrictions

Abstract

We consider a typical realization of a qubit as a single particle in two-path interferometric circuits built
from phase shifters, beam splitters and detectors. This framework is often taken as a standard example
illustrating various paradoxes and quantum effects, including non-locality. In this paper we show that
itis possible to simulate the behaviour of such circuits in a classical manner using stochastic gates and
two kinds of particles, real ones and ghosts, which interact only locally. The model has built-in limited
information gain and state disturbance in measurements which are blind to ghosts. We demonstrate
that predictions of the model are operationally indistinguishable from the quantum case of a qubit,
and allegedly ‘non-local’ effects arise only on the epistemic level of description by the agent whose
knowledge is incomplete due to the restricted means of investigating the system.




Allegory of the Cave

... are we living in a MATRIX?
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Reaching further

Flammarion engraving
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Quantum mechanics

Best theory we’ve ever had ...

| should begin by expressing my general attitude to present-day quantum
theory, by which | mean standard non-relativistic quantum mechanics. The
theory has, indeed, two powerful bodies of fact in its favour, and only one thing
against it. First, in its favour are all the marvellous agreements that the theory
has had with every experimental result to date. Second, and to me almost as
important, it is a theory of astonishing and profound mathematical beauty. The
one thing that can be said against it is that it makes absolutely no sense!

Roger Penrose

"Gravity and State Vector Reduction”
in: "Quantum Concepts in Space and Time" (1986)

A’16, Krakow 2016

Sir Roger Penrose
(1931)



Quantum mechanics

...as we have it ...
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Quantum mechanics

...as we have it ...

Mathematical formalism
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Quantum mechanics

...as we have it ...

Mathematical formalism Operational description
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Quantum mechanics

...as we have it ...

Mathematical formalism Operational description ... but what is the ontology ?

AofA’16, Krakow 2016



Quantum mechanics

...as we have it ...

Mathematical formalism Operational description

Measurement

Preparation Transformation

5 e ) — l[e7)

-

1Y) € H V) — @Y =U|9¥) A= Z%Pk
k
) e Ha®Hp Pr(k|y) = (¥] Py )
koo DelY)
SN CTVATD

In a strict sense, quantum theory is a set of rules allowing the computation
of probabilities for the outcomes of tests which follow specified preparations.

Asher Peres in Quantum Theory: Concepts and methods (1995)

AofALBbe iy jdsum 2Ad e info

... but what is the ontology ?

non-locality, contextuality,

weird superposition states,
entanglement (non-local correlations),
waves or particles (both),

what is the role of observer,

no values prior to measurement,

etc...



Copenhagen (non-)interpretation

Einstein - Bohr debate

Niels ... Get REAL !!! Albert ... look around ... it’s all UNREAL !!!

Albert EINSTEIN . . Niels BOHR
(1879 - 1955) What IS the reallt}//StOl'y above the math? (1885 - 1962)

Is it a ‘shadow’ of something more concrete?

AofA’16, Krakow 2016



Occupation number representation

Creation—Annihilation paradigm

Occupation number representation (Fock space)

Differential operator representation

> Hilbert space H with a fixed basis:

in) - the number states

v) =3 a,n)

p Creation & annihilation operators:

o' |ny=vn+1|n+1)
a|n) =+/n|n—1)

2 Commutator:

a,a'] =1

> Evolution operators: U = eftH(a:a’)

o) — |thy) = (@) |y

AofA’16, Krakow 2016

» Formal power series in one variable C||x|] :

x" - polynomials

F(z) =) foa"
n=0

> Multiplication & derivative operators:

X 2" =gt
n—1

D" =nx

2 Commutator:

D, X] =1

> Evolution operators: 9 = !t (DP:X)
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Heisenberg-Weyl algebra

Normal forms

Heisenberg-Weal algebra

AAU with two generators:

X - creation (multiplication)

D - annihilation (derivative)

with the relation: DX — XD =1

0= C<D’X>/[D X]=1

i.e. algebra of words with rewrite rule:

