

Combinatorial Analysis of Growth Models for Series-Parallel Networks

Markus Kuba and Alois Panholzer

Technikum Wien and TU Wien, Austria

AofA 2016, Krakow, 07.07.2016

Series-parallel networks (SP-nets):

- two-terminal graphs: distinguished vertices source and sink
- generated recursively by two composition operations:
 - parallel composition:

sources and sinks of two SP-nets are merged

• series composition:

sink of one SP-net merged with source of other SP-net

Series-parallel networks (SP-nets):

- two-terminal graphs: distinguished vertices source and sink
- generated recursively by two composition operations:
 - parallel composition:

sources and sinks of two SP-nets are merged

• series composition:

sink of one SP-net merged with source of other SP-net

Series-parallel networks (SP-nets):

- two-terminal graphs: distinguished vertices source and sink
- generated recursively by two composition operations:
 - parallel composition:

sources and sinks of two SP-nets are merged

• series composition:

sink of one SP-net merged with source of other SP-net

Series-parallel networks (SP-nets):

- two-terminal graphs: distinguished vertices source and sink
- generated recursively by two composition operations:
 - parallel composition:

sources and sinks of two SP-nets are merged

• series composition:

sink of one SP-net merged with source of other SP-net

・ロン ・四 と ・ ヨ と ・ ヨ と

2/22

Series-parallel networks (SP-nets):

- two-terminal graphs: distinguished vertices source and sink
- generated recursively by two composition operations:
 - parallel composition:

sources and sinks of two SP-nets are merged

• series composition:

sink of one SP-net merged with source of other SP-net

イロト イポト イヨト イヨト

Applications of SP-nets:

- model flow in bipolar networks (electric circuits, etc.)
- computational complexity theory: some in general NP-complete graph problems are solvable in linear time for SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:

various studies of typical behaviour of structural quantities in SP-nets/SP-graphs

 uniform models: all SP-nets/SP-graphs of given size are equally likely

e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi, Panagiotou, Steger [2008]; Drmota, Gimenez, Noy [2010,2011]; Hofri, Li, Mahmoud [2016]

Applications of SP-nets:

- model flow in bipolar networks (electric circuits, etc.)
- computational complexity theory: some in general NP-complete graph problems are solvable in linear time for SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:

various studies of typical behaviour of structural quantities in SP-nets/SP-graphs

• **uniform models:** all SP-nets/SP-graphs of given size are equally likely

e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi, Panagiotou, Steger [2008]; Drmota, Gimenez, Noy [2010,2011]; Hofri, Li, Mahmoud [2016]

• stochastic growth models: introduced by Hosam Mahmoud [2013, 2014]

Applications of SP-nets:

- model flow in bipolar networks (electric circuits, etc.)
- computational complexity theory: some in general NP-complete graph problems are solvable in linear time for SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:

various studies of typical behaviour of structural quantities in SP-nets/SP-graphs

- uniform models: all SP-nets/SP-graphs of given size are equally likely e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi, Panagiotou, Steger [2008]; Drmota, Gimenez, Noy [2010,2011]; Hofri, Li, Mahmoud [2016]
- stochastic growth models: introduced by Hosam Mahmoud [2013, 2014]

Applications of SP-nets:

- model flow in bipolar networks (electric circuits, etc.)
- computational complexity theory: some in general NP-complete graph problems are solvable in linear time for SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:

various studies of typical behaviour of structural quantities in SP-nets/SP-graphs

• **uniform models:** all SP-nets/SP-graphs of given size are equally likely

e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi, Panagiotou, Steger [2008]; Drmota, Gimenez, Noy [2010,2011]; Hofri, Li, Mahmoud [2016]

stochastic growth models: introduced by Hosam Mahmoud
 [2013, 2014]

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Example:

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Example:

S

Ν

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

- parallel doubling:
 serial doubling: -
- **Example:**

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

Generating SP-nets by edge-duplications:

each SP-net can be generated by basic edge-duplication rules:

5/22

Bernoulli model [Mahmoud, 2013]:

- step 1: start with single edge
- step *n*: select edge $e = \int_{1}^{\infty}$ uniformly at random

• with probability p: parallel duplication of e

●x e

e n

• with probability q = 1 - p: serial duplication of e

Bernoulli model [Mahmoud, 2013]:

