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Approach

Finch's result

Two Asymptotic Series
STEVEN FINCH
December 10, 2003

When enumerating trees [1, 2] or prime divisors [3, 4], the leading term of the
corresponding asymptotic series is usually sufficient for practical purposes. Greater
accuracy is possible by using several more terms, but the coefficients are not as widely
known as one might expect. We briefly provide the formulas required to compute the
required constants, as well as some theoretical background.

2 3

n n

A 0.0441699018... 0.2216928059... 0.8676554908...
Tn~r*”n*3/2(0.4399240125,..+ + 2y : +)

Based on Darboux's method, Finch obtains recurrences for
the coefficients of the asymptotic expansion of Pélya trees.
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Approach

Philippe’s remark

Two ASYMPTOTIC SERIES 6

0.3. Addendum I. Philippe Flajolet maintained that the preceding discussion
tends to [“hide the facts”| and provided thoughtful comments. Briefly, the equation
F(z,T(z)) = 0 can be rearranged as T'(z) = £ exp(T'(z)) with

&(z) = zexp (i %ﬂ)) .

k=2

The inverse function of yexp(—y) is the well-known |Cayley tree function|r, an ele-
mentary variant of the Lambert W function:

on the complex plane. In a small disk around the origin, therefore, T'(z) = 7(£(2)).
From here, singularities are easily accessed, making a full asymptotic expansion
possible.  Writing such conceptual remarks were, in ‘Flajolet’s words, an “enjoy-
able intermezzo” for him despite limited time.| These eventually found their way
into his treatise [12] with Sedgewick. For completeness, we mention that Cy =
1.5594900203... for rooted trees (as presented in [12]) and that the corresponding
coefficient is 1.1300337163... for binary trees
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Approach

Philippe and Bob's approach

\ELLED NON-PLANE TREES AND POLYA OPERATORS

the main diagonal. The series § = $(1 + D) enumerates Schroder’s generalized parenthesis

systems (Chapter I, p. 69): § + §2/(1 = §). and the asymptotic formula
1 1 —n+1/2
Va1 = Sp = 3 Dn-t ~ 3-2v2
Touci =50 =521 = 1 (3222)
follows straightforwardly <

VILS. Unlabelled non-plane trees and Polya operators

Essentially all the results obtained earlier for simple varicties of trees can be ex-
tended to the case of non-plane unlabelled trees. Pdlya operators are central, and
their treatment is typical of the asymptotic theory of unlabelled objects obeying sym-
metries (i.e., involving the unlabelled MSET, PSET, CYC constructions), as we have
seen repeatedly in this book.

Binary and general trees. We start the discussion by considering the enumer-
ation of two classes of non-plane trees following Pélya [488, 491] and Otter [466].
whose articles are important historic sources for the asymptotic theory of non-plane
tree enumeration—a brief account also appears in [319]. (These authors used the
more traditional method of Darboux instead of singularity analysis, but this distinc-
tion is immaterial here, as calculations develop under completely parallel lines under
both theories.) The two classes under consideration are those of general and binary
non-plane unlabelled trees. In both cases, there is a fairly direct reduction to the enu-
meration of Cayley trees and of binary trees, which renders explicit several steps of
the calculation. The trick is, as usual, to treat values of f(z2), f (%), ..., arising from
Pélya operators, as “known” analytic quantities.

Proposition VILS (Special unlabelled non-plane trees). Consider the two classes of
unlabelled non-plane trees

H=Z x MSET(H), W = Z x MSET(0.2(W),
respectively, of the general and binary type. Then, with constants y, Ay and 7y, Aw

given by Notes VIL.21 and VII.22, one has

n
49) Hy ~
2Van

Proof. (i) General case. The OGF of non-plane unlabelled trees is the analytic solu-
tion to the functional equation

< HG)  HG

(50 /1(:)::cxp(++%+ )
Let T be the solution to
1) T(z) =z,
that is to say, the Cayley function. The function H(z) has a radius of convergence
strictly less than 1 as its coefficients dominate those of 7 (2), the radius of convergence
of the latter being exactly e~! = 0.367. The radius  cannot be 0 since the number of

trees is bounded from above by the number of plane trees whose OGF has radius 1/4.
Thus, one has 1/4 < p < ™!