/ DX — XD +1
» Elements of the algebra b € $: basis I\nz
DX — XD +1
h= > a,  X"D" .. X"D% - ~  h=) a,, XD’
Tl gooog % 81::Sk -
S1,4...5k N _ .
ambiguous Sies

k . |
» Structure constants of the algebra: XPD1XFkDl = Z (q) <) i X Pk—ipatl—i

A’16, Krakow 2016

[/ [/

1

COMB;NMNIORGAE

MODELS
(Graphs)

AEGEBRAC
SIIRUGIRURES;

(Heisenberg-Weyl algebra)
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Heisenberg-Weyl algebra

Normal ordering problem

Normal ordering and normal form:

DXDDXD

DXDDXD

N

DX — XD +1

2 14
DX — XD = XD

commute (like numbers)

» Operator identity: F(D,X)=N(F(D,X))

F(D,X)# :F(D,X)

» Normal ordering problem

A’16, Krakow 2016

h=> s X'D*

~ X?°D*+4 XD3 1+ 2 D?

Change of “functional” form !!!

Z 5(71) X" DS

Z B(n) X" DS

n,r,s

COMB;NMNIORGAE

MODELS
(Graphs)

AEGEBRAC
SIIRUGIRURES;

(Heisenberg-Weyl algebra)



Heisenberg-Weyl algebra

Wick’s theorem

GOOD for computer algebra ...

Find all possible contractions:

1" NOT CONSTRUCTIVE !!

aataaa’aaal = Z :  all contractions } : for analytical calculations

= :aa'aaa’aaa’ :

+ : aa'aaa’a da QfT + aa'aaa’ da dT +aa'a dCLTCLCL %T -+
aa' daa'aa @'+ da'aaa’aa &' + aata d d'aaa’ +
aa' da d'aaa’+ da'aa dTaaa’+ o dTaaa’aaal :

+:aa'a d d'a d d' + aa’ da d'a d AT+ da'aa d'a d 47 +
d dlaaa’a f d' + aa’a d 47 da 47 + aa’ da 47 da 47 +
dataa d' da @'+ & dlaaa’ da 4" + aa’ & d dTaa 47 +
da'a d dTaa d'+ & d'a da'aa @' + aa’ d d dTaa g +
da’ da dlaa d'+ d d¥ daa’aa '+ dava d dlaa 47 +
daT da dTaa ¢£T+ d gﬁa d gﬁaaa“r da dT da QZTaaaT :

+od dladdiadd+ dd dodladd+ddadd dad +
d @' da d' da d'+ o d" d of dlaa 4T+ d 47 f d dTaa o7 -

— a'3a°+9a"%a*+18 a'a® + 6 a?

=~ A

Integers Combinatorics ...

AofA’16, Krakow 2016

Problematic for infinite series ...

COMB;NMNIORGAE

MODELS
(Graphs)

AEGEBRAC
SIIRUGIRURES;

(Heisenberg-Weyl algebra)



Graph model

Some definitions

A directed graph is a collection of edges E and vertices V' together with two mappings

h,t: E — V prescribing how the head and tail of each edge is attached to vertices.

Example:

> We shall consider classes of graphs up to isomorphism, i.e. simply pictures.
> Take (not planar), i.e. lines going in/out of a vertex are !}

> Following a in a graph one ends at the starting point.

AofA’16, Krakow 2016



Graph model

Heisenberg - Weyl graphs

Definition:

Combinatorial class of Heisenberg - Weyl graphs consists of graphs I’

which do not have cycles and may be

'™ outgoing edges

'Y inner edges

I ingoing edges

» Edges in a graph may have one of the ends free (but not both)

> It has three sorts of edges: inner, ingoing and outgoing ones

» Size of a graph:  d(I') =2|I"| + I+ ||

AofA’16, Krakow 2016



Graph model

Vector space of graphs

We define G as a vector space over C spanned by the basis set

consisting of all Heisenberg - Weyl graphs, i.e.

g = { Z.ai I;: a; € C, I; - Heisenberg—Weyl graph }

Addition in G has the usual form:

Zi % FiJFZZ- Bi Fz’:Zi (i + 8;) I

Heisenberg - Weyl graph
What about the multiplication?