- step 1: start with single edge
- step *n*: select edge $e = \int_{y}^{x}$ uniformly at random
 - with probability p: parallel duplication of e

• with probability q = 1 - p: serial duplication of e

Binary model [Mahmoud, 2014]:

- **step 1:** start with single edge
- step *n*: select edge $e = \int_{1}^{x} uniformly at random$
 - if out-degree $d^+(x) = 1$: parallel duplication of e

- step 1: start with single edge
- step *n*: select edge $e = \int_{v}^{v}$ uniformly at random

• if out-degree $d^+(x) = 1$: parallel duplication of e

Binary model [Mahmoud, 2014]:

- step 1: start with single edge
- step *n*: select edge $e = \int_{1}^{x} uniformly$ at random
 - if out-degree $d^+(x) = 1$: parallel duplication of e

Binary model [Mahmoud, 2014]:

- step 1: start with single edge
- step *n*: select edge $e = \int_{1}^{x} uniformly$ at random
 - if out-degree $d^+(x) = 1$: parallel duplication of e

Stochastic growth rule

→ "bottom-up" analysis of quantities in SP-net models via Pólya-Eggenberger urn models [Mahmoud, 2013 & 2014]: nodes of small degree, degree of the source, length of random source-to-sink path

Combinatorial description of SP-net models

- $\rightarrow\,$ capture growth process via increasing tree models
- ightarrow allows combinatorial decomposition of structure
- → "top-down" approach for analysis of quantities in SP-nets by considering parameters in corresponding tree models
- ightarrow approach can be extended to further growth rules for SP-nets

Stochastic growth rule

→ "bottom-up" analysis of quantities in SP-net models via Pólya-Eggenberger urn models [Mahmoud, 2013 & 2014]: nodes of small degree, degree of the source, length of random source-to-sink path

Combinatorial description of SP-net models

- $\rightarrow\,$ capture growth process via increasing tree models
- $\rightarrow\,$ allows combinatorial decomposition of structure
- \rightarrow "top-down" approach for analysis of quantities in SP-nets by considering parameters in corresponding tree models
- $\rightarrow\,$ approach can be extended to further growth rules for SP-nets

Combinatorial description of SP-net models

Bernoulli model \rightarrow edge-coloured recursive trees:

- step 1: start with single node ①
- **step** *n*: select node **x** uniformly at random

• with probability p: attach node n to x with blue edge

Combinatorial description of SP-net models

Bernoulli model \rightarrow edge-coloured recursive trees:

- **step 1:** start with single node ①
- **step** *n*: select node (X) uniformly at random

• with probability p: attach node n to x with blue edge

イロン イロン イヨン イヨン 三日

Combinatorial description of SP-net models

Bernoulli model \rightarrow edge-coloured recursive trees:

- **step 1:** start with single node ①
- **step** *n*: select node (X) uniformly at random
 - with probability *p*: attach node *n* to *x* with blue edge

• with probability q = 1 - p: attach node *n* to *x* with red edge

Bernoulli model \rightarrow edge-coloured recursive trees:

- **step 1:** start with single node ①
- **step** *n*: select node (X) uniformly at random
 - with probability *p*: attach node *n* to *x* with blue edge

• with probability q = 1 - p: attach node *n* to *x* with red edge

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \otimes \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication
 [^] red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \odot \times \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication $\hat{=}$ red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \odot \times \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication $\hat{=}$ red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \odot \times \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication $\hat{=}$ red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \odot \times \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication $\hat{=}$ red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \odot \times \operatorname{Set}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} = \bigcirc \dot{\cup} \otimes \mathbf{SET}(\{ \mid \} \times \mathcal{T} \cup \{ \mid \} \times \mathcal{T})$$

Example:

SP-net

edge-coloured recursive tree

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- "top-down" decomposition of tree family \mathcal{T} :

 $\mathcal{T} = (\mathbf{1} \quad \dot{\mathbf{U}} \quad \mathbf{I} \times \operatorname{Set}(\{\mathbf{1}\} \times \mathcal{T} \quad \dot{\mathbf{U}} \in [\mathbf{1}] \times \mathcal{T})$

Example:

SP-net

- edge-coloured unordered increasing trees
- parallel duplication $\hat{=}$ blue edge
- serial duplication $\hat{=}$ red edge
- "top-down" decomposition of tree family \mathcal{T} :

$$\mathcal{T} \hspace{0.1 cm} = \hspace{0.1 cm} (\underline{)} \hspace{0.1 cm} \dot{\cup} \hspace{0.1 cm} (\underline{)} \times \operatorname{Set}(\{ \hspace{0.1 cm} | \hspace{0.1 cm} \} \times \mathcal{T} \hspace{0.1 cm} \dot{\cup} \hspace{0.1 cm} \{ \hspace{0.1 cm} | \hspace{0.1 cm} \} \times \mathcal{T})$$

Binary model \rightarrow bucket recursive trees:

- nodes in tree can hold up to two labels
- step 1: start with single node containing label (1)
- **step** *n*: select label $1 \le j < n$ uniformly at random

• if node x containing *j* is not saturated: label *n* will be inserted into x

10/22

 if node x containing j is saturated: new node containing label n will be attached to x

Binary model \rightarrow bucket recursive trees:

- nodes in tree can hold up to two labels
- step 1: start with single node containing label ①
- step *n*: select label $1 \le j < n$ uniformly at random
 - if node x containing j is not saturated: label n will be inserted into x

• if node x containing j is saturated: new node containing label n will be attached to x

Binary model \rightarrow bucket recursive trees:

- nodes in tree can hold up to two labels
- step 1: start with single node containing label ①
- step *n*: select label $1 \le j < n$ uniformly at random
 - if node x containing j is not saturated: label n will be inserted into x

• if node x containing j is saturated: new node containing label n will be attached to x

Binary model \rightarrow bucket recursive trees:

- nodes in tree can hold up to two labels
- step 1: start with single node containing label ①
- step *n*: select label $1 \le j < n$ uniformly at random
 - if node x containing j is not saturated: label n will be inserted into x

• if node x containing j is saturated: new node containing label n will be attached to x

10/22

Combinatorial description of SP-net models Example: SP-net bucket recursive tree 1 1

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12 \times \text{Set}(\mathcal{B}) \times \text{Set}(\mathcal{B}))$$

Example:

bucket recursive tree

SP-net

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12 \times \text{Set}(\mathcal{B}) \times \text{Set}(\mathcal{B}))$$

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (\mathbf{1} \quad \dot{\cup} \quad (\mathbf{12} \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B}))$$

Example:

SP-net

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12) \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B})$$

Example:

bucket recursive tree

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12) \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B})$$

Example:

bucket recursive tree

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12) \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B})$$

Example:

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12) \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B})$$

• tree decomposition reflects subblock-structure

45

Example:

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12 \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B}))$$

Example:

• "top-down" decomposition of bucket rec. tree family \mathcal{B} :

$$\mathcal{B} = (1) \dot{\cup} (12 \times \operatorname{Set}(\mathcal{B}) \times \operatorname{Set}(\mathcal{B}))$$

Generating functions approach:

- count # of trees of order *n* with *k* blue edges and blue subtree has order *m*
- F := F(z, u, v) suitable generating function
- DEQ $F_z = \frac{v}{(1-z(1+u))^{\frac{1}{1+u}}} e^F$

• Explicit solution $F(z, u, v) = \frac{1}{u} \log \left(\frac{1}{1 - v + v(1 - z(1 + u))^{\frac{u}{1 + u}}} \right)$

≣ ♥) Q (0 12 / 22

Generating functions approach:

- count \$\\$ of trees of order *n* with *k* blue edges and blue subtree has order *m*
- F := F(z, u, v) suitable generating function
- DEQ $F_z = \frac{v}{(1-z(1+u))^{\frac{1}{1+u}}} e^F$

• Explicit solution $F(z, u, v) = \frac{1}{u} \log \left(\frac{1}{1 - v + v(1 - z(1 + u))^{\frac{u}{1 + u}}} \right)$

≣ મે ≣ જેલ્લ 12/22

degree of source

order of blue subtree

Generating functions approach:

- count # of trees of order *n* with *k* blue edges and blue subtree has order *m*
- F := F(z, u, v) suitable generating function
- DEQ $F_z = \frac{v}{(1-z(1+u))^{\frac{1}{1+u}}} e^F$

• Explicit solution $F(z, u, v) = \frac{1}{u} \log \left(\frac{1}{1 - v + v(1 - z(1 + u))^{\frac{u}{1 + u}}} \right)$

