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ex: D = {3} — cubic maps (=~ triangulations)
D ={2n,n > 1} — Eulerian maps (=~ bipartite maps)

Asymptotic behaviour of M p?
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M,, number of maps with n edges

Tutte (60s): M, = %Cat(n) = M, N

“universal” behaviour for maps
p-angulations, bipartite, simple, ...

Xf,()/d) random variable counting vertices of degree d

One-dimensional Central Limit Theorem for general maps

[Drmota, Panagiotou’12]
Multi-dimensional CLT for bipartite maps

[Drmota-Gittenberger-Morgenbesser'12]

Let's go more general!



Main result

Theorem [C.-Drmota-Klausner’16]

VD finite or infinite, D ¢ {1, 2}
Mp ,, number of maps in Mp with n edges
d=gcd{i:2¢ € D} if D even, d =1 otherwise

X,, = (X ) yep(n = 0 mod d)
Then there exist positive constants cp, pp with:

—5/2

Mp . ~ cpn pr', m=0modd

Furthermore, there exists a positive constant pp such that:
E[Xf,gd)] ~ Upn
and ﬁ(Xn — E(X,)), n =0mod d, converges weakly

to a centered Gaussian random variable Z (in ¢2).
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A degree-preserving bijection

[Bouttier-Di Francesco-Guitter'04]

1. Pointed map

2. Geodesic orientation of edges
3. New blue vertex in each face
4. For each edge, apply:

SN

“~ l

5. Erase map edges and pointed vertex

Bijection between pointed maps and maobiles

edges <> edges
non-pointed vertices <+ white vertices

face of degree d <+ blue vertices of degree d




A degree-preserving bijection

[Bouttier-Di Francesco-Guitter'04]

1. Pointed bipartite map

2. Geodesic orientation of edges
3. New blue vertex in each face
4. For each edge, apply:

> S

5. Erase map edges and pointed vertex

Bijection between pointed maps and bipartite mobiles
edges <> edges (only white-black edges)

non-pointed vertices <+ white vertices
face of degree d <+ blue vertices of degree d



A degree-preserving bijection

[Bouttier-Di Francesco-Guitter'04]

R = R(t, z,(x2;);>1) generating series of bipartite mobiles

M = M(t, z, (x2;);>1) generating series of bipartite maps

t: vertices/white vertices, z: edges, xo;: faces/blue vertices of degree 2¢

R=tz+2Y z:(* R M =2(R/z—t)

i>1
Rp(z,t) =tz + ZQZD (*" R % =2(Rp/z—1)
1€

Rp(z,t) = F(t,z, Rp) where F'is a formal power series
with nonnegative integer coefficients



Asymptotic expansion
Rp(z,t) = F(z,t,Rp) =tz+2 ) (27;;1)5337 (%)
2i€D
Lemma:
dp(t) analytic near t = 1, with p(1) > 0 and p’(1) # 0,
dg(z,t), h(z,t) analytic near (z = p(1),t = 1), with h(p(1),1) > 0,
such that the unique solution Rp of (x) analytic at (0,0) is expressed as:

RD(Za ) g \/1 (t)

Proof: [Drmota, Random trees'09]

RO — F(p7 17R0)

1= FR(pa 17 RO)

e D finite: F polynomial, easy
... | Ry=F(p,1,Ry) B - 2i—1\ pi _

e D infinite: { | = Fp(p.1, Ro) = H(Ro) =Y 0;epli —1)(* )R =1

(i—1)(*") ~ 4\/\[ = H(x) has radius 1/4, H(x) —;_1 /4~ o0

+ analytic conditions on partial derivatives of F' at (p, 1, Ry)

Show that { admits positive solutions (Rg, p)




Asymptotic expansion
Rp(z,t) = F(z,t,Rp) =tz+ 2z > (22-1)5% (%)
2i€ D
Lemma:
dp(t) analytic near t = 1, with p(1) > 0 and p’(1) # 0,
dg(z,t), h(z,t) analytic near (z = p(1),t = 1), with h(p(1),1) > 0,
such that the unique solution Rp of (x) analytic at (0,0) is expressed as:

Rp(z,t) = g(z,t) — zt\/l FG)

Lemma:
dga(z,t), ha(z,t) analytic near (z = p(1),t = 1), with ho(p(1),1) > 0,
such that the unique solution Rp of (x) analytic at (0,0) is expressed as:

3/2
Mp(z,t) = ga(z:1) + ha(z,1) (1= )

= Jep > 0, Mp., = [2"|Mp(2,1) ~ cpn=52p™™, n=0modd
% Transfer lemma



Central limit theorem

Rp(z,t,(x2;)) = F(z,t,(x2;), Rp) =tz + Zzze:D To; <2i;1)RiD (%)

e D finite: Apply [Drmota, Random trees, Theorem 2.25]:
RD(Zv ¢, (372@)) — g(z, t (3722)) _ h(zv t, (x22))\/1 - p(t,(zmgz'))

3/2
MD(Za t) — 92(27 t, (xZZ)) - hQ(Z, t, (sz)) (1 — p(t,é%)))
implies multivariate CLT for random vector X,

e D infinite: Apply [Drmota-Gittenberger-Morgenbesser, Theorem 3]:
similar expansion

+ condition X\ = 0 for i > en (for some ¢ > 0)
+ tightness of X,, = moment conditions

L compute derivatives of F' at (p, 1, (1)2iep, Ro)
check analytic conditions



Central limit theorem

Rp(z,t,(x9;)) = F(z,t,(x2;), Rp) =tz + 2 ) xo; <2i;1)RiD (%)
2i€D

e D finite: Apply [Drmota, Random trees, Theorem 2.25]:
RD(Zv ¢, (3727/)) — g(z, ¢, (3:2’&)) _ h(Z, t (x22))\/1 — p(t,(ZQi))

3/2
Mp(z,t) = ga(2,t, (x2;)) + ha(z,t, (z2;)) (1 - p(t,(fUQi)))

implies multivariate CLT for random vector X,

e D infinite: Apply [Drmota-Gittenberger-Morgenbesser, Theorem 3]:
similar expansion

+ condition X\ = 0 for i > en (for some ¢ > 0)
+ tightness of X,, = moment conditions

L compute derivatives of F' at (p, 1, (1)2iep, Ro)
check analytic conditions

N follows directly from >°.o % (¥ 1)y’ < o



Central limit theorem

What about general case?

System of two equations instead of one:
< Lp= 2Y,ep¥idomBom—icimLlp " R}
1 i
Rp= zt+2) ,cp¥Yid.m ngn—)i—lmL,zg Z 2R7B+1

\

positive strongly connected,
can be reduced to a single (implicit) equation [Drmotal

Rp = G(z,t, (Yi)iep, [(2,t,(yi)ien, Bp), RD)
with f(z,t, (x;)iep,r) analytic.

+ Re-use the same method as bipartite case.



And beyond?

Another extension: higher genus
Maps on a surface of genus g > 0, ex. Torus
BDG bijection still works (on orientable surfaces)!

g-mobiles
~ one-faced map

similar to planar mobiles

but different (global constraints)

Enumeration via scheme decomposition
[Chapuy-Marcus-Schaeffer'08]

Much more involved generating series
Still needs to study the asymptotics (work in progress)