Zi 87 FZ S Zj Bj Fj:Zi,j Oéf,;ﬁj F@*F]

AofA’16, Krakow 2016



Graph model

Composition and multiplication

Definition:

For two graphs I and Iy and a matching m € I, <1 I the composite graph,
denoted as [> < I, is constructed by joining the edges coupled by the matching m.

Definition:

Multiplication of two graphs I's and I in G s just a sum over
all possible compositions:

DxIi= Y D <

merl, <«

matching

Proposition:

Heisenberg - Weyl graphs form an associative algebra with unit (G,+,*,0).

It is non-commutative !!

| o Iy I
» The number of possible compositions with © connections: # 1, < I = (l 22 |> <| z’l |> 7]

AofA’16, Krakow 2016



Graph model

Example

XY _

Y o X

AofA’16, Krakow 2016

Y

no connections

no connections

o 83 g

J

Y

one connhection

X K- ¥

one connection

Y
two connections



Graph model

Model of the Heisenberg-Weyl algebra

Definition:

We define a linear mapping ¢ : G — $) which erases all inner structure of a graph,

given on the basis elements as:

o(I) = x Tl

Example:

Outgoing: 3 b\\ j‘ j‘ )

Inner: 4 . > )(3 D4

Ingoing: 4 J & j \

-
-
-‘—
Sam=

Theorem:

Forgetful mapping ¢ : G — ) is a surjective AAU algebra morphism.

AofA’16, Krakow 2016



Graph model

Example

Combinatorial algebra of

Heisenberg-Weyl graphs COMBiINMNHORINLIMO D EL

g
g )g/ g
SR o]
¥
Heisenberg-Weyl algebra
9
._ 9
----------------------- » DX =DX +1 s
ALGEBRIN CRSIIRU.GRURE

Morphism ¢ : G — $) erases all inner structure of a graph, and preserves all relations.

P. Blasiak, G. H. E. Duchamp, A. I. Solomon, A. Horzela, and K. A. Penson. Combinatorial Algebra for second-quantized Quantum Theory. Adv. Theor. Math. Phys., 14(4):1209-1243, 2010

AofA’16, Krakow 2016



Graph model

Example

o b

X2D2X2D = X*D? + 4 X3 D?

v ko

X?D X?D? — X4D3 + 2 X3 D?

AofA’16, Krakow 2016

_I_




Building a graph

Gates and graph labeling

Building blocks of a graph (gates): T 4

~ -
''''''

Fach choice of gates ("basis” set):

4
f)C{a%V :r,s €N 7“,87&()} e

"""" A - marker u

generates a combinatorial class of graphs which have all vertices of type b . A - marker v

Additional structure:

> Can attach multiplicative weights «..; to vertices.

> Increasing labelling is an additional structure on graphs introduced by labelling vertices with 1,2,3,...

such that labels are increasing along each directed path.

AofA’16, Krakow 2016



Enumeration of Graphs

and normal ordering

- .
‘_— ~o

) . r PR ~ r
o R h
For | = E Qs VXV consider the associated “basis” set: h = {O@EXV Qs F 0} 2 >
7,8 . h ’
S
1 3

v

-----------

A Z increasingly labelled graphs

» On the level of graphs G : built of n vertices of types b

» On the level of algebra %) :

® -atoms 2

Bk, A - marker u
~ o ~
n A - marker v
increasingly labelled graphs K
Z ars X' D7 | = ia built of n vertices of types b X D
r,s k.l with k outgoing and I ingoing lines

Normal form !!!

