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Notion of presortedness

@ In practice, data are often presorted.
e No reasons to be uniformly distributed.
o Few alterations in databases.

e First intuition in [Knuth73] and formalized in [Mannila86].
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Measures of presortedness

Definition

Let X = (x1,...,xp) and Y = (y1,...,yr) two sequences of
elements from a set E: m: ET — Z1 is a measure of
presortedness iff

Q@ m(X)=0if X is sorted.

@ If n=/and x; < xj <= y; < yj, then
@ If Y is a subsequence of X, then m(Y)
Q If X <Y, then m(XY) < m(X)+ m(Y
@ For any element a, m(aX) < |X|+ m(X

m(X) = m(Y).
< m(X).

)-
)-

Two classical measures :
@ number of Runs —1, Runs(41536827) =4
e number of Inversions, Inv(41536827) =9
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Adaptiveness of sorting algorithms

Let X be a sequence s.t. m(X) = k. Any algorithm uses at least C(n, k)
comparisons to sort X, with C(n, k) € ©(n + log(||belowm(n, k)||) and
belowm(n, k) = {o € &, : m(c) < k}.

Definition

A sorting algorithm is m-optimal if it reaches this bound.

4&I368

23078
12345678

@ Natural Merge Sort
[Knuth73]

e O(nlogr), where r is the
number of runs

@ Runs-optimal
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Records as a measure of presortedness

Let X = (x1,...,x,) be a sequence; x; is a record(left-to-right
maximum) iff x; < x; whenever j < /.

For any sequence X of size n, Myec(X) = n — record(X) is a
measure of presortedness.

Example : For X = 32418567, record(X) = 3 and myec(X) = 5.

B2818567

extraction O(n)

21567 Complexity O(n + k log k)

348 sorting O(klog k)

||beIOerec(n7 k)” Z k!




Analysis of algorithms on average

Under the uniform distribution, for most measures m :
|| below,(n, E[m])|| = ©(n!).

O(nlog n) in average.

How to define a probabilistic framework well-suited for
presortedness measures ?

Analysis of algorithms ?
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The classical Ewens distribution

Any permutation can be seen as a composition of cycles.
Example : 145263 is composed of 3 cycles : (1), (563) and (42).

We denote cycle(o) the number of cycles of o.

Definition (Ewens distribution)
[Ewens72]
o Toany o € &, we associate a weight w(c) = §¥ele(?),
where 6 is an arbitrary positive real number.
o Total weight : > s w(0o) = o(n).

cycle(o)
e P(o) = gy(n) :

Notation : (" = 0(0 +1)...(0 +n—1)



Generalizing the distribution

Definition (Ewens-like distribution)

@ Let x be any statisticon 0 € &,,.
e To any 0 € &, we associate a weight w(o) = 6X(?),

o Let W, =3 e, w(0) and P(o) = 5.




Generalizing the distribution

Definition (Ewens-like distribution)

@ Let x be any statistic on 0 € &,,.
o Toany o € &, we associate a weight w(c) = 6X(?).

o Let W, =3 s, W(0) and P(0) = W(U)

Analytic combinatorics

Let F(z,u) = foxz"u”, where f,, = |[{o € &, : x(0) =
k-

9[2”] dF(gfl,u)

u=60

Wy =nl[2"1F(2,60)  and  Enl] = —r 5z

But can be difficult when 6 depends on n.




Ewens-like distributions for records

For any sequence X of size n, myc(X) = n — record(X) is a
measure of presortedness.

Definition (Ewens-like distribution for records)

e To any o € &, we associate a weight w(c) = grecord(@)
. grecord(a)

o Let W, =" o, (o) = 6" and P(0) = &=

In the following, we focus on this distribution.



