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Series-parallel networks (SP-nets):
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@ generated recursively by two composition operations:
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o parallel composition:
sources and sinks of two SP-nets are merged
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Series-parallel networks

Applications of SP-nets:
e model flow in bipolar networks (electric circuits, etc.)
@ computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, ...)
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e model flow in bipolar networks (electric circuits, etc.)
@ computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:

various studies of typical behaviour of structural quantities in

SP-nets/SP-graphs

@ uniform models: all SP-nets/SP-graphs of given size are

equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]

3/22



Series-parallel networks

Applications of SP-nets:
e model flow in bipolar networks (electric circuits, etc.)
@ computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, ...)

Models for SP-nets/SP-graphs:
various studies of typical behaviour of structural quantities in
SP-nets/SP-graphs
@ uniform models: all SP-nets/SP-graphs of given size are
equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]
o stochastic growth models: introduced by Hosam Mahmoud
[2013, 2014]
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Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:
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Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:
@ step 1: start with single edge Il
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Bernoulli model [Mahmoud, 2013]:

@ step 1: start with single edge Il

@ step n: select edge e = xyI uniformly at random
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Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

@ step 1: start with single edge Il

@ step n: select edge e = xyI uniformly at random

o with probability p: parallel duplication of e
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Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

@ step 1: start with single edge Il

@ step n: select edge e = xyI uniformly at random

o with probability p: parallel duplication of e
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e with probability g = 1 — p: serial duplication of e
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Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:
@ step 1: start with single edge Il
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Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

@ step 1: start with single edge Il

@ step n: select edge e = XyI uniformly at random
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Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

@ step 1: start with single edge Il

@ step n: select edge e = XyI uniformly at random

o if out-degree d*

—~

x) = 1: parallel duplication of e
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Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

@ step 1: start with single edge Il

@ step n: select edge e = I uniformly at random

o if out-degree d*(x) = 1: parallel duplication of e
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o if out-degree d*(x = 2: serial dupllcation of e
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Combinatorial description

Stochastic growth rule

— “bottom-up” analysis of quantities in SP-net models via
Pélya-Eggenberger urn models [Mahmoud, 2013 & 2014]:
nodes of small degree, degree of the source, length of random
source-to-sink path
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Combinatorial description

Stochastic growth rule

— “bottom-up” analysis of quantities in SP-net models via
Pélya-Eggenberger urn models [Mahmoud, 2013 & 2014]:
nodes of small degree, degree of the source, length of random
source-to-sink path

Combinatorial description of SP-net models
— capture growth process via increasing tree models
— allows combinatorial decomposition of structure

— “top-down" approach for analysis of quantities in SP-nets by
considering parameters in corresponding tree models

— approach can be extended to further growth rules for SP-nets
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Combinatorial description of SP-net models

Bernoulli model — edge-coloured recursive trees:

@ step 1: start with single node @
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Combinatorial description of SP-net models

Bernoulli model — edge-coloured recursive trees:

@ step 1: start with single node @

@ step n: select node (x) uniformly at random

e with probability p: attach node n to x with blue edge

e -

e with probability g = 1 — p: attach node n to x with red edge

EAREN
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Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree
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Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree
(D
2 e O
5
o
3

@
@ edge-coloured unordered increasing trees

@ parallel duplication = blue edge

@ serial duplication = red edge
@ “top-down"” decomposition of tree family 7

T = @O U OxSer({|[}xT U{]|}xT)
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Combinatorial description of SP-net models

Binary model — bucket recursive trees:

@ nodes in tree can hold up to two labels

@ step 1: start with single node containing label @

O (D Cé

10/22



Combinatorial description of SP-net models

Binary model — bucket recursive trees:

@ nodes in tree can hold up to two labels
@ step 1: start with single node containing label @

@ step n: select label 1 < j < n uniformly at random

O (D Cé

10/22



Combinatorial description of SP-net models

Binary model — bucket recursive trees:

@ nodes in tree can hold up to two labels
@ step 1: start with single node containing label @

@ step n: select label 1 < j < n uniformly at random

e if node x containing j is not saturated:
label n will be inserted into x
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Combinatorial description of SP-net models

Binary model — bucket recursive trees:

@ nodes in tree can hold up to two labels
@ step 1: start with single node containing label @

@ step n: select label 1 < j < n uniformly at random

e if node x containing j is not saturated:
label n will be inserted into x

£ 7

e if node x containing j is saturated:
new node containing label n will be attached to x

P > P
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Combinatorial description of SP-net models

Example:
SP-net bucket recursive tree
1
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Combinatorial description of SP-net models

Example:
SP-net bucket recursive tree
2
1 4 ® @
3
1 12
; 'Zz 12
T;tt ) T.Tzw T1[L] Tz[L] _n[L] Tl[R] TZ[R] T([R]