Equivalence principle

D
P4
®
N\
N
> []
Vs
O
j
Vs
<
=
3
N~
|
oy
-~
=~
S
_~
@\
S |
|
Q
R
S
&

n,k,l . u— X
v— D

AofA’16, Krakow 2016
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Symbolic Methods & Generating Functions

Constructive approach to normal ordering

C - combinatorial class (collection of objects with the notion of size)

C, = # objects of size n in class C

C(z) = Z Chn % - exponential generating function of class C

> Set-theoretic constructions translate into generating functions.

Disjoint union: C=AWDB = C(z) = A(z) + B(2)
Cartesian product: C=AXxDB = C(z) = A(z) - B(2)
Set construction: C=SeT(A) = O(2)=e""
Substitution: C=Aob = C(z) = A(B(»))
Appending min/max element: C=2z2xA — ((z) = /OZ A(t) dt

..... and many others, e.g. SEQ, Cyc, D, ©, ..

A’16, Krakow 2016



Combinatorial structures

Example: Set partitions

Set Partitions

A
Let us take ¢ ,ie. XD.
A
® 5
A
¢ 3 o /
Generic graph: E 4 4 E
l ¢ 2 o 4 6
A A
Combinatorial specification: C = SET (uv SET»1(Z))
Generating function: G = el V
On the algebraic level: ‘ﬁ(e'ZXD) =X Pl

AofA’16, Krakow 2016

® -atoms <2

A - marker u

A - marker v



Combinatorial structures

Example: Involutions

® -at Z
Let us take T + l ,le. X+ D. Bicoloured X ‘ On:
. Involutions bkl
I { 4 A - marker VU
Generic graph: ﬁ | f 3 5
7
{ 6
2
I 7
Combinatorial specification: C= SET(uZ +v2Z + SETy (2))
2
Generating function: G = e (u +v)z+27/2
2 2
On the algebraic level: ‘ﬂ(ez (X+D)) — (X HD)eH2T/2 . o272 2 X 2 D
!! BCH formula !!

AofA’16, Krakow 2016



Combinatorial structures

Example: Binary trees

: 9 1~ ® -atoms Z
let us take ,le. X°D. Forest of
A - marker u

Binary Trees
A - marker v

Generic graph:

Construction of a Tree:

eVT eVT )

Combinatorial specification:

Qo T=@w+T)*Z2" % (u+T)
C=SET(vT) {T(O):
vu2 < z
Generating function: G = exp (1 ) T(u,z) = / (u+ T(u,t))* dt
— Uz A
XDz
On the algebraic level: ’T((e’ZXQD) = ! exp (1 Y Z) ;

AofA’16, Krakow 2016



Combinatorial structures

and much more ...

¢OI+¢1I+¢;’\{+¢\Z\Y’+... )\\/4+9</\

N 4
ST Open/closed ZIG-ZAGS
Ao s (alternating) permutations
o 1! 0 10
D 4 %
Tree varieties NN
N 4
N o
) M %
N 4 N
‘fa‘»\ / ‘4‘»\
R 4 N 4
3L < A2 \/\‘/ﬂ /\(\
sl YA YO
N /«‘; N ;‘;
op14 o7
s
gb |
B [ 6
m<€z¢(X)D) _ o0 T%(u,2) m<e/\x2+eD2) _ \/Sec(\/m) o 1g tan(v4X0) X° :e(sec(\/m)—l)XD o 1 tan(v4x) D?

AofA’16, Krakow 2016



Back to Quantum Foundations

A naive attempt at interpretation

Some insight into quantum evolution (Schrédinger equation)

COMEINMHORIANEMOD ED
W) — | W) = eltH(aal) g where:  |U) =) ay |n) ;
Uo(x) — Uy(x) = e!tH (9z,7) Wo(x) where: W(x) = Z O T )g/r ﬁ
Co — C; = D:X) o where:  C - combinatorial class
2

Can think as constructors acting on generating functions of combinatorial classes?
Problematic: iy
» What is the meaning of g.f. evaluated at a point? 2 X%

-
-
-‘—
Sam=

2 How to derive/understand the Born’s rule?

» What is the meaning of complex weights (interference phenomena)? ANRGEBRAT CESITRU.GHURE
» Action on whole classes (no interpretation in terms of action on single objects)

AofA’16, Krakow 2016



Blind man and an elephant

Information is physical

"We have to remember that what we observe is not nature in itself,
but nature exposed to our method of questioning."

