
Combinatorial Analysis of Growth Models for
Series-Parallel Networks

Markus Kuba and Alois Panholzer

Technikum Wien and TU Wien, Austria

AofA 2016, Krakow, 07.07.2016

1 / 22

Series-parallel networks

Series-parallel networks (SP-nets):

two-terminal graphs: distinguished vertices source and sink

generated recursively by two composition operations:

parallel composition:
sources and sinks of two SP-nets are merged

series composition:
sink of one SP-net merged with source of other SP-net

2 / 22

Series-parallel networks

Series-parallel networks (SP-nets):

two-terminal graphs: distinguished vertices source and sink

generated recursively by two composition operations:

parallel composition:
sources and sinks of two SP-nets are merged

N

S

N

S

1

1

2

2

series composition:
sink of one SP-net merged with source of other SP-net

2 / 22

Series-parallel networks

Series-parallel networks (SP-nets):

two-terminal graphs: distinguished vertices source and sink

generated recursively by two composition operations:

parallel composition:
sources and sinks of two SP-nets are merged

N

S

N

S

1

1

2

2

→
N

S

series composition:
sink of one SP-net merged with source of other SP-net

2 / 22

Series-parallel networks

Series-parallel networks (SP-nets):

two-terminal graphs: distinguished vertices source and sink

generated recursively by two composition operations:

parallel composition:
sources and sinks of two SP-nets are merged

N

S

N

S

1

1

2

2

→
N

S

series composition:
sink of one SP-net merged with source of other SP-net

N

S

N

S

1

1

2

2

2 / 22

Series-parallel networks

Series-parallel networks (SP-nets):

two-terminal graphs: distinguished vertices source and sink

generated recursively by two composition operations:

parallel composition:
sources and sinks of two SP-nets are merged

N

S

N

S

1

1

2

2

→
N

S

series composition:
sink of one SP-net merged with source of other SP-net

N

S

N

S

1

1

2

2

→

N

S

2 / 22

Series-parallel networks

Applications of SP-nets:

model flow in bipolar networks (electric circuits, etc.)
computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, . . .)

Models for SP-nets/SP-graphs:
various studies of typical behaviour of structural quantities in
SP-nets/SP-graphs

uniform models: all SP-nets/SP-graphs of given size are
equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]
stochastic growth models: introduced by Hosam Mahmoud
[2013, 2014]

3 / 22

Series-parallel networks

Applications of SP-nets:

model flow in bipolar networks (electric circuits, etc.)
computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, . . .)

Models for SP-nets/SP-graphs:
various studies of typical behaviour of structural quantities in
SP-nets/SP-graphs

uniform models: all SP-nets/SP-graphs of given size are
equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]
stochastic growth models: introduced by Hosam Mahmoud
[2013, 2014]

3 / 22

Series-parallel networks

Applications of SP-nets:

model flow in bipolar networks (electric circuits, etc.)
computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, . . .)

Models for SP-nets/SP-graphs:
various studies of typical behaviour of structural quantities in
SP-nets/SP-graphs

uniform models: all SP-nets/SP-graphs of given size are
equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]
stochastic growth models: introduced by Hosam Mahmoud
[2013, 2014]

3 / 22

Series-parallel networks

Applications of SP-nets:

model flow in bipolar networks (electric circuits, etc.)
computational complexity theory: some in general
NP-complete graph problems are solvable in linear time for
SP-nets (max. independent set, . . .)

Models for SP-nets/SP-graphs:
various studies of typical behaviour of structural quantities in
SP-nets/SP-graphs

uniform models: all SP-nets/SP-graphs of given size are
equally likely
e.g., Bodirsky, Gimenez, Kang, Noy [2007]; Bernasconi,
Panagiotou, Steger [2008]; Drmota, Gimenez, Noy
[2010,2011]; Hofri, Li, Mahmoud [2016]
stochastic growth models: introduced by Hosam Mahmoud
[2013, 2014]

3 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Series-parallel networks

Generating SP-nets by edge-duplications:
each SP-net can be generated by basic edge-duplication rules:

parallel doubling:

serial doubling:

Example:

N

S

4 / 22

Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

with probability p: parallel duplication of e

y

x
e →

y

x
e n

with probability q = 1− p: serial duplication of e

y

x
e →

y

x
e

n

5 / 22

Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

with probability p: parallel duplication of e

y

x
e →

y

x
e n

with probability q = 1− p: serial duplication of e

y

x
e →

y

x
e

n

5 / 22

Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

with probability p: parallel duplication of e

y

x
e →

y

x
e n

with probability q = 1− p: serial duplication of e

y

x
e →

y

x
e

n

5 / 22

Stochastic growth models for SP-nets

Bernoulli model [Mahmoud, 2013]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

with probability p: parallel duplication of e

y

x
e →

y

x
e n

with probability q = 1− p: serial duplication of e

y

x
e →

y

x
e

n

5 / 22

Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

if out-degree d+(x) = 1: parallel duplication of e

y

x
e →

y

x
e n

if out-degree d+(x) = 2: serial duplication of e

y

x
e
→ y

x
e

n

6 / 22

Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

if out-degree d+(x) = 1: parallel duplication of e

y

x
e →

y

x
e n

if out-degree d+(x) = 2: serial duplication of e

y

x
e
→ y

x
e

n

6 / 22

Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

if out-degree d+(x) = 1: parallel duplication of e

y

x
e →

y

x
e n

if out-degree d+(x) = 2: serial duplication of e

y

x
e
→ y

x
e

n

6 / 22

Stochastic growth models for SP-nets

Binary model [Mahmoud, 2014]:

step 1: start with single edge 1

step n: select edge e =
x

y
uniformly at random

if out-degree d+(x) = 1: parallel duplication of e

y

x
e →

y

x
e n

if out-degree d+(x) = 2: serial duplication of e

y

x
e
→ y

x
e

n

6 / 22

Combinatorial description

Stochastic growth rule

→ “bottom-up” analysis of quantities in SP-net models via
Pólya-Eggenberger urn models [Mahmoud, 2013 & 2014]:
nodes of small degree, degree of the source, length of random
source-to-sink path

Combinatorial description of SP-net models

→ capture growth process via increasing tree models

→ allows combinatorial decomposition of structure

→ “top-down” approach for analysis of quantities in SP-nets by
considering parameters in corresponding tree models

→ approach can be extended to further growth rules for SP-nets

7 / 22

Combinatorial description

Stochastic growth rule

→ “bottom-up” analysis of quantities in SP-net models via
Pólya-Eggenberger urn models [Mahmoud, 2013 & 2014]:
nodes of small degree, degree of the source, length of random
source-to-sink path

Combinatorial description of SP-net models

→ capture growth process via increasing tree models

→ allows combinatorial decomposition of structure

→ “top-down” approach for analysis of quantities in SP-nets by
considering parameters in corresponding tree models

→ approach can be extended to further growth rules for SP-nets

7 / 22

Combinatorial description of SP-net models

Bernoulli model → edge-coloured recursive trees:

step 1: start with single node 1

step n: select node x uniformly at random

with probability p: attach node n to x with blue edge

x → x

n

with probability q = 1− p: attach node n to x with red edge

x → x

n

8 / 22

Combinatorial description of SP-net models

Bernoulli model → edge-coloured recursive trees:

step 1: start with single node 1

step n: select node x uniformly at random

with probability p: attach node n to x with blue edge

x → x

n

with probability q = 1− p: attach node n to x with red edge

x → x

n

8 / 22

Combinatorial description of SP-net models

Bernoulli model → edge-coloured recursive trees:

step 1: start with single node 1

step n: select node x uniformly at random

with probability p: attach node n to x with blue edge

x → x

n

with probability q = 1− p: attach node n to x with red edge

x → x

n

8 / 22

Combinatorial description of SP-net models

Bernoulli model → edge-coloured recursive trees:

step 1: start with single node 1

step n: select node x uniformly at random

with probability p: attach node n to x with blue edge

x → x

n

with probability q = 1− p: attach node n to x with red edge

x → x

n

8 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

1

1

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

21
2

1

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

3

1

32

1

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

4

3

1

32

1

4

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2 5

4

3

1

32

1

4

5

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

5

4

3

1

6

32

1

4

5 6

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Example:

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

edge-coloured unordered increasing trees

parallel duplication =̂ blue edge

serial duplication =̂ red edge

“top-down” decomposition of tree family T :