Al Wao~

Q 7T =ZxMSetT

Q T(z)=zexp

(%)

T(z) T
1 A

2
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Approach

Philippe and Bob's approach

\ELLED NON-PLANE TREES AND POLYA OPERATORS

the main diagonal. The series § = §(1 + D) enumerates Schroder’s generalized parenthesis

systems (Chapter I, p. 69): § + §2/(1 = §). and the asymptotic formula
1 1 —nt
Vanoi = S0 = 5Dt ~ (3-2v2)
4z

ly <

12

follows straightforwa

VILS. Unlabelled non-plane trees and Polya operators

Essentially all the results obtained earlier for simple varieties of trees can be ex-
tended to the case of non-plane unlabelled trees. Pdlya operators are central, and
their treatment is typical of the asymptotic theory of unlabelled objects obeying sym-
metries (i.e., involving the unlabelled MSET, PSET, CYC constructions), as we have
seen repeatedly in this book.

Binary and general trees. We start the discussion by considering the enumer-
ation of two classes of non-plane trees following PGlya [488, 491] and Otter [466],
whose articles are important historic sources for the asymptotic theory of non-plane
tree enumeration—a brief account also appears in [319]. (These authors used the
more traditional method of Darboux instead of singularity analysis, but this distinc-
tion is immaterial here, as calculations develop under completely parallel lines under
both theories.) The two classes under consideration are those of general and binary
non-plane unlabelled trees. In both cases, there is a fairly direct reduction to the enu-
meration of Cayley trees and of binary trees, which renders explicit several steps of
the calculation. The trick is, 3). ..., arising from

as usual, to treat values of f(z2), f(z%).
Pélya operators, as “known” analytic quantities.
Proposition VILS (Special unlabelled non-plane trees). Consider the two classes of
unlabelled non-plane trees

H=2Z x MSET(H), W = Z x MSETp2(W),
spectively, of the general and binary type. Then, with constants y 1, Ay and yw, Aw
given by Notes VII.21 and VII .22, one has

(49)

Proof. (i) General case. The OGF of non-plane unlabelled trees is the analytic solu-
tion to the functional equation

H
(50 HG) = zexp (+

Let T be the solution to
1) @)
that is to say, the Cayley function. The function H(z) has a radius of convergence p
strictly less than 1 as its coefficients dominate those of 7'(z), the radius of convergence
of the latter being exactly ¢~! = 0.367. The radius p cannot be 0 since the number of
trees is bounded from above by the number of plane trees whose OGF has radius 1/4.
Thus, one has 1/4 < p < ™!

()

=

Q 7T =ZxMSetT
Q T(z)=zexp ng) + T(222) + T(323) +...

© Cayley tree function C(z) = zexp (C(z))
directly related to the Lambert-W function.

The dominant sigularity of C(z) is e~1.

07/06/2016 6/23



Approach

_Philippe_and Bob's approach

i1, APPLICATIONS OF SINGULARITY ANALYSIS

Rewriting the defining equation of H (z) as

H() = ;M@

we observe that ¢ analytic in a disc that

properly contains the disc of convergence of H (z). We may thus rewrite H
H(z) =T (),

Since ¢(z) is analytic at z = p. a singular expansion of H (z) near g = p results from

composing the singular expansion of T at e~! with the analytic expansion of ¢ at p.

In this way, we get:

(52) H(z) 7 =2ep(p).

Thus,

2V
(ii) Binary case. Consider the functional equation

(53) fG

This enumerales non-plane binary trees s with size deimtd as the number of external
nodes, so that W Thus, it suffices to analyse [s"]f (<), which dispenses
us from dealing with periodicity phenomena arising from the parity of n

The OGF (2) has a radius of convergence p that is at least 1/4 (since there are
fewer non-plane trees than plane ones). 1 is also at most 1/2, which is scen from
comparison of f with the solution to the equation g ? Wc may then proceed
as before: treat the term J f (2 2, as though it were

as a function analytic in |z| < p'/2,
known, then solve. To this effect, set

12, Then, the equation (53) becomes a plain quadratic equa-
. with solution

f@=
The singularity s the smallest posiive solution of £ () = 1/2. The singular expan-
sion of f is obtained by combining the analytic expansion of ¢ at p with y/T—2¢