— Werner Heisenberg

AofA’16, Krakow 2016



Quantum formalism

Qubit and the Bloch ball representation

Representation of a qubit:  H. = C?
Z
Pure states: ( 0 ) —
— 0 1) =1\ .

) = cos (5) |0) +e'Psin (5) |1) (e“/)sin(%)) 9
Mixed states:

p:%(llnL'f’z-&) st |n| <1 ¢ ~

X

Unitary transformations: o— Up u’
Each unitary has representation: U = e* Rz (9) Bloch ball
where:  Ryz(8) = exp(—id07-5/2) =cos ()1 —isin(§) 7 &

- Gy with: Py = [(]yp)]?
Measurement inbasis {P} = {1){¢, 1€ 1}: Iy} — { Sy it P ()

AofA’16, Krakow 2016

von Neumann projection + Born's rule



Quantum interferometry

Basic toolkit

Typical interferometric circuit:
single-mode and one-particle framework

two paths (spatially separated)

Po(w)

TN/ \/_ :

B(0)

N\ /LQ

1
0) = (O) — particle in path “0°
O ® oy ( (o
1) = (1> — particle in path “1

) =« l0)+ 1) = ()

AofA’16, Krakow 2016

Phase shifters:

Beam splitters:

)

Detectors:

)

") Mirror = phase shifter, path blocker = detector + post-selection

0)
1)

with: Py =
with: Pl —




Quantum interferometry

Basic toolkit

Typical interferometric circuit:
, , Phase shifters: ?
single-mode and one-particle framework — = Pl(w)

two paths (spatially separated)

/' N
Po(w)
_\ / \ / Do Beam splitters: 5() @

B(0)

N\ /LQ

Z Py (0) = cos® (%)
<
1 °
0) = (O) — particle in path “0" Detectors: ~
0 y
1) = (1> — particle in path “1°
e Py(1) = sin® (§)

) =« l0)+ 1) = ()

AofA’16, Krakow 2016

") Mirror = phase shifter, path blocker = detector + post-selection



A

Problems with the ontology

A few paradoxes for a qubit

Wave-particle duality
Wheeler's delayed-choice experiment

How the particle particle ‘changes’ its past ?

A’16, Krakow 2016

Non-locality and interaction-free measurements
Elitzur-Vaidman bomb testing problem

How the particle feels  the other path ?

Micro vs. macroscopic realism
Leggett-Garg inequalities

time

1 Q)2 Q)3

How the world becomes ‘macro’?



A

Problems with the ontology

A few paradoxes for a qubit

Wave-particle duality
Wheeler's delayed-choice experiment

Science 338 621 (2012)

A’16, Krakow 2016

Non-locality and interaction-free measurements
Elitzur-Vaidman bomb testing problem

Scientific American 275 72 (1996)

Micro vs. macroscopic realism
Leggett-Garg inequalities

T

Nature Physics 6 401 (2010)



Building the model

Plan of action

[s it possible to make sense of interferometric experiments with a qubit in ‘classical terms ?
Can you see it as a stochastic process ? Do correlations help ? What about locality ?

