
Ewens-like distributions and Analysis of Algorithms

Nicolas Auger, Mathilde Bouvel, Cyril Nicaud, Carine Pivoteau

July 6, 2016

1 / 17



Notion of presortedness

In practice, data are often presorted.

No reasons to be uniformly distributed.
Few alterations in databases.

First intuition in [Knuth73] and formalized in [Mannila86].
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Abstract 

The concept of presortedness and its use in sorting are studied. Natural 
ways to measure presortedness are given and some general properties 
necessary for a measure are proposed. A concept of a sorting algorithm 
optimal with respect to a measure of presortedness is defined, and 
examples of such algorithms are given. An insertion sort is shown to be 
optimal with respect to three natural measures. The problem of finding 
an optimal algorithm for an arbitrary measure is studied and partial 
results are proven~ 

i. Introduction 

The question of identifying in some sense "easy" cases of a 
computational problem and utilizing this easiness has considerable 
interest. In sorting, easiness is can be identified with existing order. 
Indeed, when discussing sorting, it is customary to note that the input 
can be almost in order or at least have some existing order (see e.g. 
/Knu73, p. 339/~ /Sed75, p.126/, /Dij82, p. 223/ and /Her83, p. 165/). 

In this paper we study the use of presortedness in sorting. We do 
this by trying to answer three questions: 

How can the existing order (pres0rtedness) 
measured? 

of a sequence be 

What does it mean that an algorithm utilizes the presortedness of 
input (measured in some way)? 

In practice :

Used in standard libraries
Java’s developers benchmarks, using spies
TimSort
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Measures of presortedness

Definition

Let X = (x1, . . . , xn) and Y = (y1, . . . , y`) two sequences of
elements from a set E ; m : E+ → Z+ is a measure of
presortedness iff

1 m(X ) = 0 if X is sorted.

2 If n = ` and xi < xj ⇐⇒ yi < yj , then m(X ) = m(Y ).

3 If Y is a subsequence of X , then m(Y ) ≤ m(X ).

4 If X < Y , then m(XY ) ≤ m(X ) + m(Y ).

5 For any element a, m(aX ) ≤ |X |+ m(X ).

Two classical measures :

number of Runs −1, Runs(4 15 368 27) = 4

number of Inversions, Inv(41536827) = 9
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Adaptiveness of sorting algorithms

Theorem

Let X be a sequence s.t. m(X ) = k. Any algorithm uses at least C (n, k)
comparisons to sort X , with C (n, k) ∈ Θ(n + log(‖belowm(n, k)‖) and
belowm(n, k) = {σ ∈ Sn : m(σ) ≤ k}.

Definition

A sorting algorithm is m-optimal if it reaches this bound.

Natural Merge Sort
[Knuth73]

O(n log r), where r is the
number of runs

Runs-optimal

41536827

14523678

12345678
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Records as a measure of presortedness

Let X = (x1, . . . , xn) be a sequence; xi is a record(left-to-right
maximum) iff xj < xi whenever j < i .

Lemma

For any sequence X of size n, mrec(X ) = n − record(X ) is a
measure of presortedness.

Example : For X = 32418567, record(X ) = 3 and mrec(X ) = 5.

32418567

348

extraction Θ(n)

12567

12345678

merging O(n)

21567

sorting O(k log k)

Complexity O(n + k log k)

‖belowmrec (n, k)‖ ≥ k!
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Analysis of algorithms on average

Under the uniform distribution, for most measures m :

‖belowm(n,E[m])‖ = Θ(n!).

O(n log n) in average.

Questions

How to define a probabilistic framework well-suited for
presortedness measures ?

Analysis of algorithms ?
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The classical Ewens distribution

Any permutation can be seen as a composition of cycles.
Example : 145263 is composed of 3 cycles : (1), (563) and (42).

We denote cycle(σ) the number of cycles of σ.

Definition (Ewens distribution)

[Ewens72]

To any σ ∈ Sn, we associate a weight w(σ) = θcycle(σ),
where θ is an arbitrary positive real number.

Total weight :
∑

σ∈Sn
w(σ) = θ(n).

P(σ) = θcycle(σ)

θ(n) .

Notation : θ(n) = θ(θ + 1) . . . (θ + n − 1)
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Generalizing the distribution

Definition (Ewens-like distribution)

Let χ be any statistic on σ ∈ Sn.

To any σ ∈ Sn, we associate a weight w(σ) = θχ(σ).

Let Wn =
∑

σ∈Sn
w(σ) and P(σ) = w(σ)

Wn
.

Analytic combinatorics

Let F (z , u) =
∑

fn,kz
nuk , where fn,k = ‖{σ ∈ Sn : χ(σ) =

k}‖.

Wn = n![zn]F (z , θ) and En[χ] =
θ[zn] dF (z,u)

du

∣∣∣
u=θ

[zn]F (z , θ)

But can be difficult when θ depends on n.
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Ewens-like distributions for records

Recall

For any sequence X of size n, mrec(X ) = n − record(X ) is a
measure of presortedness.

