Ewens-like distributions and Analysis of Algorithms

Nicolas Auger, Mathilde Bouvel, Cyril Nicaud, Carine Pivoteau

July 6, 2016

Notion of presortedness

- In practice, data are often presorted.
 - No reasons to be uniformly distributed.
 - Few alterations in databases.
- First intuition in [Knuth73] and formalized in [Mannila86].

- In practice :
 - Used in standard libraries
- 🍨 python"
- Java's developers benchmarks, using spies
- TimSort

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \le |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2) If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \le |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \le |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2) If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \le |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Let $X = (x_1, ..., x_n)$ and $Y = (y_1, ..., y_\ell)$ two sequences of elements from a set E; $m : E^+ \to \mathbb{Z}^+$ is a **measure of presortedness** iff

•
$$m(X) = 0$$
 if X is sorted.

2 If
$$n = \ell$$
 and $x_i < x_j \iff y_i < y_j$, then $m(X) = m(Y)$.

3 If Y is a subsequence of X, then $m(Y) \le m(X)$.

• If
$$X < Y$$
, then $m(XY) \le m(X) + m(Y)$.

So For any element a, $m(aX) \leq |X| + m(X)$.

- number of Runs -1, Runs(41536827) = 4
- number of Inversions, Inv(41536827) = 9

Adaptiveness of sorting algorithms

Theorem

Let X be a sequence s.t. m(X) = k. Any algorithm uses at least C(n, k) comparisons to sort X, with $C(n, k) \in \Theta(n + \log(\|below_m(n, k)\|)$ and $below_m(n, k) = \{\sigma \in \mathfrak{S}_n : m(\sigma) \le k\}.$

Definition

A sorting algorithm is **m-optimal** if it reaches this bound.

- Natural Merge Sort
 [Knuth73]
- $\mathcal{O}(n \log r)$, where *r* is the number of runs
- Runs-optimal

Records as a measure of presortedness

Let $X = (x_1, ..., x_n)$ be a sequence; x_i is a **record**(left-to-right maximum) iff $x_j < x_i$ whenever j < i.

Lemma

For any sequence X of size n, $m_{rec}(X) = n - record(X)$ is a measure of presortedness.

Example : For X = 32418567, record(X) = 3 and $m_{rec}(X) = 5$.

Complexity $\mathcal{O}(n + k \log k)$

 $\|below_{m_{rec}}(n,k)\| \ge k!$

Under the uniform distribution, for most measures m:

- $\|below_m(n, \mathbb{E}[m])\| = \Theta(n!).$
- $\mathcal{O}(n \log n)$ in average.

Questions

- How to define a probabilistic framework well-suited for presortedness measures ?
- Analysis of algorithms ?

Any permutation can be seen as a composition of cycles. Example : 145263 is composed of 3 cycles : (1), (563) and (42).

We denote $cycle(\sigma)$ the number of cycles of σ .

Definition (Ewens distribution)

[Ewens72]

To any σ ∈ 𝔅_n, we associate a weight w(σ) = θ^{cycle(σ)}, where θ is an arbitrary positive real number.

• Total weight :
$$\sum_{\sigma\in\mathfrak{S}_n}\mathsf{w}(\sigma)= heta^{(n)}$$
 .

•
$$\mathbb{P}(\sigma) = \frac{\theta^{\operatorname{cycle}(\sigma)}}{\theta^{(n)}}.$$

Notation : $\theta^{(n)} = \theta(\theta + 1) \dots (\theta + n - 1)$

Generalizing the distribution

Definition (Ewens-like distribution)

- Let χ be any statistic on $\sigma \in \mathfrak{S}_n$.
- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\chi(\sigma)}$.
- Let $W_n = \sum_{\sigma \in \mathfrak{S}_n} w(\sigma)$ and $\mathbb{P}(\sigma) = \frac{w(\sigma)}{W_n}$.

Generalizing the distribution

Definition (Ewens-like distribution)

- Let χ be any statistic on $\sigma \in \mathfrak{S}_n$.
- To any $\sigma \in \mathfrak{S}_n$, we associate a weight $w(\sigma) = \theta^{\chi(\sigma)}$.

• Let
$$W_n = \sum_{\sigma \in \mathfrak{S}_n} w(\sigma)$$
 and $\mathbb{P}(\sigma) = rac{w(\sigma)}{W_n}$.

Analytic combinatorics

Let
$$F(z, u) = \sum f_{n,k} z^n u^k$$
, where $f_{n,k} = \|\{\sigma \in \mathfrak{S}_n : \chi(\sigma) = k\}\|$.

$$W_n = n![z^n]F(z,\theta)$$
 and $\mathbb{E}_n[\chi] = \frac{\theta[z^n] \left.\frac{\mathrm{d}F(z,u)}{\mathrm{d}u}\right|_{u=\theta}}{[z^n]F(z,\theta)}$

But can be difficult when θ depends on n.

Recall

For any sequence X of size n, $m_{rec}(X) = n - record(X)$ is a measure of presortedness.

Definition (Ewens-like distribution for records)

In the following, we focus on this distribution.