STOCHASTIC PROCESSES

Local vs. non-local gates

ONTOLOGY
REAL & GHOST particles
ANALYSIS OF THE MODEL

BASIC BUILDING BLOCKS Recovery of guantum predictions

Limited set of stochastic gates

AofA’16, Krakow 2016



Reminder I

Probabilistic set-up

Ontic state space:
Probabilistic description:
Ontic states:

In general:

Product ontic state space:

Probabilistic description:

Ontic states:

In general:

AofA’16, Krakow 2016

51 §5(2)

w1 "W2

(w1, w))




Reminder Il

Stochastic transformations

Deterministicc: ™ T : Q) — Q) Probabilistic

() Prob
rob(w |w)
Probabilistic”: T : 3 — P(Q)
Stocha;tic Prob
Conditional probabilities: // matrix ob(wz|w)

T(i)(k) = Prob(w = k|lw = i) = Ty;

' (k) = Z Prob(w = k|w = i) p(i)

I3 I I3
For a sequence : Po——>P1 —— P2 — D3

we have: p3 = 315 11 po

") Compare with: T : P(Q)) — P(Q)

AofA’16, Krakow 2016



A

Ontology of the Model

General set-up: Ontic state space

Two paths: 1 =0,1
Two kinds of particles:
particles: ii=(0,¢) € S
particles: NS St
Key assumption:
Only single particle present in the circuit,
with a in the other path or the path is EMPTY.

Hence, the ontic state space:

O ={0,1} xS?> xS > (i,ii,9) or (i,ii, o)

— N~

inner state of

where is ,
particle inner statg of particle
particle or EMPTY
s =slu{z)}

A’16, Krakow 2016

t1

to

t3

t4

n p n %)
© 7 %) i
(0,17, ) (1,7,) (0,7,2) (1,7,9)
Z
7 st" =stu{a}
0 )
%)
¢ 4 Y
o <
¢
X
/EMPTY



Building Blocks of the Model

Limited set of stochastic gates

We will consider stochastic circuits that are built e Need to specify how they act the ontic states.

from a few building blocks: e Make sure that phase shifters and detectors act locally

. Po(a) and only beam splitter has access to both paths.
Phase shifters:
Py (B) -
& : (1,7, ¢) = p € P(Q)
& ; (i,1, D) > p € P(Q)

Beam splitters: —\ /—

B(9)

N P
; TN/ T

Detectors: B(9)

D, 008" ... 200

AofA’16, Krakow 2016



Building Blocks

Phase shifter

Phase shifter

Action of phase shifter Py(w) inthe 0-th path:

rotates particle around Z axis by —w,

rotates particle around Z axis by +w,

for EMPTY & does nothing.

(i,7, p) Alw) | % ORe(—w)t %
01 07 5q)+w
i) D) ] RO
o 51 6 O

AofA’16, Krakow 2016

Local deterministic gate !

1 =20,
1=1.
1 =0,

1=1.




Building Blocks

Phase shifter

Local deterministic gate !

Phase shifter
Action of phase shifter P;(w) inthe 1-th path: o it T
rotates particle around z axis by +w,
rotates particle around Z axisby —w, o - P(w) PPNy A
for EMPTY & does nothing. =9 Z _
Pl (CU) 50 5171’ 5§D—CL] if Z — O, | R, (+w)n
(il 77i/ QD) > | ~ +w
51 5Rz(w)17i 5§0 if 1=1. 7” ~
O Y e y
- P1 (w) 50 5ﬁ 5@ lf l — O/ X X - i’
(1,71, @) > -
51 (SRZ(w)ﬁ 5@ it 1=1. /

AofA’16, Krakow 2016



Building Blocks

Detector

Local deterministic gate !
Detector

Action of detector D; inthe j-thpath:

o o o il Y
reveals (clicks’) whether particle is in 5 i —o —
]-th path and if yes leaves it in state 1 — 2, D
remains silent (‘no click’) about the 9
and removes it from the channel,
for EMPTY & does nothing (‘no click’). % :
o D, 5; 62 8 if i=7, O dick 7
(Z, n, qo) J . 1 YZ q0 | | ]
51’ 5;71‘ O if 1 ?é ]. @ ‘noclick B9 5 Y

@) D; _ 0; 02 O if 1= ] ; Q" click
’ 0; 07 0y if i#7. 9 ‘noclick

AofA’16, Krakow 2016
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Building Blocks

Beam splitter

Beam splitter

Action of beam splitter B(®) :

The gate takes both particles ( & ) and
depending on their inner states 1 = (6, ¢) and @
produces probabilistic mixture of two situations:

e particles remain in their respective channels,

e particles are swapped,

changing @ — 1’ and ¢ — 0 .