‘The usual square-root singularity result

f@Q~1-yy V2pl'(p)-
~"n=%2 form for the coefficients ["] (2

W), m

The argument used in the proof of the proposition may seem partly non-construc
However, numerically, the values of  and 7 can be determined to great accuracy
See the notes below as well as Finch’s section on “Otter’s tree enumeration con-
stants” [211, Sec. 5.6

‘This induces the p

Q 7T =ZxMSetT

T(z) , T(z?)

Q T(z)=zexp

+ +

1 2

© Cayley tree function C(z) = zexp (C(z))

directly related to the Lambert-W function.

The dominant sigularity of C(z) is e™1.

© Rewrite T(2)

with ¢{(z) = zexp

T(2?)
— F

=((2)exp (T (2)),
T(23) o

3
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Approach

_Philippe_and Bob's approach

T APPLICATIONS OF SINGULARITY ANAZYSIS
Rewriting the defining equation of H (z) as

(u
zexp

we observe that ¢ ) is analytic for |z| < p'/%
properly contains the disc of convergence of H

H@=¢e"O  win ¢

)' Q 7T =ZxMSetT

1 s analytic in a disc that
‘We may thus rewrite H(z) as -,— T 2 T 3
HE) =T Q T(z)=zexp (2) + (%) + (z°) + ...

p.asingular expansion of H (z) near z = p results from 1 2 3

pansion of T at e~ with the analytic expansion of ¢ at p.
© Cayley tree function C(z) = zexp (C(z))
directly related to the Lambert-W function.

¢(z) is analytic at
composing the singular
In this way, we get:

A2
(52) H@)=1-y (1 - ‘—) +0 ((1
P

Thus,

7 =260 (p).

The dominant sigularity of C(z) is e™1.

© Rewrite T(z) = {(2) exp (T(2)).
nodes, so that W(z)

us from dealing with periodi . T(22 ) T(Z3 )

The OGF f(2) has a radius of convergence p that is at least 1/4 (since there are with C(z) —zexp | —= — ...
fewer non-plane trees than plane ones). It is also at most 1 2w hich is seen from a 2 3
comparison of f with the solution to the equation g = z+ Wc may then proceed
as before: treat the term J (%) as a function analytic in |z| < p'/2, as though it were
known, then solve. To this effect, set

1
=t L, @ Let p be the dominant singularity of T(z); p < -

which exists in |z| < p'/2. Then, the equation (53) becomes a plain quadratic equa-

ittt ¢(z) is analytic at p.

tion, f
f@

The singularity s the smallet posiiv solution of () = 1/2. The sngular expa

sion of f is obtained by combining the analytic expansion of ¢ at p with y/T—2¢

‘The usual square-root singularity resul
f

~"n=3/2 form for the coefficients [z"]f (2

/2p¢(p)-

v

W), m

‘The argument used in the proof of the proposition may seem partly non-constructive
However, numerically, the values of  and 7 can be determined to great accuracy
See the notes below as well as Finch’s section on “Otter’s tree enumeration con-
stants” [211, Sec. 5.6].

‘This induces the p
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_Philippe_and Bob's approach

T APPLICATIONS OF SINGULARITY ANAZYSIS
Rewriting the defining equation of H (z) as
H@) =ce®  with )

alytic in a disc that
We may thus rewrite H () as

we observe that analytic for |z] < p'/%

properly contains the disc of convergence of H (2).
H(z) = T(¢(2)

p.a singular expansion of H(z) near z = p results from

nsion of 7' at e~! with the analytic expansion of ¢ at p.

Since ¢(2) is analytic at
composing the singular ex
In this way, we get:

(52 H@=1

7 = V2ol (p).