11/22



Combinatorial description of SP-net models

Example:
SP-net bucket recursive tree
2
1 5
3
1 12
& 'Zz 12
T;;.T: ) T.Tzw T1[L] Tz[L] _n[L] Tl[R] TZ[R] T([R]
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Combinatorial description of SP-net models

Example:
bucket recursive tree
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Combinatorial description of SP-net models

Example:
bucket recursive tree

@ “top-down” decomposition of bucket rec. tree family B:

B = @ U x SET(B) x SET(B)

1.2 12

TllL] T2[L] T\[L] TI[R] TZ[R] T([R]
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Combinatorial description of SP-net models

Example:
bucket recursive tree

@ “top-down” decomposition of bucket rec. tree family B:

B = @ U x SET(B) x SET(B)

@ tree decomposition reflects subblock-structure

° (1]2)
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Parameter |: source degree for Bernoulli model

SP-net edge-coloured recursive tree
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Parameter |: source degree for Bernoulli model

degree of source edge-coloured recursive tree
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Parameter |: source degree for Bernoulli model

degree of source order of blue subtree
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Parameter |: source degree for Bernoulli model

degree of source order of blue subtree
L] -
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L ®
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Generating functions approach:

@ count f of trees of order n with k blue edges and blue subtree
has order m

@ F := F(z,u,v) suitable generating function
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Parameter |: source degree for Bernoulli model

degree of source order of blue subtree

3

Generating functions approach:

@ count f of trees of order n with k blue edges and blue subtree
has order m

@ F := F(z,u,v) suitable generating function

e DEQ F,=—v €F
(1—z(14+u)) THu
@ Explicit solution F(z,u,v) = 1y L T
xpict HH (Z 4 V) u 8 <1—v+v(1—z(1+u))1+u>
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Parameter |: source degree for Bernoulli model

D, : source degree of size-n SP-net
Exact probability distribution [Mahmoud, 2013]:

(D, — m} i (mj 1) (—1)1 <P(.I :_1)1* 1>

Jj=0
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Parameter |: source degree for Bernoulli model

D, : source degree of size-n SP-net
Exact probability distribution [Mahmoud, 2013]:

o= 8 (7 ) ()

j=0
Theorem (Kuba & Pan, 2016)
p, (d)

Limiting distribution behaviour: 72 — D,
with D = D(p) Mittag-Leffler distribution with parameter p

r!

— forr>0
M(rp+1) -

Sequence of moments E(D") =

1 e—t—x(—t)P
Density fUnCtion f(X) = 21/ Wdt, fOI’X > 0
T _

Particular instance p = q = 1/2: D half-normal distribution
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Par. Il: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

@ start at source;  at each node x choose one of d*(x)
outgoing edges uniformly at random;  until reaching sink
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Ln: length of random source-to-sink path in random size-n SP-net

@ start at source;  at each node x choose one of d*(x)
outgoing edges uniformly at random;  until reaching sink

Observations:

d
°o L, @ Ueftl. |ength of leftmost source-to-sink path

SP-net edge-coloured recursive tree
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Par. Il: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

@ start at source;  at each node x choose one of d*(x)
outgoing edges uniformly at random;  until reaching sink

Observations:

d .
o L, (:) L’eft]: length of leftmost source-to-sink path
length of leftmost path edge-coloured recursive tree
D
4 2
2 ®
5
6 ® ©
@
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Par. Il: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

@ start at source;  at each node x choose one of d*(x)
outgoing edges uniformly at random;  until reaching sink

Observations:

d
o L, ) Lleft]. length of leftmost source-to-sink path
length of leftmost path order of red subtree
4 2

@ length of leftmost path corresponds to order of red subtree
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Par. Il: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

@ start at source;  at each node x choose one of d*(x)
outgoing edges uniformly at random;  until reaching sink

Observations:

° L, @ LU length of leftmost source-to-sink path

length of leftmost path order of red subtree

@ length of leftmost path corresponds to order of red subtree
@ switching colours =  L,(p )( ) p h(1—p)
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Par. Il: length of random path for Bernoulli mod.

L, : length of random source-to-sink path in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Exact probability distribution:

PlLy=m) =Y <’"J.‘ 1)(—1)“*"‘1 (j ‘n”gf”)

Jj=0

d
Limiting distribution behaviour: n{‘ﬁp —(—)—> L,

with L = L(p) Mittag-Leffler distribution with parameter 1 — p

r!