>~ cos? (%) 6; 8 8o + sin® (L) 6:6_5 &
where: #' = (6',¢") = Ry(8) Ry(—¢) 7 .
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Local stochastic gate !

cosz(%/) sinz(%/)
n =0
or
p=0 —7
(0,7,0) (1,—7",0)
< 5
=0 v



Building Blocks

Beam splitter

. Local stochastic gate !
Beam splitter

S

cOs? (%) sin? (

Action of beam splitter B(®) :

n
0 ——
The gate sets n — Z for the particle N(TV
or
creates d in the EMPTY channel & — ¢ = ( _/ _ )
e —n
1 —J \

and acts accordingly, i.e.:

o particles remain in their respective channels, (0,7, 2) (0,7°,0)  (1,—7",0)
e particles are swapped, oy 1
changing n — 1’ and ¢ — 0 . i L)
& :
(i,7,2) — 2% cos? (£ 6 6 6o + sin® (&) 6:6_ Go y o
where: 7' = (6/,¢) = (9,+£Z) = Ry(8) 2. h y
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Building the model

Plan of action

Indeed, the stochastic model ‘resembles’ interferometric circuits (locality !!).

How does it compare with quantum predictions? \Where is the wave function?’

STOCHASTIC PROCESSES

Local vs. non-local gates

ONTOLOGY
REAL & GHOST particles
ANALYSIS OF THE MODEL

BASIC BUILDING BLOCKS Recovery of guantum predictions

. . on the epistemic level
Limited set of stochastic gates
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Ontic vs. Epistemic

Blind man and an elephant

"We have to remember that what we observe is not nature in itself,
but nature exposed to our method of questioning."

— Werner Heisenberg
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A

Epistemic desideratum

Agent under constraints

Ontic perspective

0O ={0,1} x S>x S'" 5 (i,7,¢) or (i,i, D)

A N~

inner state of

where Is inner state of .
article particle particie
P or EMPTY
T P(2)
p /
D
T .,
D
- - J
p
()
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Epistemic perspective

Available resources:
Phase shifters
Beam splitters
Detectors (post-selection)
Probabilistic mixing

(

Py(w) 5
B(%) / \ B(¥') :
ANECIANGE:
Dy

The agent 'sees’ the model only through experiments

l.e. using only a limited choice of gates .



A

Epistemic desideratum

Agent under constraints

Operational description of the model

Which distributions in P(£2) can be prepared
by the agent according to the rules of the model ?

How do they transform and what information
can be learned under the action of conceivable circuits ?

What is the minimal description which is enough
to predict behaviour of the system as 'seen’ by the agent ?

P()

What is the geometry of

Full probabilistic description ,
accessible states

A’16, Krakow 2016

Epistemic perspective

Available resources:
Phase shifters
Beam splitters
Detectors (post-selection)
Probabilistic mixing

(

Py(w) 5
B(%) / \ B(¥') :
ANECIANGE:
Dy

The agent 'sees’ the model only through experiments
l.e. using only a limited choice of gates .




UNKNOWN SOURCE

Analysis of the Model

Initialisation

How to make a circuit work, i.e. INITIALISE ? Key assumption:
Make sure there is only one particle in the circuit, Only single particle present in the circuit,
with @ /EMPTY in another channel. possibly accompanied by a in another channel.
& 5 53 P(Q)
-H—0e - —0— 00—
o Py = 0p 02 O € P(Q)
00—y —I— P
V P1
-0 - —— Q_@ ¢
Dg
& 5 s p1 = 010: 05 € P(Q))
—0—eonel > @

) One can use two detectors or detector and blocker.
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Analysis of the Model