 $\frac{1}{(v+v(1-z(1+u))^{\frac{n}{1+u}})}$

order of blue subtree

Generating functions approach:

- count # of trees of order n with k blue edges and blue subtree has order m
- F := F(z, u, v) suitable generating function
- DEQ $F_z = \frac{v}{(1-z(1+u))^{\frac{1}{1+u}}} e^F$

• Explicit solution $F(z, u, v) = \frac{1}{u} \log \left(\frac{1}{1 - v + v(1 - z(1 + u))^{\frac{u}{1 + u}}} \right)$

order of blue subtree

Generating functions approach:

- count \ddagger of trees of order *n* with *k* blue edges and blue subtree has order m
- F := F(z, u, v) suitable generating function
- DEQ $F_z = \frac{v}{(1-z(1+u))^{\frac{1}{1+u}}} e^F$

• Explicit solution $F(z, u, v) = \frac{1}{u} \log \left(\frac{1}{1 - v + v(1 - z(1 + u))^{\frac{u}{1 + u}}} \right)$

D_n : source degree of size-*n* SP-net **Exact probability distribution** [Mahmoud, 2013]:

$$\mathbb{P}\{D_n=m\}=\sum_{j=0}^{m-1}\binom{m-1}{j}(-1)^{n+j-1}\binom{p(j+1)-1}{n-1}$$

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: $D_n \xrightarrow{D_n} (d) D$, with D = D(p) Mittag-Leffler distribution with parameter pSequence of moments $\mathbb{E}(D^r) = \frac{r!}{\Gamma(rn+1)}$, for $r \ge 0$

Density function $f(x) = \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{-t-x(-t)^p}}{(-t)^{1-p}} dt$, for x > 0

Particular instance p = q = 1/2: D half-normal distribution

D_n : source degree of size-*n* SP-net **Exact probability distribution** [Mahmoud, 2013]:

$$\mathbb{P}\{D_n = m\} = \sum_{j=0}^{m-1} \binom{m-1}{j} (-1)^{n+j-1} \binom{p(j+1)-1}{n-1}$$

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: $\frac{D_n}{n^p} \xrightarrow{(d)} D$, with D = D(p) Mittag-Leffler distribution with parameter p

Sequence of moments
$$\mathbb{E}(D^r) = \frac{r!}{\Gamma(rp+1)}$$
, for $r \ge 0$

Density function
$$f(x) = \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{-t-x(-t)^p}}{(-t)^{1-p}} dt$$
, for $x > 0$

Particular instance p = q = 1/2: D half-normal distribution

 L_n : length of random source-to-sink path in random size-*n* SP-net

 start at source; at each node x choose one of d⁺(x) outgoing edges uniformly at random; until reaching sink

length of leftmost path corresponds to order of red subtree

• switching colours $\Rightarrow L_n(p) \stackrel{(d)}{=} D_n(1-p)$

 L_n : length of random source-to-sink path in random size-*n* SP-net

 start at source; at each node x choose one of d⁺(x) outgoing edges uniformly at random; until reaching sink

Observations:

• length of leftmost path corresponds to order of red subtree

• switching colours $\Rightarrow L_n(p) \stackrel{(d)}{=} D_n(1-p)$

14/22

 L_n : length of random source-to-sink path in random size-*n* SP-net

 start at source; at each node x choose one of d⁺(x) outgoing edges uniformly at random; until reaching sink

Observations:

• length of leftmost path corresponds to order of red subtree

• switching colours $\Rightarrow L_n(p) \stackrel{(d)}{=} D_n(1-p)$

 L_n : length of random source-to-sink path in random size-*n* SP-net

 start at source; at each node x choose one of d⁺(x) outgoing edges uniformly at random; until reaching sink

Observations:

• length of leftmost path corresponds to order of red subtree

• switching colours $\Rightarrow L_n(p) \stackrel{(d)}{=} D_n(1-p)$

 L_n : length of random source-to-sink path in random size-*n* SP-net

 start at source; at each node x choose one of d⁺(x) outgoing edges uniformly at random; until reaching sink

Observations:

- length of leftmost path corresponds to order of red subtree
- switching colours $\Rightarrow L_n(p) \stackrel{(d)}{=} D_n(1-p)$

 L_n : length of random source-to-sink path in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Exact probability distribution:

$$\mathbb{P}\{L_n = m\} = \sum_{j=0}^{m-1} \binom{m-1}{j} (-1)^{n+j-1} \binom{j-p(j+1)}{n-1}$$

