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vertices, edges (multiple, loops. . . ), faces

can be: rooted (distinguished oriented edge)

pointed (distinguished vertex)

or both...

M family of rooted planar maps
D, set of positive integers, finite or infinite
MD ⊂M where the vertex degrees are restricted to D

ex: D = {3} → cubic maps (' triangulations)
D = {2n, n ≥ 1} → Eulerian maps (' bipartite maps)

Asymptotic behaviour of MD?
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Tutte (60s): Mn = 2·3n
n+2Cat(n)⇒Mn ∼ 2√

π
n−5/212n

Mn number of maps with n edges

“universal” behaviour for maps
p-angulations, bipartite, simple, . . .

X
(d)
n random variable counting vertices of degree d

Multi-dimensional CLT for bipartite maps
[Drmota-Gittenberger-Morgenbesser’12]

One-dimensional Central Limit Theorem for general maps

Let’s go more general!

[Drmota, Panagiotou’12]



Main result

Theorem [C.-Drmota-Klausner’16]

∀D finite or infinite, D 6⊆ {1, 2}

Then there exist positive constants cD, ρD with:

MD,n number of maps in MD with n edges
d = gcd{i : 2i ∈ D} if D even, d = 1 otherwise

MD,n ∼ cDn−5/2ρ−nD , n ≡ 0 mod d

Furthermore, there exists a positive constant µD such that:

E[X
(d)
n ] ∼ µDn

and 1√
n
(Xn − E(Xn)), n ≡ 0 mod d, converges weakly

to a centered Gaussian random variable Z (in `2).

Xn = (X
(d)
n )d∈D(n ≡ 0 mod d)
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A degree-preserving bijection

[Bouttier-Di Francesco-Guitter’04]

1. Pointed bipartite map
2. Geodesic orientation of edges

4. For each edge, apply:
3. New blue vertex in each face

5. Erase map edges and pointed vertex

Bijection between pointed maps and bipartite mobiles
edges ↔ edges
non-pointed vertices ↔ white vertices
face of degree d ↔ blue vertices of degree d

(only white-black edges)(only white-black edges)



A degree-preserving bijection

[Bouttier-Di Francesco-Guitter’04]

R = R(t, z, (x2i)i≥1) generating series of bipartite mobiles

M =M(t, z, (x2i)i≥1) generating series of bipartite maps

t: vertices/white vertices, z: edges, x2i: faces/blue vertices of degree 2i

R = tz + z
∑
i≥1

x2i
(
2i−1
i

)
Ri ∂M

∂t = 2 (R/z − t)

RD(z, t) = tz + z
∑

2i∈D

(
2i−1
i

)
RiD

∂MD

∂t = 2 (RD/z − t)

RD(z, t) = F (t, z, RD) where F is a formal power series

with nonnegative integer coefficients



Asymptotic expansion
RD(z, t) = F (z, t, RD) = tz + z

∑
2i∈D

(
2i−1
i

)
RiD (∗)

∃ρ(t) analytic near t = 1, with ρ(1) > 0 and ρ′(1) 6= 0,

Lemma:

∃g(z, t), h(z, t) analytic near (z = ρ(1), t = 1), with h(ρ(1), 1) > 0,

such that the unique solution RD of (∗) analytic at (0, 0) is expressed as:

RD(z, t) = g(z, t)− h(z, t)
√
1− z

ρ(t)

Proof: [Drmota, Random trees’09]

Show that

{
R0 = F (ρ, 1, R0)
1 = FR(ρ, 1, R0)

admits positive solutions (R0, ρ)

• D finite: F polynomial, easy

• D infinite:

{
R0 = F (ρ, 1, R0)
1 = FR(ρ, 1, R0)

⇒ H(R0) =
∑

2i∈D(i− 1)
(
2i−1
i

)
Ri0 = 1

(i− 1)
(
2i−1
i

)
∼ 4i

√
i

2
√
π
⇒ H(x) has radius 1/4, H(x)→x→1/4− ∞

+ analytic conditions on partial derivatives of F at (ρ, 1, R0)
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(
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i

)
RiD (∗)

∃ρ(t) analytic near t = 1, with ρ(1) > 0 and ρ′(1) 6= 0,

Lemma:

∃g(z, t), h(z, t) analytic near (z = ρ(1), t = 1), with h(ρ(1), 1) > 0,

such that the unique solution RD of (∗) analytic at (0, 0) is expressed as:

RD(z, t) = g(z, t)− h(z, t)
√
1− z

ρ(t)

Lemma:

∃g2(z, t), h2(z, t) analytic near (z = ρ(1), t = 1), with h2(ρ(1), 1) > 0,

such that the unique solution RD of (∗) analytic at (0, 0) is expressed as:

MD(z, t) = g2(z, t) + h2(z, t)
(
1− z

ρ(t)

)3/2
⇒ ∃cD > 0,MD,n = [zn]MD(z, 1) ∼ cDn−5/2ρ−n, n ≡ 0 mod d

Transfer lemma



Central limit theorem
RD(z, t, (x2i)) = F (z, t, (x2i), RD) = tz + z

∑
2i∈D

x2i
(
2i−1
i

)
RiD (∗)

• D finite: Apply [Drmota, Random trees, Theorem 2.25]:

RD(z, t, (x2i)) = g(z, t, (x2i))− h(z, t, (x2i))
√

1− z
ρ(t,(x2i))

MD(z, t) = g2(z, t, (x2i)) + h2(z, t, (x2i))
(
1− z

ρ(t,(x2i))

)3/2
implies multivariate CLT for random vector Xn

• D infinite: Apply [Drmota-Gittenberger-Morgenbesser, Theorem 3]:

+ condition X
(i)
n = 0 for i > cn (for some c > 0)

+ tightness of Xn ⇒ moment conditions

compute derivatives of F at (ρ, 1, (1)2i∈D, R0)

similar expansion

check analytic conditions
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implies multivariate CLT for random vector Xn

• D infinite: Apply [Drmota-Gittenberger-Morgenbesser, Theorem 3]:

+ condition X
(i)
n = 0 for i > cn (for some c > 0)

+ tightness of Xn ⇒ moment conditions

compute derivatives of F at (ρ, 1, (1)2i∈D, R0)

similar expansion

check analytic conditions

follows directly from
∑
i≥1 i

K
(
2i−1
i

)
yi <∞



Central limit theorem

What about general case?

System of two equations instead of one:{
LD = z

∑
i∈D yi

∑
mB2m−i−1,mL

2m−i−1
D RmD

RD = zt+ z
∑
i∈D yi

∑
mB

(+1)
2m−i−2,mL

2m−i−2
,D Rm+1

D

positive strongly connected,

can be reduced to a single (implicit) equation [Drmota]

RD = G(z, t, (yi)i∈D, f(z, t, (yi)i∈D, RD), RD)

with f(z, t, (xi)i∈D, r) analytic.

+ Re-use the same method as bipartite case.



And beyond?

Another extension: higher genus

Maps on a surface of genus g > 0, ex. Torus

BDG bijection still works (on orientable surfaces)!

g-mobiles
' one-faced map

similar to planar mobiles

but different (global constraints)

Enumeration via scheme decomposition
[Chapuy-Marcus-Schaeffer’08]

Much more involved generating series
Still needs to study the asymptotics (work in progress)