Some states of interest

Definition. Ch B
Foreach N = (8, ¢) € S§%, we define a class of distributions: | 7‘ |
<9 5 4

X

IN] = { cos? (g) 0 (5RZ((X)N by —+ sin? (g) 01 5—Rz(ﬁ)N o : «,p € [0,27) } C P(Q)

Labelling of classes [N]

0 =1{0,1} x 2 x sV
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Analysis of the Model

Some states of interest

Definition. Ch B
Foreach N = (0, ¢) € 8%, we define a class of distributions: 7‘
<9 & 4

X

IN] = { cos? (g) 0 (5RZ((X)N by + sin? (g) 01 5—Rz(ﬁ)N o : «,p € [0,27) } C P(Q)

Labelling of classes [N]

In particular: s
[+2]E{505,§5a3a€[072ﬂ)}
[—2]5{51(5;355156[0727‘-)}

For N = +%, we augment [£3] to account for the EMPTY path:

A +2] U {80670 i1 €S%, it #—2)
5| U {6,670p €S>, ii#—2)

_I_
S,
~

|
Q>
| I |
~
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Analysis of the Model

Transformation of classes

Lemma 1.

Phase shifters P;(w) and beam splitters B(1#) do not leave outside the set £ = UﬁeSQ IN] ¢ P(Q)

and classes map in a congruent manner, i.e. [N] 3 p SN p' € [Nr].

For any sequence of
phase shifters and beam splitters
\
Equivalent

Mapping of classes
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Analysis of the Model

Transformation of classes

Lemma 1.
Phase shifters P;(w) and beam splitters B(1#) do not leave outside the set £ = UﬁeSQ N] ¢ P(Q)
and classes map in a congruent manner, i.e. [N] 3 p SN p' € [Nr].
More specifically:
— P, — W
Phase shifters N "o [Ro(~) N $ S8 nw
_, p ﬁ 5
N " [Re(w) N /'
B(8)
&
. , B(%) - \J
Beam splitters N > [Ry(9) N | X

Mapping of classes
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Analysis of the Model

Transformation of classes

P())
Lemma 2.
Detectors D; reveal position of the particle i = 0,1 (bya ‘CLick’/ ‘No CLICK) ‘m
and depending on the outcome vield a state in the respective class [+Z2] or |—2]. 1=0

More specifically:

Detectors

N

D, { +2]  foroutcome i =0 with Pg(0) = cos” (
>

—Z foroutcome i =1 with Pg(1) = sin® (

Mapping of classes
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A

Analysis of the Model

Accessible states & Bloch sphere

Phase shifters, beam splitters
& detectors with post-selection
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Equivalent

Range of accessible states:

£ = UNESQ N] ¢ P(Q)

Transformation rules on S?:

Phase shifters & Beam splitters

Indistinguishabilitx of
distributions in [IN]

z P(0) = cos” (g)
S
~
I
Y
X
i Pg(1) = sin? (g)

Detectors with post-selection

Eqguivalent to Bloch sphere representation !!!



Summary

Agent under epistemic constraints

& particle ontology Restricted and well structured set of Agent subject to such constraints is
+ limited set of stochastic gates. distributions and their transformations. confined in a very specific world.
Py(w)
soeon — .
cere” N ... ool

P(Q)
,
\ ' \

‘
'

lﬁ . |

Mapping of classes
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+ limited set of stochastic gates.

A

Summary

Agent under epistemic constraints

& particle ontology

P(Q)
,
5

Mapping of classes
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Equivalent

Restricted and well structured set of

distributions and their transformations.

P(w) <>
Py (w) <>$ Py (0) = cos® (5)
el
<k
B(¥) (\ \ Yy
/N
\J v Pg(1) = sin® (§)

Bloch ball
representation

Agent subject to such constraints is

confined in a very specific world.

Well-defined local ontology.
Non-locality an epistemic effect.

Geometry of
accessible states



Thank you
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