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A bit of History

Thirty years ago, P. Celis, P.-Å. Larson, and J.I. Munro introduced
Robin Hood Hashing and found a recurrence for the distribution of
its search cost.

Celis, Pedro, Per-Ake Larson, and J. Ian Munro. ”Robin hood hashing.” FOCS, 1985.

They could not solve this equation analytically, but numerical
computation suggested that, unlike any other open addressing
hashing method, the variance remained constant (≈ 1.883) even
for a full table.

This has remained an open problem since then.
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The Problem

We consider an open addressing hash table of size m with n
keys inserted at random.

The ratio α = n/m is called the load factor of the table

We follow Celis et al. in assuming an asymptotic model of an
α-full table, where n,m→∞, but its ratio α remains
constant, with 0 ≤ α < 1
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For each key K , we model its probe sequence
h1(K ), h2(K ), . . . by random probing, i.e. sampling with
replacement

The preferred, or home location for key K is h1(K )

If a key K cannot occupy a location hi (K ), it tries next the
location hi+1(K )

If a key K is in location hi (K ), we say that it is of age i

Age = Search cost

Problem:

Study the search cost (age) of a randomly chosen key
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What to do when two keys collide?

(Standard) First-Come-First-Served
The incoming key has to try its next probe location

Last-Come-First-Served
The incoming key displaces the incumbent key, which moves to its
next probe location

Robin Hood
The older key stays, the younger key leaves
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The expected search cost of a random key

The mean of the search cost does not depend on the collision
resolution discipline:

µα =
1

α
ln

1

1− α



But the distributions are quite different

Figure: Distributions of search cost



And so are the variances

σ2
α =

2

1− α
− 1

α
ln

1

1− α
− 1

α2
ln2 1

1− α
(FCFS)

σ2
α =

1

α
ln

1

1− α
− 1− α

α2
ln2 1

1− α
(LCFS)

σ2
α ≤ 1.883 (RH, Celis et al.,numerical extrapolation)



Experimental validation

Simulations done by Celis using double hashing show good
agreement with results from the asymptotic model with random
probing.

Figure: Distributions of search cost



Small variance ⇒ more efficient search

In practice, the probe sequence is generated by double hashing.
This allows us to jump to the most probable place first, and do an
optimal search moving away from the mode in an “organ pipe”
fashion.

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	 19	



It is hard to analyze the expected cost of an optimal search, but if
we call X the r.v. “age of a random key”, we can bound it by the
expected cost of a similar “mean-centered” search, which is
proportional to

E|X − µα| = E
√

(X − µα)2

≤
√
E(X − µα)2 = σα

by Jensen’s inequality.

Therefore, the expected cost of an optimal search is of the order of
the standard deviation.



Analizing the algorithms

Let
pi (α) = Probability that a random key has age i

Then
Expected number of keys of age i = mαpi (α)



Suppose we insert a new key. During the course of the insertion, a
number keys will probe the table, and either collide or find an
empty slot.

Let ti (α) denote the expected number of probes made by keys of
age i during the course of the insertion.

We have

t1(α) = 1,
∑
i≥1

ti (α) =
1

1− α



Compare the expected number of keys of age i before an insertion
(mαpi (α)) and after:

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

If we write ∆α = 1/m and qi (α) = αpi (α), this equation becomes

qi (α + ∆α)− qi (α)

∆α
= ti (α)− ti+1(α)

and, as ∆α→ 0 (i.e. m→∞),

∂αqi (α) = ti (α)− ti+1(α), (1)

with qi (0) = 0.



Compare the expected number of keys of age i before an insertion
(mαpi (α)) and after:

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

If we write ∆α = 1/m and qi (α) = αpi (α), this equation becomes

qi (α + ∆α)− qi (α)

∆α
= ti (α)− ti+1(α)

and, as ∆α→ 0 (i.e. m→∞),

∂αqi (α) = ti (α)− ti+1(α), (1)

with qi (0) = 0.



Compare the expected number of keys of age i before an insertion
(mαpi (α)) and after:

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

If we write ∆α = 1/m and qi (α) = αpi (α), this equation becomes

qi (α + ∆α)− qi (α)

∆α
= ti (α)− ti+1(α)

and, as ∆α→ 0 (i.e. m→∞),

∂αqi (α) = ti (α)− ti+1(α), (1)

with qi (0) = 0.



Compare the expected number of keys of age i before an insertion
(mαpi (α)) and after:

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

If we write ∆α = 1/m and qi (α) = αpi (α), this equation becomes

qi (α + ∆α)− qi (α)

∆α
= ti (α)− ti+1(α)

and, as ∆α→ 0 (i.e. m→∞),

∂αqi (α) = ti (α)− ti+1(α), (1)

with qi (0) = 0.



“Tail” notation

For any sequence ai we write

ai =
∑
j≥i

aj

We will also leave the parameter “(α)” implicit when there is no
confusion.
With these conventions, we can rewrite equation (1) as

∂αqi = ti (2)



Mean and Variance

Using the tail notation, we have:

µα = p1 =
1

α
q1

and

σ2
α = 2p1 − µα − µ2

α =
2

α
q1 − µα − µ2

α

Note that

∂αq1 = t1 =
1

1− α
implies that µα = 1

α ln 1
1−α independently of the specific form of

the ti .
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The ti depende on the collision resolution discipline used

We have t1 = 1 and

ti+1 = αi (FCFS)

ti+1 =
1

1− α
qi (LCFS)

t i+1 = t iqi (RH)



The Analysis of Robin Hood

Putting equation for RH and the general equation (2) together, we
get

∂αqi = (1− qi )∂αqi

which can be solved to obtain

qi+1 = qi − 1 + e−qi

This equation was first obtained by Celis et al., who used it to
obtain numerical results.
It will be more convenient to rewrite the equation in the following
form:

∆qi = −1 + e−qi ; q1 = ln
1

1− α
(3)
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Change of variable

Since we are interested in the what happens when α→ 1, we will
find it useful to introduce the variable

β =
1

1− α

(i.e. α = 1− 1
β ) and study the behavior of qi as β →∞.