Limiting distribution behaviour: $\frac{L_n}{n^{1-p}} \xrightarrow{(d)} L$, with L = L(p) Mittag-Leffler distribution with parameter 1 - p

Sequence of moments
$$\mathbb{E}(L^r) = \frac{r!}{\Gamma(r(1-p)+1)}$$
, for $r \ge 0$

Density function $f(x) = \frac{1}{2\pi i} \int_{\mathcal{H}} \frac{e^{-t-x(-t)^{1-p}}}{(-t)^p} dt$, for x > 0
Source-to-sink paths according to first edge-duplication:

parallel duplication: $paths(T) = paths(T_1) + paths(T_2)$

P_n: number of source-to-sink paths in random size-*n* SP-net

- stochastic recurrence for P_n via tree decomposition
- Bernoulli-DEQ for g.f. of expectation $\mathbb{E}(P_n)$
 - ightarrow exact/asymptotic solution for $\mathbb{E}(P)$

・ ロ ト ・ 白 ト ・ 白 ト ・ 由 ト

Source-to-sink paths according to first edge-duplication:

parallel duplication: $paths(T) = paths(T_1) + paths(T_2)$

serial duplication: $paths(T) = paths(T_1) \cdot paths(T_2)$

P_n: number of source-to-sink paths in random size-*n* SP-net

- stochastic recurrence for P_n via tree decomposition
- Bernoulli-DEQ for g.f. of expectation $\mathbb{E}(P_n)$
 - ightarrow exact/asymptotic solution for $\mathbb{E}(P)$

・ロン ・雪 と ・ ヨ と

Source-to-sink paths according to first edge-duplication:

parallel duplication: $paths(T) = paths(T_1) + paths(T_2)$

serial duplication: $paths(T) = paths(T_1) \cdot paths(T_2)$

 P_n : number of source-to-sink paths in random size-*n* SP-net

- stochastic recurrence for P_n via tree decomposition
- Bernoulli-DEQ for g.f. of expectation $\mathbb{E}(P_n)$ \rightarrow exact/asymptotic solution for $\mathbb{E}(P_n)$

Source-to-sink paths according to first edge-duplication:

parallel duplication: $paths(T) = paths(T_1) + paths(T_2)$

serial duplication: $paths(T) = paths(T_1) \cdot paths(T_2)$

 P_n : number of source-to-sink paths in random size-*n* SP-net

- stochastic recurrence for P_n via tree decomposition
- Bernoulli-DEQ for g.f. of expectation 𝔼(𝒫_n)
 → exact/asymptotic solution for 𝔅(𝒫_n)

 P_n : number of source-to-sink paths in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Asymptotic behaviour of expectation $\mathbb{E}(P_n)$:

$$\mathbb{E}(P_n) = \frac{1}{1-p} \cdot \alpha_p^n + R_p(n),$$

and
$$R_p(n) = \begin{cases} -\frac{1-2p}{p\Gamma(2p)}n^{2p-1} + \mathcal{O}(n^{2(2p-1)}), & \text{for } 0$$

17 / 22

 $\alpha_{\rm D}$

 L_n : length of random source-to-sink path in random size-*n* SP-net Observations:

- $L_n \stackrel{(d)}{=} L_n^{[left]}$: length of leftmost source-to-sink path
- subblock structure \rightarrow recursive description

Generating functions approach:

- apply combinatorial decomposition
- g.f. $F(z,v) \rightarrow \text{non-linear DEQ}$: $F''(z,v) = \frac{v}{1-z}e^{F(z,v)}$
- apply method of moments

L_n: length of random source-to-sink path in random size-*n* SP-net **Observations**:

- $L_n \stackrel{(d)}{=} L_n^{[left]}$: length of leftmost source-to-sink path
- \bullet subblock structure \rightarrow recursive description

Generating functions approach:

- apply combinatorial decomposition
- g.f. $F(z,v) \rightarrow \text{non-linear DEQ}$: $F''(z,v) = \frac{v}{1-z}e^{F(z,v)}$
- apply method of moments

L_n: length of random source-to-sink path in random size-*n* SP-net **Observations**:

- $L_n \stackrel{(d)}{=} L_n^{[left]}$: length of leftmost source-to-sink path
- subblock structure \rightarrow recursive description

