Bootstrap percolation on G(n, p)

Tamás Makai

Graz University of Technology

05/07/2016

joint work with Mihyun Kang

∃ >

.≣ →

• Chalupa, Leath and Reich (1979)

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

- Chalupa, Leath and Reich (1979)
- Every vertex infected or uninfected
- Fix infection threshold $r \in \mathbb{N}$
- Start from an initial infection set
- In every step every vertex becomes infected if *r* of its neighbours are infected
- Process stops when no additional vertices become infected

• G(n, p) binomial random graph

★ 문 ► ★ 문 ►

• G(n, p) binomial random graph

• $n \to \infty$

(▲ 문) (▲ 문)

э

• G(n, p) binomial random graph

- $n \to \infty$
- r ≥ 2

▲ 문 ► < 문 ►

3

- G(n, p) binomial random graph
 - $n \to \infty$
- r ≥ 2
- Initial infection set of size a(n) uniformly at random

- G(n, p) binomial random graph
 - $n \to \infty$
- r ≥ 2
- Initial infection set of size a(n) uniformly at random
- Probability that almost every vertex becomes infected

Janson, Łuczak, Turova and Vallier (2012)

р	$\mathbb{P}[almost \ infection]$			
$O(n^{-1})$	o(1)			
$n^{-1} \ll p \ll n^{-1/r}$	$\mathbb{P}\left[N(0,1) \leq rac{a-a_c}{\sqrt{a_c}} ight] + o($	1)		
$\Theta(n^{-1/r})$				
$\omega(n^{-1/r})$	1 - o(1)			

æ

=

< ≣

Janson, Łuczak, Turova and Vallier (2012)

р	$\mathbb{P}[almost \ infection]$			
$O(n^{-1})$	o(1)			
$n^{-1} \ll p \ll n^{-1/r}$	ℙ [<i>N</i> (0,	$1) \leq \frac{a-a_c}{\sqrt{a_c}}$	+ o(1)	
$\Theta(n^{-1/r})$				
$\omega(n^{-1/r})$	1 - o(1)			

Let $\omega_0 = \omega(\sqrt{a_c})$ • if $a \le a_c - \omega_0$, then $\mathbb{P}[\text{almost infection}] = o(1)$ • if $a \ge a_c + \omega_0$, then $\mathbb{P}[\text{almost infection}] = 1 - o(1)$

Theorem

Set

•
$$\omega_0 = \omega(\sqrt{a_c})$$

If $a = a_c - \omega_0$, then (for *n* large enough) with probability at least

$$1 - \exp\left(-\frac{\omega_0^2}{10t_0}\right)$$

we have $|A_f| < t_0$.

Kang, M.

A B M A B M

Theorem

Set

•
$$\omega_0 = \omega(\sqrt{a_c})$$

If $a = a_c + \omega_0 \le t_0$, then (for *n* large enough) with probability at least

$$1 - \exp\left(-rac{\omega_0^2}{10t_0}
ight)$$

we have $|A_f| = (1 + o(1))n$.

Kang, M.

A B M A B M

• A(0): set of initially infected vertices, $Z(0) = \emptyset$

∢ ≣ ≯

∃ >

- A(0): set of initially infected vertices, $Z(0) = \emptyset$
- step t

★ 문 ► ★ 문 ►

э

- A(0): set of initially infected vertices, $Z(0) = \emptyset$
- step t
 - Z(t): Z(t-1) and a vertex from $A(t-1) \setminus Z(t-1)$

• • • • • • • • •

3

- A(0): set of initially infected vertices, $Z(0) = \emptyset$
- step t
 - Z(t): Z(t-1) and a vertex from $A(t-1) \setminus Z(t-1)$
 - A(t): A(0) and vertices with at least r neighbours in Z(t)

- A(0): set of initially infected vertices, $Z(0) = \emptyset$
- step t
 - Z(t): Z(t-1) and a vertex from $A(t-1) \setminus Z(t-1)$
 - A(t): A(0) and vertices with at least r neighbours in Z(t)
- stop if t = n

- A(0): set of initially infected vertices, $Z(0) = \emptyset$
- step t
 - Z(t): Z(t-1) and a vertex from $A(t-1) \setminus Z(t-1)$
 - A(t): A(0) and vertices with at least r neighbours in Z(t)
- stop if t = n

No vertices are infected after |A(t)| = |Z(t)| = t

P

▶ 《문▶ 《문▶

æ

• Subcritical:
$$a = a_c - \omega_0$$

• $\exists t \le t_0 : \mathbb{E}[|A(t)|] \le t - \omega_0 < t$
• Supercritcal: $a = a_c + \omega_0$

•
$$\forall t \leq t_0 : \mathbb{E}[|A(t)|] \geq t + \omega_0 > t$$

P

▶ ★ 문 ▶ ★ 문 ▶

æ

•
$$\forall t \leq t_0 : \mathbb{E}[|A(t)|] \geq t + \omega_0 > t$$

• Need: tight concentration for every step

æ

(▲ 문) (▲ 문)

• |A(t)|

P

▶ 《문▶ 《문▶

æ

- |A(t)|
- maximal one step change is n

æ

★ 문 ► ★ 문 ►

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step

э

-

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step
- maximal one step change 1

- |A(t)|
- maximal one step change is n
- examine vertices one by one in a step
- maximal one step change 1
- A(t, i), Martingale |A(t, i)|

Theorem

Chung, Lu (2006)

For $m_0 \in \mathbb{R}$ let m_0, M_1, \ldots, M_k be a martingale whose conditional variance and differences satisfy the following: for each $1 \le i \le k$,

- $\operatorname{Var}[M_i|M_{i-1},\ldots,M_0] \leq \sigma_i^2$;
- $|M_i M_{i-1}| \le m$ for some positive m.

Then for any $\lambda > 0$, we have

$$\mathbb{P}[M_k - m_0 \ge \lambda] \le \exp\left(-\frac{\lambda^2}{2\left(\sum_{i=1}^k \sigma_i^2 + m\lambda/3\right)}\right)$$

Giant component

Theorem

Bollobás, Riordan (2016+)

Let c > 1, $\varepsilon > 0$ be constants independent of *n*. Then with probability

$$1 - \exp(-\Omega(n))$$

the binomial random graph G(n, c/n) has a component of size at least $(1 - \varepsilon)\rho n$, where $\rho \in (0, 1)$ is the unique positive solution of $1 - \rho = \exp(-c\rho)$.

• $a > t_0$

Tamás Makai Bootstrap percolation on G(n, p)

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

- *a* > *t*₀
- choice of t_0

Tamás Makai Bootstrap percolation on G(n, p)

æ

- ▲ 문 ► ▲ 문 ►

P.

Thank you!

Im ▶ < 10</p>

æ

▶ < ≣ ▶