T = 1 ∪̇ 1 × Set
(
{ } × T ∪̇ { } × T

)
9 / 22

Combinatorial description of SP-net models

Binary model → bucket recursive trees:

nodes in tree can hold up to two labels

step 1: start with single node containing label 1

step n: select label 1 ≤ j < n uniformly at random

if node x containing j is not saturated:
label n will be inserted into x

j x
→

j n x

if node x containing j is saturated:
new node containing label n will be attached to x

jx

→
j

n

x

10 / 22

Combinatorial description of SP-net models

Binary model → bucket recursive trees:

nodes in tree can hold up to two labels

step 1: start with single node containing label 1

step n: select label 1 ≤ j < n uniformly at random

if node x containing j is not saturated:
label n will be inserted into x

j x
→

j n x

if node x containing j is saturated:
new node containing label n will be attached to x

jx

→
j

n

x

10 / 22

Combinatorial description of SP-net models

Binary model → bucket recursive trees:

nodes in tree can hold up to two labels

step 1: start with single node containing label 1

step n: select label 1 ≤ j < n uniformly at random

if node x containing j is not saturated:
label n will be inserted into x

j x
→

j n x

if node x containing j is saturated:
new node containing label n will be attached to x

jx

→
j

n

x

10 / 22

Combinatorial description of SP-net models

Binary model → bucket recursive trees:

nodes in tree can hold up to two labels

step 1: start with single node containing label 1

step n: select label 1 ≤ j < n uniformly at random

if node x containing j is not saturated:
label n will be inserted into x

j x
→

j n x

if node x containing j is saturated:
new node containing label n will be attached to x

jx

→
j

n

x

10 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

1

1

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

21

21

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

3

1

21

3

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

4

3

1

21

3 4

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

54

3

1

21

543

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

54

3

1

6

21

5436

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

5
4

7

3

1

6

21

5436

7

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

5
4

7

3

1

6

21

5436

7

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Combinatorial description of SP-net models
Example:

SP-net bucket recursive tree

2

5
4

7

3

1

6

21

5436

7

“top-down” decomposition of bucket rec. tree family B:

B = 1 ∪̇ 21 × Set(B)× Set(B)

tree decomposition reflects subblock-structure
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

←→
1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

11 / 22

Parameter I: source degree for Bernoulli model

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

Generating functions approach:

count] of trees of order n with k blue edges and blue subtree
has order m

F := F (z , u, v) suitable generating function

DEQ Fz = v

(1−z(1+u))
1

1+u
eF

Explicit solution F (z , u, v) = 1
u log

(
1

1−v+v(1−z(1+u))
u

1+u

)
12 / 22

Parameter I: source degree for Bernoulli model

degree of source edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

Generating functions approach:

count] of trees of order n with k blue edges and blue subtree
has order m

F := F (z , u, v) suitable generating function

DEQ Fz = v

(1−z(1+u))
1

1+u
eF

Explicit solution F (z , u, v) = 1
u log

(
1

1−v+v(1−z(1+u))
u

1+u

)
12 / 22

Parameter I: source degree for Bernoulli model

degree of source order of blue subtree

2

5

4

7
3

1

6

32

7

1

4

5 6

Generating functions approach:

count] of trees of order n with k blue edges and blue subtree
has order m

F := F (z , u, v) suitable generating function

DEQ Fz = v

(1−z(1+u))
1

1+u
eF

Explicit solution F (z , u, v) = 1
u log

(
1

1−v+v(1−z(1+u))
u

1+u

)
12 / 22

Parameter I: source degree for Bernoulli model

degree of source order of blue subtree

2

5

4

7
3

1

6

32

7

1

4

5 6

Generating functions approach:

count] of trees of order n with k blue edges and blue subtree
has order m

F := F (z , u, v) suitable generating function

DEQ Fz = v

(1−z(1+u))
1

1+u
eF

Explicit solution F (z , u, v) = 1
u log

(
1

1−v+v(1−z(1+u))
u

1+u

)
12 / 22

Parameter I: source degree for Bernoulli model

degree of source order of blue subtree

2

5

4

7
3

1

6

32

7

1

4

5 6

Generating functions approach:

count] of trees of order n with k blue edges and blue subtree
has order m

F := F (z , u, v) suitable generating function

DEQ Fz = v

(1−z(1+u))
1

1+u
eF

Explicit solution F (z , u, v) = 1
u log

(
1

1−v+v(1−z(1+u))
u

1+u

)
12 / 22

Parameter I: source degree for Bernoulli model

Dn : source degree of size-n SP-net

Exact probability distribution [Mahmoud, 2013]:

P{Dn = m} =
m−1∑
j=0

(
m − 1

j

)
(−1)n+j−1

(
p(j + 1)− 1

n − 1

)

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: Dn
np

(d)−−→ D,

with D = D(p) Mittag-Leffler distribution with parameter p

Sequence of moments E(Dr) =
r !