Sequence of moments E(L") = Tra—p)+ 1)’

forr >0

1 e—t—x(—t)l—P
Density function f(X) = 2// Wdt, for X > 0
m H —
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Par. Ill: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T>)
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Par. Ill: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T>)

Q- O

serial duplication: paths(T) = paths(Ty) - paths(T;)

H

Pp: number of source-to-sink paths in random size-n SP-net
@ stochastic recurrence for P, via tree decomposition

@ Bernoulli-DEQ for g.f. of expectation E(P,)
— exact/asymptotic solution for E(P,)

%
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Par. Ill: number of paths for Bernoulli model

Pp: number of source-to-sink paths in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Asymptotic behaviour of expectation E(P,):

1
E(Pn) = 7—— - ap + Ro(n),

1-p
— 1  forp#1 = o
1 I 29 P
where ap = { 1—(&) =
=, forp=1 "
1-2p 51 2(2p—1) 1
— n + O(n , forO<p< =,
P (2p) ( ) ) 2
= — —_— f —
and Ry(n) |20gn ;" (|0g2 n)v OrF]’. 5
P — 1—2
- (@] 2 for = 1
1 +0(n "), or 5 <p<
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Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net
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Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Observations:

o L, @ LE,Ieft]: length of leftmost source-to-sink path

W
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Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net
Observations:
(d) | [left]. .
o L, = Ly *: length of leftmost source-to-sink path
@ subblock structure — recursive description

(1]2) ’

OO e 0 9

—  length(T) =1+ length( TI[L]) + -+ length( TZ[L])

sum of lengths in left forest

18/22



Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net
Observations:
(d) | [left]. .
o L, = Ly *: length of leftmost source-to-sink path
@ subblock structure — recursive description

(1]2) ’

OO e 0 9

—  length(T) =1+ length( TI[L]) + -+ length( TZ[L])

sum of lengths in left forest

Generating functions approach:
@ apply combinatorial decomposition
o g.f. F(z,v) — non-linear DEQ: F"(z,v) = L ef(zY)

1-z
@ apply method of moments
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Par. IV: length of random path for Binary mod.
Ly:

Expectation [Mahmoud, 2013]:

length of random source-to-sink path in random size-n SP-net

By - n[3EVB [t F —3) _3-vB(nf 3)) 1evE a
o 2v/5 n 2v/5 n 2¢/5 [(¥5=1
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Par. IV: length of random path for Binary mod.

L, length of random source-to-sink path in random size-n SP-net

Expectation [Mahmoud, 2013]:

oLy (3B (R 2 3o VE (o E o 3)) 146 0
T 2k n 2v/5 n 25 (¥

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: ﬁ—g ﬂ L, o¢= V5-1

with L characterized by sequence of r-th integer moments:

r'-c
-, r=>0,
M(ro+1)
where sequence (c,), satisfies recurrence co =1, ¢ = #
. _
G = ko + 1)ekcr—k, forr>2
o(r —1)((r +1)p + 1) ; ¢ Kok

E(L") =
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Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

D,: degree of sink in random size-n SP-net

Limiting distribution behaviour: nf 1 —(ﬁ)—> D,

r(r(vV2—1)+1)c,
(va-111) 0

where sequence (c,),>o satisfies “convolution-type recurrence”

E(D') =
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Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

D,: degree of sink in random size-n SP-net

(d)

Limiting distribution behaviour: — D,

n\f 1
r(r(vV2—1)+1)c,
(va-111) 0

where sequence (c,),>o satisfies “convolution-type recurrence”

E(D') =

Theorem (Kuba & Pan, 2016)

P,: number of source-to-sink paths in random size-n SP-net

I
| \

2

Expectation: E(P,) = % ] (1 = 1)2(,’07 P n O(Io,in)> 7

with p ~ 0.89.. ..

A\
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Relations to other work

@ Increasing diamonds:

o SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
o different structure, study yields second-order non-linear DEQs
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o SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
o different structure, study yields second-order non-linear DEQs

o Mittag-Leffler limiting distributions in comb. contexts:

o triangular balanced urn models [Janson, 2010]
e extra clustering model for animal grouping [Drmota, Fuchs and
Lee, 2015]

@ Recurrences of “convolution type”:

similar to ones studied via Psi-series method in [Chern,
Ferndndez-Camacho, Hwang and Martinez, 2014]

@ Top-down decomposition:

maybe alternative characterizations via contraction method,
e.g., [Neininger and Rschendorf, 2004]
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Study further quantities via combinatorial decomposition:
@ number of ancestors of nodes/edges
@ number of descendants of nodes/edges
@ node degrees
@ number of spanning trees

@ number of independent sets
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Study further quantities via combinatorial decomposition:

number of ancestors of nodes/edges
number of descendants of nodes/edges
node degrees

number of spanning trees

number of independent sets

Further stochastic SP-net models with comb. description:

b-ary saturation model for SP-nets <> bucket recursive trees

with bucket-size b > 2

“preferential edge-duplication rule” for Bernoulli model <

edge-coloured plane increasing trees
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