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Bootstrap percolation on a graph

Chalupa, Leath and Reich (1979)

Every vertex infected or uninfected

Fix infection threshold r ∈ N
Start from an initial infection set

In every step every vertex becomes infected if r of its
neighbours are infected

Process stops when no additional vertices become infected

Example r = 2
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Bootstrap percolation on G (n, p)

G (n, p) binomial random graph

n→∞
r ≥ 2

Initial infection set of size a(n) uniformly at random

Probability that almost every vertex becomes infected
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Previous Results

Janson,  Luczak, Turova and Vallier (2012)

p P[almost infection]

O(n−1) o(1)

n−1 � p � n−1/r P
[
N(0, 1) ≤ a−ac√

ac

]
+ o(1)

Θ(n−1/r ) ξ(a, p) + o(1)

ω(n−1/r ) 1− o(1)

Let ω0 = ω(
√
ac)

if a ≤ ac − ω0, then P[almost infection]= o(1)

if a ≥ ac + ω0, then P[almost infection]= 1− o(1)
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Main Result (Subcritical)

Theorem Kang, M.

Set

t0 = (r !/npr )1/(r−1)

n−1 � p � n−1/r

ω0 = ω(
√
ac)

If a = ac − ω0, then (for n large enough) with probability at least

1− exp

(
− ω2

0

10t0

)
we have |Af | < t0.

Tamás Makai Bootstrap percolation on G(n, p)



Main Result (Supercritical)

Theorem Kang, M.

Set

t0 = (r !/npr )1/(r−1)

n−1 � p � n−1/r

ω0 = ω(
√
ac)

If a = ac + ω0 ≤ t0, then (for n large enough) with probability at
least

1− exp

(
− ω2

0

10t0

)
we have |Af | = (1 + o(1))n.
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Spread of infection

|Af | < t0
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Equivalent process

A(0): set of initially infected vertices, Z (0) = ∅

step t

Z (t): Z (t − 1) and a vertex from A(t − 1)\Z (t − 1)
A(t): A(0) and vertices with at least r neighbours in Z (t)

stop if t = n

No vertices are infected after |A(t)| = |Z (t)| = t
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First phase

Subcritical: a = ac − ω0

∃t ≤ t0 : E[|A(t)|] ≤ t − ω0 < t

Supercritcal: a = ac + ω0

∀t ≤ t0 : E[|A(t)|] ≥ t + ω0 > t

Need: tight concentration for every step
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Martingale

|A(t)|

maximal one step change is n

examine vertices one by one in a step

maximal one step change 1

A(t, i), Martingale |A(t, i)|
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Concentration

Theorem Chung, Lu (2006)

For m0 ∈ R let m0,M1, . . . ,Mk be a martingale whose conditional
variance and differences satisfy the following: for each 1 ≤ i ≤ k ,

Var[Mi |Mi−1, . . . ,M0] ≤ σ2
i ;

|Mi −Mi−1| ≤ m for some positive m.

Then for any λ > 0, we have

P[Mk −m0 ≥ λ] ≤ exp

− λ2

2
(∑k

i=1 σ
2
i + mλ/3

)
 .
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Giant component

Z (t0)
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r − 1

B̂

B
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Giant component

Theorem Bollobás, Riordan (2016+)

Let c > 1, ε > 0 be constants independent of n. Then with proba-
bility

1− exp(−Ω(n))

the binomial random graph G (n, c/n) has a component of size at
least (1 − ε)ρn, where ρ ∈ (0, 1) is the unique positive solution of
1− ρ = exp(−cρ).
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Discussion

a > t0

choice of t0
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Thank you!
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