Γ(rp + 1)
, for r ≥ 0

Density function f (x) =
1

2πi

∫
H

e−t−x(−t)
p

(−t)1−p
dt, for x > 0

Particular instance p = q = 1/2: D half-normal distribution

13 / 22

Parameter I: source degree for Bernoulli model

Dn : source degree of size-n SP-net

Exact probability distribution [Mahmoud, 2013]:

P{Dn = m} =
m−1∑
j=0

(
m − 1

j

)
(−1)n+j−1

(
p(j + 1)− 1

n − 1

)

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: Dn
np

(d)−−→ D,

with D = D(p) Mittag-Leffler distribution with parameter p

Sequence of moments E(Dr) =
r !

Γ(rp + 1)
, for r ≥ 0

Density function f (x) =
1

2πi

∫
H

e−t−x(−t)
p

(−t)1−p
dt, for x > 0

Particular instance p = q = 1/2: D half-normal distribution

13 / 22

Par. II: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

start at source; at each node x choose one of d+(x)
outgoing edges uniformly at random; until reaching sink

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

length of leftmost path corresponds to order of red subtree

switching colours ⇒ Ln(p)
(d)
= Dn(1− p)

14 / 22

Par. II: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

start at source; at each node x choose one of d+(x)
outgoing edges uniformly at random; until reaching sink

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

SP-net edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

length of leftmost path corresponds to order of red subtree

switching colours ⇒ Ln(p)
(d)
= Dn(1− p)

14 / 22

Par. II: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

start at source; at each node x choose one of d+(x)
outgoing edges uniformly at random; until reaching sink

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

length of leftmost path edge-coloured recursive tree

2

5

4

7
3

1

6

32

7

1

4

5 6

length of leftmost path corresponds to order of red subtree

switching colours ⇒ Ln(p)
(d)
= Dn(1− p)

14 / 22

Par. II: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

start at source; at each node x choose one of d+(x)
outgoing edges uniformly at random; until reaching sink

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

length of leftmost path order of red subtree

2

5

4

7
3

1

6

32

7

1

4

5 6

length of leftmost path corresponds to order of red subtree

switching colours ⇒ Ln(p)
(d)
= Dn(1− p)

14 / 22

Par. II: length of random path for Bernoulli mod.

Ln: length of random source-to-sink path in random size-n SP-net

start at source; at each node x choose one of d+(x)
outgoing edges uniformly at random; until reaching sink

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

length of leftmost path order of red subtree

2

5

4

7
3

1

6

32

7

1

4

5 6

length of leftmost path corresponds to order of red subtree

switching colours ⇒ Ln(p)
(d)
= Dn(1− p)

14 / 22

Par. II: length of random path for Bernoulli mod.

Ln : length of random source-to-sink path in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Exact probability distribution:

P{Ln = m} =
m−1∑
j=0

(
m − 1

j

)
(−1)n+j−1

(
j − p(j + 1)

n − 1

)

Limiting distribution behaviour: Ln
n1−p

(d)−−→ L,

with L = L(p) Mittag-Leffler distribution with parameter 1− p

Sequence of moments E(Lr) =
r !

Γ(r(1− p) + 1)
, for r ≥ 0

Density function f (x) =
1

2πi

∫
H

e−t−x(−t)
1−p

(−t)p
dt, for x > 0

15 / 22

Par. III: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T2)

T : T1 T2 ↔ 2

1

T
T

1

2

serial duplication: paths(T) = paths(T1) · paths(T2)

T :
T1

T2
↔ 2

1

T
T

1

2

Pn: number of source-to-sink paths in random size-n SP-net

stochastic recurrence for Pn via tree decomposition

Bernoulli-DEQ for g.f. of expectation E(Pn)
→ exact/asymptotic solution for E(Pn)

16 / 22

Par. III: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T2)

T : T1 T2 ↔ 2

1

T
T

1

2

serial duplication: paths(T) = paths(T1) · paths(T2)

T :
T1

T2
↔ 2

1

T
T

1

2

Pn: number of source-to-sink paths in random size-n SP-net

stochastic recurrence for Pn via tree decomposition

Bernoulli-DEQ for g.f. of expectation E(Pn)
→ exact/asymptotic solution for E(Pn)

16 / 22

Par. III: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T2)

T : T1 T2 ↔ 2

1

T
T

1

2

serial duplication: paths(T) = paths(T1) · paths(T2)

T :
T1

T2
↔ 2

1

T
T

1

2

Pn: number of source-to-sink paths in random size-n SP-net

stochastic recurrence for Pn via tree decomposition

Bernoulli-DEQ for g.f. of expectation E(Pn)
→ exact/asymptotic solution for E(Pn)

16 / 22

Par. III: number of paths for Bernoulli model

Source-to-sink paths according to first edge-duplication:

parallel duplication: paths(T) = paths(T1) + paths(T2)