Some probabilities

P,(Record at position /)

_0
O+i—1

Po(a(i — 1) > o(i))

(i—1)(20+i—2)
20+i-D)(0+i—2)

Pa(o(1) = k)

(n—1)160"=K)g

(n—k)!16()
2] u
. fk=0
Bo(invi(0) = k) FEL U
- otherwise
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Some probabilities

P,(Record at position /) ﬁ
. . i—1)(20+i—
Po(o(i — 1) > o(i)) e
n—1)16(1—Kg
Pa(o(1) = k) R
2] o
- fk=0
P,(invj(c) = k) 0+J1_1 I
| otherwise
9(—1g 9

Pp(Record at position i) =

o T o+i—-1

1 i i+ 1 n
™ T
Sum to w(&; ) ==Y 9 w),(7)

10/17



Asymptotic equivalents

f=1 fixed @ >0 | 6 := n°, 0 := An, 9 :=n’
(uniform) 0<ex<l1 A>0 0>1
En[record] | logn 6 -logn (1—¢)-nlogn | Xlog(1+1/X)-n | n
E,[desc] n/2 n/2 n/2 n/2(A+1) n?=%/2
Enlo(1)] n/2 n/(6+1) nl=e (A+1)/A 1
E,[inv] n?/4 n?/4 n?/4 n? /4. f(\) m=9/6
With f(A) = 1 — 2X + 2X2log (1 + 1/A).

(i-1)
P,(Record at position i) = o 0] o = 0_{_?_ 1
1 i i+ n
™ T
Sum to w(&;_;) = =Y L \\_/L}il(/T)\/
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InsertSort

123406739

@ Adapts to the number of inversions.

@ Sorts a sequence X in ©(/nv(X)) comparisons.

0=1 fixed # >0 | 0 := n®, 0 := A\n, 0:=n’
(uniform) 0<e<l|A>0 0>1
Eq[inv] | n?/4 | n?/a | n?/4 | 2/ f) | /6

With £F(A) = 1 — 2X + 222 log (1 + 1/).

Unless 6 >> n, InsertSort remains in ©(n?) on average.
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Introduction to min/max search

NAIVEMINMAX( T, n)

3/2-MINMAX(T, n)

min < T[1]
max < T[1]
for i< 2 to ndo

if T[i] < min do
min < T[i]
if T[i] > max do

max < Ti]

return min, max

2n comparisons

min, max < T[n], T[n]
for i+ 2tonby?2do
if T[i—1] < T[i] do
pMin, pMax < T[i — 1], T[i]

else
| pMin, pMax < TIi], T[i — 1]

if pMin < min do min <— pMin

| if pMax > max do max < pMax

return min, max

3n/2 comparisons

NAIVEMINMAX is faster than 3/2-MINMAX, when the data are
uniformly distributed in [0, 1]. [Auger,Nicaud,Pivoteau,STACS

2016
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Introduction to modern architecture

inst. 1' H inst. 2' ‘
True
‘ inst. 1 H inst. 2 H inst. 3 if?
False
inst. 1" inst.2"

Prediction rule : for each if, same as last time
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Analysis under the uniform distribution

NAIVEMINMAX(T, n) 3/2-MINMAX(T, n)
min < T[1] min, max < T[n], T[n]
max < T[1] for i+ 2 to nby 2do
for i< 2tondo if T[i—1]< T[i]do
if T[i] < min do | pMin, pMax « T[i — 1], T[]
min < TIi] else

| pMin, pMax < TIi], T[i — 1]
if pMin < min do min <— pMin

if T[i] > max do
max < Ti]

if pMax > max do max < pMax
return min, max return min, max

misprediction = alternation of record and non-record

@ NAIVEMINMAX generates ©(log(n)) mispredictions.

e 3/2-MINMAX generates ©(n) mispredictions.

What happen if the number of records increases significantly ?
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Average analysis of the number of mispredictions

When 6 = A\n for some real A and for our prediction rule, we have :

@ 4 number of mispredictions of NAIVEMINMAX.
@ v number of misprediction of 3/2-MINMAX.

En
1 #mispredictions/n % ~ 2\ (|Og(1 + %) — ﬁ)
11
Eq[v] 1 2403454024320 -3
Eil] (2)\ log (1+ 1) — W)
1
1| L1E, [u] naiveMinMax
1E,[v] 3/2-minMax
1 2 3
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Discussion

What's next ?

@ Ewens-like distribution for other meaningful statistics that
take part in (sorting) algorithms.

@ For example, the runs for the analysis of TimSort.

@ Explain the asymptotic shape of the diagrams below.(done)

n =100 sample size = 10000

=1 0 =50 6 =100 0 = 500
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