Bounding the variance of RH

Equation (3) is of the form

∆qi = f (qi )

for f (x) = −1 + e−x .

Consider what happens if we solve instead the differential equation

Q ′(x) = f (Q(x))

with the same initial condition Q(1) = lnβ.

Equations of this form are called autonomous, and the solution of
this one is

Q(x) = ln (β − 1 + ex−1)− x + 1
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Comparing qi and Q(x)

0

1

2
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Q(x)
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Is Q(x) an upper bound for the qi?
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Lemma

Let ai satisfy the recurrence equation

∆ai = f (ai ),

and A(x) satisfy the differential equation

A′(x) = f (A(x)),

where f : [0,+∞)→ (−∞, 0] is a decreasing function. Then

A(i) ≥ ai =⇒ A(i + 1) ≥ ai+1

for all i ≥ 1.

Corollary

qi ≤ Q(i) ∀i ≥ 1. (4)



We can use this to bound the variance:

σ2
α =

2

α
q1 − µα − µ2

α

=
2

α

∑
i≥1

qi − µα − µ2
α

≤ 2

α

∑
i≥1

Q(i)− µα − µ2
α



To approximate the summation, we use Euler’s summation formula:

∑
i≥1

Q(i) =

∫ ∞
1

Q(x)dx +
m∑

k=1

Bk

k!
(Q(k−1)(∞)− Q(k−1)(1)) + Rm,

where the Bk are the Bernoulli numbers (B0 = 1, B1 = −1
2 ,

B2 = 1
6 , B3 = 0, B4 = − 1

30 , . . .), and where for even m, if

Q(m)(x) ≥ 0 for x ≥ 1 then

| Rm | ≤ | Bm

m!
(Q(m−1)(∞)− Q(m−1)(1)) | .



In our case, we use this formula with m = 2, and we are able to
prove that

σ2
α ≤

2

α

∫ ∞
1

Q(x)dx +
1

3
− µ2

α

Solving the integral we have the following bound for the variance
of RH:

Theorem

σ2
α ≤

π2

3
+

1

3
+ O

(
lnβ

β

)
≈ 3.6232

This is the first constant bound for the variance of RH.

Is it possible to get closer to 1.883?
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Hash tables with deletions

We can extend these techniques to study the performance of open
addressing hash tables when deletions are allowed and
implemented by marking elements as deleted.

We assume a process where we first insert keys until the table
reaches load factor α, and then we enter an infinite cycle where we
alternate one random insertion followed by one random deletion.

Assuming we reach a steady state, this means that the distribution
must be the same after each insert-delete step.



After one random insertion, we know that

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

Suppose we now delete a random key. The following lemma proves
that the distribution remains unchanged:

Lemma

Suppose a set contains n balls of colors 1, 2, . . . , k , such that the
probability that a ball chosen at random is of color i is pi . Then, if
one ball is chosen at random and discarded, the a posteriori
probability that a random ball is of color i is still pi .



After one random insertion, we know that

(αm + 1)pi (α +
1

m
) = αmpi (α) + ti (α)− ti+1(α)

Suppose we now delete a random key. The following lemma proves
that the distribution remains unchanged:

Lemma

Suppose a set contains n balls of colors 1, 2, . . . , k , such that the
probability that a ball chosen at random is of color i is pi . Then, if
one ball is chosen at random and discarded, the a posteriori
probability that a random ball is of color i is still pi .



Since we are in a steady state, we have pi (α + 1
m ) = pi (α), and

therefore

αmpi (α) + ti (α)− ti+1(α) = (αm + 1)pi (α +
1

m
)

= (αm + 1)pi (α)

This simplifies to pi = ti − ti+1, or, equivalently,

pi = ti (5)

This equation plays the role that equation (2) did when there were
no deletions.
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The mean and the variance with deletions

Equation (5) immediately implies that

µα =
1

1− α

Using the respective equations for the ti , we find the surprising
result that now FCFS and LCFS have identical distributions!
In effect, for FCFS and for LCFS we have

pi = (1− α)αi−1

and
σ2
α =

α

(1− α)2
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Comparing the distributions, with deletions

FCFS, LCFS

RH

0

0.1

0.2

1 150



The variance of RH with deletions

Numerically, the variance seems to be very close to β:

0 100
0

100

β

σ2



For the distribution of RH, we can derive the following equation:

∆qi = − qi
1 + qi

; q1 = β − 1

This equation was obtained by Poblete and Viola (GRACO 2001)
and matches results obtained by Mitzenmacher (ANALCO 2016)
for “Robin Hood Hashing without tombstones”.

This equation is of the form ∆qi = f (qi ) for

f (x) = − x

1 + x

and the same techniques used before can be applied to bound the
variance.
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The solution of the associated differential equation

Q ′(x) = f (Q(x)), Q(1) = β − 1

is
Q(x) = W ((β − 1)eβ−x)

where W is Lambert’s function satisfying x = W (x)eW (x).

Using the same approach as before, we are able to prove the
following bound for variance of RH with deletions:

Theorem

σ2
α ≤

1

1− α
+

1

3
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