Generating functions approach:

- apply combinatorial decomposition
- g.f. $F(z, v) \rightarrow$ non-linear DEQ: $F''(z, v) = \frac{v}{1-z}e^{F(z, v)}$
- apply method of moments

L_n: length of random source-to-sink path in random size-*n* SP-net **Observations**:

- $L_n \stackrel{(d)}{=} L_n^{[left]}$: length of leftmost source-to-sink path
- subblock structure \rightarrow recursive description

Generating functions approach:

- apply combinatorial decomposition
- g.f. $F(z, v) \rightarrow \text{non-linear DEQ: } F''(z, v) = \frac{v}{1-z}e^{F(z, v)}$
- apply method of moments

L_n: length of random source-to-sink path in random size-*n* SP-net **Expectation** [Mahmoud, 2013]:

$$\mathbb{E}(L_n) = n \left(\frac{3 + \sqrt{5}}{2\sqrt{5}} \binom{n + \frac{\sqrt{5}}{2} - \frac{3}{2}}{n} \right) - \frac{3 - \sqrt{5}}{2\sqrt{5}} \binom{n - \frac{\sqrt{5}}{2} - \frac{3}{2}}{n} \right) \sim \frac{1 + \sqrt{5}}{2\sqrt{5}} \frac{n^{\frac{\sqrt{5}-1}{2}}}{\Gamma(\frac{\sqrt{5}-1}{2})}$$

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: $\frac{L_n}{n^{\phi}} \xrightarrow{(d)} L$, $\phi = \frac{\sqrt{5}-1}{2}$, with *L* characterized by sequence of *r*-th integer moments:

$$\mathbb{E}(L^r) = \frac{r! \cdot c_r}{\Gamma(r\phi + 1)}, \quad r \ge 0,$$

where sequence $(c_r)_r$ satisfies recurrence $c_0 = 1$, $c_1 = \frac{3+\phi}{5}$,

$$c_r = rac{1}{\phi(r-1)((r+1)\phi+1)} \sum_{k=1}^{r-1} (k\phi+1) c_k c_{r-k}, \quad \textit{for } r \geq 2$$

19 / 22

L_n: length of random source-to-sink path in random size-*n* SP-net **Expectation** [Mahmoud, 2013]:

$$\mathbb{E}(L_n) = n \left(\frac{3 + \sqrt{5}}{2\sqrt{5}} \binom{n + \frac{\sqrt{5}}{2} - \frac{3}{2}}{n} \right) - \frac{3 - \sqrt{5}}{2\sqrt{5}} \binom{n - \frac{\sqrt{5}}{2} - \frac{3}{2}}{n} \right) \sim \frac{1 + \sqrt{5}}{2\sqrt{5}} \frac{n^{\frac{\sqrt{5}-1}{2}}}{\Gamma(\frac{\sqrt{5}-1}{2})}$$

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: $\frac{L_n}{n^{\phi}} \xrightarrow{(d)} L$, $\phi = \frac{\sqrt{5}-1}{2}$, with *L* characterized by sequence of *r*-th integer moments:

$$\mathbb{E}(L^r) = rac{r! \cdot c_r}{\Gamma(r\phi+1)}, \quad r \geq 0,$$

where sequence $(c_r)_r$ satisfies recurrence $c_0 = 1$, $c_1 = \frac{3+\phi}{5}$,

$$c_r = rac{1}{\phi(r-1)((r+1)\phi+1)} \sum_{k=1}^{r-1} (k\phi+1)c_k c_{r-k}, \quad \textit{for } r \geq 2$$

19 / 22

Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

D_n: degree of sink in random size-n SP-net

Limiting distribution behaviour:

$$\frac{D_n}{n^{\sqrt{2}-1}} \xrightarrow{(d)} D,$$

$$\mathbb{E}(D^r) = rac{r!(r(\sqrt{2}-1)+1)c_r}{\Gamma(r(\sqrt{2}-1)+1)}, \quad r \geq 0,$$

where sequence $(c_r)_{r\geq 0}$ satisfies "convolution-type recurrence"

Theorem (Kuba & Pan, 2016)