Thus,

*
(ii) Binary case. Consider the functional equation
(53) _r(:)::+1r<r)1+lu:1>
This enumerates non-plane binary trees with size defined as the number of external
nodes, so that W (z) = 2). Thus, it suffices to analyse [z"] f (z), which dispenses
us from dealing with periodicity phenomena arising from the parity of n
The OGF f (z) has a radius of convergence p that is at least 1/4 (since there arc
fewer non-plane trees than plane ones). It is also at most 1 2, which is seen from a
comparison of f with (I\c solution to the equation g 2. We may then proceed
as before: treat the term J (%) as a function analytic in |z| < p'/2, as though it were
known, then solve. To this effect, set

1o
(@) =z+5f(E),

which exists in |z| < p'/2. Then, the equation (53) becomes a plain quadratic equa-
tion, f = ¢ + L /2. with solution
f@
The singularity p is the smallest positive solution of ¢ () = 1/2. The si
sion of f is obtained by combining the analytic expansion of ¢ at p with v/
‘The usual square-root singularity resul
f@Q~1-yy

~"n=%/2 form for the coefficients [2"] f

R
1- 41

expan-
T3

Ipe 7 i=V2p0(p)-

2 W ]
‘The argument used in the proof of the proposition may seem partly non-constructive

However, numerically, the values of p and y can be determined to great accuracy

See the notes below as well as Finch’s section on “Otter’s tree enumeration con-

stants” [211, Sec. 5.6]

‘This induces the p

Q 7T =ZxMSetT

V4 22
Q T(z)=zexp T§)+T(2)+ 3 + ...

© Cayley tree function C(z) = zexp (C(z))
directly related to the Lambert-W function.

The dominant sigularity of C(z) is e™1.

Q@ Rewrite T(z) = {(z) exp (T (2)),
with ¢{(z) = zexp y—ky—i—...

1
@ Let p be the dominant singularity of T(z); p < —.

¢(z) is analytic at p.

@ A singular expansion of T(z) at p is obtained by
composing the singular expansion of C(z) at e~!

with the analytic expansion of {(z) at p.
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Finch:

“Wkiting such conceptual remarks were, in Flajolet’s words, an «enjoyable
intermezzoy for him despite limited time. These eventually found their way
into his treatise [12] with Sedgewick.”
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Approach

Finch:

“Wkiting such conceptual remarks were, in Flajolet’s words, an «enjoyable
intermezzoy for him despite limited time. These eventually found their way
into his treatise [12] with Sedgewick.”

172
(52) H@=1-y (1 - %) +0 ((1 - i)) y = 2ep0'(p).

Thus,
4 -n

p
2/mn3

[2"1H (z) ~
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Approach

Finch:

“Wkiting such conceptual remarks were, in Flajolet’s words, an «enjoyable
intermezzoy for him despite limited time. These eventually found their way
into his treatise [12] with Sedgewick.”

172
(52) H@=1-y (1 - %) +0 ((1 - ﬁ)) v = 2ep7'(p).

Thus,

[2"1H (z) ~
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Context Approach Pélya trees Other Pdélya structures

Lemma: Full Puiseux expansion of the Cayley tree function

Cz) = 1-V2/li—ez

z—1/e
n—1 k—1
11 1 Dl
- —“)Byas (o —— 2i 1—ez)"?
;(;1:( o (331 muz)[{(” ,)) e,

where the functions B, ,(-) are the Bell polynomials.

Key ideas:
The Cayley tree function satisfies: C(z) = zexp(C(z)).
Reverse the singular expansion of C(z)exp(—C(z)).
Lagrange inversion formula
Faa di Bruno's formula

n! X1\ 1 Xn— ki1 )C"*“‘l
Bk (x1,. .., Xp— = 7(7) S (et o T
i (xa n—k+1) > a1l Cppar! V11 ((nkarl)!
€1y, Cr—k+1 >0
Z;Cr‘:k
2 jici=n

e



Context Approach Pélya trees

Other Pdélya structures

Pélya trees: key ideas of the proof

< T(z
= zexp

1
with {(z) = zexp (22) ( )

Let p be the dominant smgularlty of T( ).

L FTYE R T



Context Approach Pélya trees

Other Pdélya structures

Pélya trees: key ideas of the proof

e (T(z ) 1) +> = ¢(2) ep(T(2)),

1
with {(z) = zexp (22) ( )

Let p be the dominant smgularlty of T( ).
The dominant singularity of {(z) is strictly larger than p. Thus

(a) = 1+Z(—f0)'_<(i)(f’)(1_z>i’

i!
i>1 P

with ¢()(-) the i-th differentiate of (.