Some probabilities

Results

Some probabilities

Results

$$\begin{array}{c|c} \mathbb{P}_n(\operatorname{Record at position } i) & \frac{\theta}{\theta+i-1} \\ \hline \mathbb{P}_n(\sigma(i-1) > \sigma(i)) & \frac{(i-1)(2\theta+i-2)}{2(\theta+i-1)(\theta+i-2)} \\ \hline \mathbb{P}_n(\sigma(1) = k) & \frac{(n-1)!\theta^{(n-k)}\theta}{(n-k)!\theta^{(n)}} \\ \hline \mathbb{P}_n(inv_j(\sigma) = k) & \begin{cases} \frac{\theta}{\theta+j-1} & \text{if } k = 0 \\ \frac{1}{\theta+j-1} & \text{otherwise} \end{cases} \end{array}$$

$$\mathbb{P}_n(\text{Record at position } i) = \frac{\theta^{(i-1)}\theta}{\theta^{(i)}} = \frac{\theta}{\theta + i - 1}$$

Asymptotic equivalents

Results

	$\theta = 1$	fixed $\theta > 0$	$\theta := n^{\epsilon},$	$\theta := \lambda n$,	$\theta := n^{\delta}$
	(uniform)		$0<\epsilon<1$	$\lambda > 0$	$\delta > 1$
\mathbb{E}_n [record]	log n	$\theta \cdot \log n$	$(1-\epsilon)\cdot n^\epsilon\log n$	$\lambda \log(1+1/\lambda) \cdot n$	n
$\mathbb{E}_n[desc]$	n/2	n/2	n/2	$n/2(\lambda+1)$	$n^{2-\delta}/2$
$\mathbb{E}_n[\sigma(1)]$	n/2	n/(heta+1)	$n^{1-\epsilon}$	$(\lambda+1)/\lambda$	1
$\mathbb{E}_n[inv]$	<i>n</i> ² /4	<i>n</i> ² /4	n ² /4	$n^2/4 \cdot f(\lambda)$	$n^{3-\delta}/6$

With $f(\lambda) = 1 - 2\lambda + 2\lambda^2 \log (1 + 1/\lambda)$.

$$\mathbb{P}_n(\text{Record at position } i) = rac{ heta^{(i-1)} heta}{ heta^{(i)}} = rac{ heta}{ heta+i-1}$$

134567829

123456789

- Adapts to the number of *inversions*.
- Sorts a sequence X in $\Theta(Inv(X))$ comparisons.

Recall								
	$\theta = 1$	fixed $\theta > 0$	$\theta := n^{\epsilon}$,	$\theta := \lambda n$,	$\theta := n^{\delta}$			
	(uniform)		$0 < \epsilon < 1$	$\lambda > 0$	$\delta > 1$			
$\mathbb{E}_n[inv]$	<i>n</i> ² /4	<i>n</i> ² /4	<i>n</i> ² /4	$n^2/4 \cdot f(\lambda)$	$n^{3-\delta}/6$			
With $f(\lambda) = 1 - 2\lambda + 2\lambda^2 \log (1 + 1/\lambda)$.								

Unless $\theta \gg n$, InsertSort remains in $\Theta(n^2)$ on average.

Introduction to min/max search

NAIVEMINMAX(T, n)

return min, max

2n comparisons

3/2-MINMAX(T, n)

 $\begin{array}{c} \min, \max \leftarrow T[n], T[n] \\ \text{for } i \leftarrow 2 \text{ to } n \text{ by } 2 \text{ do} \\ & \text{if } T[i-1] < T[i] \text{ do} \\ & \begin{tabular}{ll} & pMin, pMax \leftarrow T[i-1], T[i] \\ & \text{else} \\ & \begin{tabular}{ll} & pMin, pMax \leftarrow T[i], T[i-1] \\ & \text{if } pMin < \min \text{ do } \min \leftarrow pMin \\ & \text{if } pMax > \max \text{ do } \max \leftarrow pMax \end{array}$

3n/2 comparisons

NAIVEMINMAX is faster than 3/2-MINMAX, when the data are uniformly distributed in [0, 1]. [Auger,Nicaud,Pivoteau,STACS 2016]

Introduction to modern architecture

Prediction rule : for each if, same as last time

Analysis under the uniform distribution

NAIVEMINMAX(T, n)

return min, max

3/2-MINMAX(T, n)

 $\ensuremath{\textit{misprediction}}\xspace = \ensuremath{\textit{alternation}}\xspace$ of record and non-record

Results

- NAIVEMINMAX generates $\Theta(\log(n))$ mispredictions.
- 3/2-MINMAX generates $\Theta(n)$ mispredictions.

What happen if the number of records increases significantly ?

Average analysis of the number of mispredictions

When $\theta = \lambda n$ for some real λ and for our prediction rule, we have :

- μ number of mispredictions of NAIVEMINMAX.
- ν number of misprediction of 3/2-MINMAX.

Discussion

Questions

What's next ?

- Ewens-like distribution for other meaningful statistics that take part in (sorting) algorithms.
- For example, the runs for the analysis of TimSort.
- Explain the asymptotic shape of the diagrams below.(done)