Definition (Ewens-like distribution for records)

To any σ ∈ Sn, we associate a weight w(σ) = θrecord(σ).

Let Wn =
∑

σ∈Sn
w(σ) = θ(n) and P(σ) = θrecord(σ)

θ(n) .

In the following, we focus on this distribution.
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Some probabilities

Results

Pn(Record at position i) θ
θ+i−1

Pn(σ(i − 1) > σ(i)) (i−1)(2θ+i−2)
2(θ+i−1)(θ+i−2)

Pn(σ(1) = k) (n−1)!θ(n−k)θ

(n−k)!θ(n)

Pn(invj(σ) = k)

{
θ

θ+j−1 if k = 0
1

θ+j−1 otherwise

Pn(Record at position i) =
θ(i−1)θ

θ(i)
=

θ

θ + i − 1

π τ

Sum to w(Si−1) = θ(i−1) θ w′n(τ )

1 i i + 1 n
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Asymptotic equivalents

Results

θ = 1 fixed θ > 0 θ := nε, θ := λn, θ := nδ

(uniform) 0 < ε < 1 λ > 0 δ > 1

En[record] log n θ · log n (1− ε) · nε log n λ log(1 + 1/λ) · n n

En[desc] n/2 n/2 n/2 n/2(λ+ 1) n2−δ/2

En[σ(1)] n/2 n/(θ + 1) n1−ε (λ+ 1)/λ 1

En[inv] n2/4 n2/4 n2/4 n2/4 · f (λ) n3−δ/6

With f (λ) = 1 − 2λ + 2λ2 log (1 + 1/λ).

Pn(Record at position i) =
θ(i−1)θ

θ(i)
=

θ

θ + i − 1

π τ

Sum to w(Si−1) = θ(i−1) θ w′n(τ )

1 i i + 1 n

11 / 17



InsertSort

145736829

Adapts to the number of inversions.

Sorts a sequence X in Θ(Inv(X )) comparisons.

Recall

θ = 1 fixed θ > 0 θ := nε, θ := λn, θ := nδ

(uniform) 0 < ε < 1 λ > 0 δ > 1

En[inv] n2/4 n2/4 n2/4 n2/4 · f (λ) n3−δ/6

With f (λ) = 1 − 2λ + 2λ2 log (1 + 1/λ).

Unless θ � n, InsertSort remains in Θ(n2) on average.
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Introduction to min/max search

naiveMinMax(T , n)

min← T [1]
max ← T [1]
for i ← 2 to n do

if T [i ] < min do

min← T [i ]

if T [i ] > max do

max ← T [i ]

return min,max

2n comparisons

3/2-MinMax(T , n)

min,max ← T [n],T [n]
for i ← 2 to n by 2 do

if T [i − 1] < T [i ] do

pMin, pMax ← T [i − 1],T [i ]

else
pMin, pMax ← T [i ],T [i − 1]

if pMin < min do min← pMin

if pMax > max do max ← pMax

return min,max

3n/2 comparisons

naiveMinMax is faster than 3/2-MinMax, when the data are
uniformly distributed in [0, 1]. [Auger,Nicaud,Pivoteau,STACS
2016]
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Introduction to modern architecture

Prediction rule : for each if, same as last time
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Analysis under the uniform distribution

naiveMinMax(T , n)

min← T [1]
max ← T [1]
for i ← 2 to n do

if T [i ] < min do

min← T [i ]

if T [i ] > max do

max ← T [i ]

return min,max

3/2-MinMax(T , n)

min,max ← T [n],T [n]
for i ← 2 to n by 2 do

if T [i − 1] < T [i ] do

pMin, pMax ← T [i − 1],T [i ]

else
pMin, pMax ← T [i ],T [i − 1]

if pMin < min do min← pMin

if pMax > max do max ← pMax

return min,max

misprediction = alternation of record and non-record

Results

naiveMinMax generates Θ(log(n)) mispredictions.

3/2-MinMax generates Θ(n) mispredictions.

What happen if the number of records increases significantly ?
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Average analysis of the number of mispredictions

When θ = λn for some real λ and for our prediction rule, we have :

µ number of mispredictions of naiveMinMax.

ν number of misprediction of 3/2-MinMax.

λ

#mispredictions/n

1
4

1
2

1 2 3

1
nEn[ν] 3/2-minMax

1
nEn[µ] naiveMinMax

En[µ]
n ∼ 2λ

(
log(1 + 1

λ)− 1
(λ+1)

)
En[ν]
n ∼

(
2λ log

(
1 + 1

λ

)
− 24λ3+54λ2+32λ−3

12(λ+1)3

)
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Discussion

Questions

What’s next ?

Ewens-like distribution for other meaningful statistics that
take part in (sorting) algorithms.

For example, the runs for the analysis of TimSort.

Explain the asymptotic shape of the diagrams below.(done)

n = 100 sample size = 10000

θ = 1 θ = 50 θ = 100 θ = 500
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