L FTYE R T



Context Approach Pélya trees Other Pdélya structures

Pélya trees: key ideas of the proof

z z
_zexp<T( + T(3 )+> = ((z) exp(T(2)),

1
with {(z) = zexp (22) ( )

Let p be the dominant smgularlty of T( ).
The dominant singularity of {(z) is strictly larger than p. Thus

)i ) 2\
C(Z)szé'*'z( IO)IIC (P) (l_p)’

with ¢()(-) the i-th differentiate of (.
By composition of both expansions of C(z) and {(z)

A\ n/2
by = s B g s (1 )7 (14 5 GO () 2y’
@) 5,1-5 2 e (1-2) G (:-2)) -

"1 53 (1 + 1) CB(p) p
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Context Approach Pélya trees Other Pdélya structures

Theorem: Puiseux expansion for Pélya trees 7(z) = ¢(z) exp(T(2))

n/2
Zzi/)l—i_z (1_> ’

n>1
with t; = —/2ep(()(p); and, for all n > 1
B(n) 2 (S8 v—)/2 o2 . BE) 2
tn= == (2ep6M(0))"" — X ey (2e¢M(0))
nEKZ_m%)d 2
n—t
NI () ()
; ( r >(<;<1)(p))' . Z o, (Dt G+t
nyeslr 2
=5t
where ¢()(z) stands for the ith derivative of ¢(z), B(1) =1, and for all £ > 1,
-1 11 1 k—1 .
B(f):;( 1) Be—1,k (3 7 7m> g(@-ﬁ-%).

L FTYE R T



Context Approach Pélya trees Other Pdélya structures

Theorem: Asymptotic expansion for Pélya trees

l+1
Tﬂ e \/? Z <; QrRk'Jrlr) )

>0 "
where
r—1 ) J £
Q, = Z(—l)’*ltgjﬂ z H < ) for all r > 0;
J=0 o,....;>1 =0
Yibli=r

Ro=1and forall £ >0

f Dt S
RS 2 H (0—2k — - —2ki1+i—1k

r=1 ki, ...k >1 =1
r={mod 2 Z,-ka%

L TYe R T E T



Context Approach Pélya trees Other Pdélya structures

Approximation of the asymptotic expansion for Pélya trees

p ~ 0.33832185689920769519611262571701705318377460753297 . . .

—n

T _ p 0.07828911261061096133.. ..
n n— o0 ~/7rn3

n
+0.3929402676631860168 B 1.537879315978838092.. . .

(0.7797450101873204419 oot

n2 n3
8.200844090435596194 . . . 1
+ 7 + O — ;
n n

L TYE R T



Context Approach 6lya trees Other Pdélya structures

And other Pélya structures ?

Almost 100 examples
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Context Approach Pélya trees Other Pdélya structures

Theorem: Puiseux expansion for Pélya—trees () = ¢(z) exp(T(2))

n/2
Zzi/)l—i_z (1_> ’

n>1
with t; = —/2ep(()(p); and, for all n > 1
B(n) 2 (S8 v—)/2 o2 . BE) 2
tn= == (2ep6M(0))"" — X ey (2e¢M(0))
nEKZ_m%)d 2
n—t
NI () ()
; ( r >(<;<1)(p))' . Z o, (Dt G+t
nyeslr 2
=5t
where ¢()(z) stands for the ith derivative of ¢(z), B(1) =1, and for all £ > 1,
-1 11 1 k—1 .
B(f):;( 1) Be—1,k (3 7 7m> g(@-ﬁ-%).
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Other Pdélya structures

Context Approach Pélya trees

Rooted identity trees

S

T =2 xPSetT.

T(z) =zexp (Z(—l)"_1 T(IZI)> ((z) =z-exp (.Z(l)"1 T(I.Z’))

i>0

07/06/2016 15 / 23



Context Approach Pélya trees Other Pdélya structures

Approximation of the asymptotic expansion
for rooted identity trees

p ~ 0.39721309688424004148565407022739873422987370995276 . . .