P_n: number of source-to-sink paths in random size-n SP-net

Expectation:
$$\mathbb{E}(P_n) = \frac{2}{\rho^n} \cdot \left(1 - \frac{\rho^2}{(\rho-1)^2(n-1)(n-2)} + \mathcal{O}\left(\frac{\log n}{n^4}\right)\right),$$

with $\rho \approx 0.89 \dots$

Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

D_n: degree of sink in random size-n SP-net

Limiting distribution behaviour:

$$\frac{D_n}{n^{\sqrt{2}-1}} \xrightarrow{(d)} D,$$

$$\mathbb{E}(D^r) = rac{r!(r(\sqrt{2}-1)+1)c_r}{\Gamma(r(\sqrt{2}-1)+1)}, \quad r \geq 0,$$

where sequence $(c_r)_{r\geq 0}$ satisfies "convolution-type recurrence"

Theorem (Kuba & Pan, 2016)

P_n: number of source-to-sink paths in random size-n SP-net

Expectation:
$$\mathbb{E}(P_n) = \frac{2}{\rho^n} \cdot \left(1 - \frac{\rho^2}{(\rho-1)^2(n-1)(n-2)} + \mathcal{O}\left(\frac{\log n}{n^4}\right)\right),$$

with $\rho \approx 0.89...$

• Increasing diamonds:

- SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini and Hwang, 2016]
- different structure, study yields second-order non-linear DEQs
- Mittag-Leffler limiting distributions in comb. contexts:
 - triangular balanced urn models [Janson, 2010]
 - extra clustering model for animal grouping [Drmota, Fuchs and Lee, 2015]
- Recurrences of "convolution type":

similar to ones studied via Psi-series method in [Chern, Fernández-Camacho, Hwang and Martínez, 2014]

• Top-down decomposition:

maybe alternative characterizations via contraction method, e.g., [Neininger and Rschendorf, 2004]

21 / 22

• Increasing diamonds:

- SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini and Hwang, 2016]
- different structure, study yields second-order non-linear DEQs
- Mittag-Leffler limiting distributions in comb. contexts:
 - triangular balanced urn models [Janson, 2010]
 - extra clustering model for animal grouping [Drmota, Fuchs and Lee, 2015]
- Recurrences of "convolution type":

similar to ones studied via Psi-series method in [Chern, Fernández-Camacho, Hwang and Martínez, 2014]

• Top-down decomposition:

maybe alternative characterizations via contraction method, e.g., [Neininger and Rschendorf, 2004]

21 / 22

• Increasing diamonds:

- SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini and Hwang, 2016]
- different structure, study yields second-order non-linear DEQs
- Mittag-Leffler limiting distributions in comb. contexts:
 - triangular balanced urn models [Janson, 2010]
 - extra clustering model for animal grouping [Drmota, Fuchs and Lee, 2015]
- Recurrences of "convolution type":

similar to ones studied via Psi-series method in [Chern, Fernández-Camacho, Hwang and Martínez, 2014]

• Top-down decomposition:

maybe alternative characterizations via contraction method, e.g., [Neininger and Rschendorf, 2004]

• Increasing diamonds:

- SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini and Hwang, 2016]
- different structure, study yields second-order non-linear DEQs
- Mittag-Leffler limiting distributions in comb. contexts:
 - triangular balanced urn models [Janson, 2010]
 - extra clustering model for animal grouping [Drmota, Fuchs and Lee, 2015]
- Recurrences of "convolution type":

similar to ones studied via Psi-series method in [Chern, Fernández-Camacho, Hwang and Martínez, 2014]

• Top-down decomposition:

maybe alternative characterizations via contraction method, e.g., [Neininger and Rschendorf, 2004]

Outlook

Study further quantities via combinatorial decomposition:

- number of ancestors of nodes/edges
- number of descendants of nodes/edges
- node degrees
- number of spanning trees
- number of independent sets

Further stochastic SP-net models with comb. description:

- *b*-ary saturation model for SP-nets ↔ bucket recursive trees with bucket-size *b* ≥ 2
- "preferential edge-duplication rule" for Bernoulli model ↔ edge-coloured plane increasing trees

Outlook

Study further quantities via combinatorial decomposition:

- number of ancestors of nodes/edges
- number of descendants of nodes/edges
- node degrees
- number of spanning trees
- number of independent sets

Further stochastic SP-net models with comb. description:

- *b*-ary saturation model for SP-nets ↔ bucket recursive trees with bucket-size *b* ≥ 2
- "preferential edge-duplication rule" for Bernoulli model ↔ edge-coloured plane increasing trees