—n

T _ p 0.1851197977766337056 . . .
n n— oo ‘/71'[73

n

(0.6425790797442694714 o0 =

0.4272427290060978745 ... 2.255455568987212079...
B n2 - n3
16.60970953335647846 . .. ( 1 ))
- - +(=x))-
n n

L TYE R T BT



Context Approach Pélya trees Other Pdélya structures

Hierarchies

0O« O ,® O+ ® ,0 [l ) 0«0 ,» o
JANYA I\ I\ I\ JANA
e e [ ) () (el ) e e
/\
()

T = Z + MSet>oT.

T(z):i(z—l—i—exp(ZT(iZI))) C(z):%exp (;(l—z)—l—z—r(iz)).

i>0 n>2

L FTYE Rt BT



Context Approach Pélya trees Other Pdélya structures

Approximation of the asymptotic expansion for hierarchies

p ~ 0.28083266698420035539318755911632333333736599643391 . ..

—n

T o_ p _ 0.2409833212579280352.. . .
n n—_>oo ,/71-”3

n

(0.3658015862381 119375. ..

0.3678657493849431861... 0.9991064877914853523. ..
B n2 B n3
4.137777553476907813.. .. 1
n n
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Context Approach Pélya trees Other Pdélya structures

OEIS sequence A000084

@ Series-parallel networks with unlabelled edges (multiple edges allowed)
@ Unlabeled cographs

@ Non-equivalent And/Or Boolean functions

For n > 1, .
= E#Hierarchies(n).

L TYE R Ty E T



Context Approach Pélya trees Other Pdélya structures

OEIS sequence A000151

@ Oriented rooted trees

@ Rooted trees whose non-root nodes are 2-colored

T(z) =zexp

L TYe Ty



Context Approach Pélya trees Other Pdélya structures

OEIS sequence A001678

Series-reduced planted trees

L TYE T



Context Approach Pélya trees Other Pdélya structures

OEIS sequences

@ A058385: Essentially parallel series-parallel networks with unlabeled
edges (multiple edges not allowed)

@ A058386: Essentially series series-parallel networks with unlabeled
edges (multiple edges not allowed)

@ A058387: Series-parallel networks with unlabeled edges (multiple
edges not allowed)

L TYE R BT



Context Approach Pélya trees Other Pdélya structures

OEIS sequences

@ A058385: Essentially parallel series-parallel networks with unlabeled
edges (multiple edges not allowed)

@ A058386: Essentially series series-parallel networks with unlabeled
edges (multiple edges not allowed)

@ A058387: Series-parallel networks with unlabeled edges (multiple
edges not allowed)

@ A000311: Phylogenetic tree; also Total partitions

z—l_ 1 z—1

5 = U(z)ziexp(U(z)—i— 5 )-

()= 25 en(T(2)  T(2)

The functions ((z) does not explicitly depend on U(z) and thus every
derivative is explicit.

L TYe R BT



Other Pdélya structures

And a second story

(ii) Binary case. Consider the functional equation
(53) F@ =2+ 3 f@F+ 3 ).

This enumerates non-plane binary trees with size defined as the number of external
nodes, so that W(z) = %f(zz). Thus, it suffices to analyse [z"] f (z), which dispenses
us from dealing with periodicity phenomena arising from the parity of n.

The OGF f(z) has a radius of convergence p that is at least 1/4 (since there are
fewer non-plane trees than plane ones). It is also at most 1/2, which is seen from a
comparison of f with the solution to the equation g = z + %gz. ‘We may then proceed
as before: treat the term  f(z2) as a function analytic in |z| < p'/2, as though it were
known, then solve. To this effect, set

1
(@i=z+5f@),
which exists in |z| < p!/2. Then, the equation (53) becomes a plain quadratic equa-
tion, f =¢ + %fz, with solution

f@=1-J1-2().

The singularity p is the smallest positive solution of {'(p) = 1/2. The singular expan-
sion of f is obtained by combining the analytic expansion of ¢ at p with /1 —2¢.
The usual square-root singularity results:

f@~1=yJ/1-2/p, 7 = v2p'(p).

This induces the p~"n~%/2 form for the coefficients [z"]f (z) = [z~ IW (). ]
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