T : T1 T2 ↔ 2

1

T
T

1

2

serial duplication: paths(T) = paths(T1) · paths(T2)

T :
T1

T2
↔ 2

1

T
T

1

2

Pn: number of source-to-sink paths in random size-n SP-net

stochastic recurrence for Pn via tree decomposition

Bernoulli-DEQ for g.f. of expectation E(Pn)
→ exact/asymptotic solution for E(Pn)

16 / 22

Par. III: number of paths for Bernoulli model

Pn: number of source-to-sink paths in random size-n SP-net

Theorem (Kuba & Pan, 2016)

Asymptotic behaviour of expectation E(Pn):

E(Pn) =
1

1− p
· αn

p + Rp(n),

where αp =

1

1−
(

p
1−p

) 1
1−2p

, for p 6= 1
2
,

1
1−e−2 , for p = 1

2

αp

and Rp(n) =

− 1− 2p

pΓ(2p)
n2p−1 +O(n2(2p−1)), for 0 < p <

1

2
,

− 2

log n
+O(

1

log2 n
), for p =

1

2
,

−2p − 1

1− p
+O(n1−2p), for

1

2
< p < 1

17 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

subblock structure → recursive description

T :

1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

←→
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

→ length(T) = 1 + length(T
[L]
1) + · · ·+ length(T

[L]
`)︸ ︷︷ ︸

sum of lengths in left forest

Generating functions approach:

apply combinatorial decomposition

g.f. F (z , v) → non-linear DEQ: F ′′(z , v) = v
1−z e

F (z,v)

apply method of moments
18 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

subblock structure → recursive description

T :

1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

←→
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

→ length(T) = 1 + length(T
[L]
1) + · · ·+ length(T

[L]
`)︸ ︷︷ ︸

sum of lengths in left forest

Generating functions approach:

apply combinatorial decomposition

g.f. F (z , v) → non-linear DEQ: F ′′(z , v) = v
1−z e

F (z,v)

apply method of moments
18 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

subblock structure → recursive description

T :

1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

←→
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

→ length(T) = 1 + length(T
[L]
1) + · · ·+ length(T

[L]
`)︸ ︷︷ ︸

sum of lengths in left forest

Generating functions approach:

apply combinatorial decomposition

g.f. F (z , v) → non-linear DEQ: F ′′(z , v) = v
1−z e

F (z,v)

apply method of moments
18 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Observations:

Ln
(d)
= L

[left]
n : length of leftmost source-to-sink path

subblock structure → recursive description

T :

1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

←→
1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

→ length(T) = 1 + length(T
[L]
1) + · · ·+ length(T

[L]
`)︸ ︷︷ ︸

sum of lengths in left forest

Generating functions approach:

apply combinatorial decomposition

g.f. F (z , v) → non-linear DEQ: F ′′(z , v) = v
1−z e

F (z,v)

apply method of moments
18 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Expectation [Mahmoud, 2013]:

E(Ln) = n

(
3 +
√

5

2
√

5

(
n +

√
5
2
− 3

2

n

)
− 3−

√
5

2
√

5

(
n −

√
5

2
− 3

2

n

))
∼ 1 +

√
5

2
√

5

n
√

5−1
2

Γ(
√
5−1
2

)

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: Ln
nφ

(d)−−→ L, φ =
√
5−1
2 ,

with L characterized by sequence of r -th integer moments:

E(Lr) =
r ! · cr

Γ(rφ+ 1)
, r ≥ 0,

where sequence (cr)r satisfies recurrence c0 = 1, c1 = 3+φ
5 ,

cr =
1

φ(r − 1)((r + 1)φ+ 1)

r−1∑
k=1

(kφ+ 1)ckcr−k , for r ≥ 2

19 / 22

Par. IV: length of random path for Binary mod.

Ln: length of random source-to-sink path in random size-n SP-net

Expectation [Mahmoud, 2013]:

E(Ln) = n

(
3 +
√

5

2
√

5

(
n +

√
5
2
− 3

2

n

)
− 3−

√
5

2
√

5

(
n −

√
5

2
− 3

2

n

))
∼ 1 +

√
5

2
√

5

n
√

5−1
2

Γ(
√
5−1
2

)

Theorem (Kuba & Pan, 2016)

Limiting distribution behaviour: Ln
nφ

(d)−−→ L, φ =
√
5−1
2 ,

with L characterized by sequence of r -th integer moments:

E(Lr) =
r ! · cr

Γ(rφ+ 1)
, r ≥ 0,

where sequence (cr)r satisfies recurrence c0 = 1, c1 = 3+φ
5 ,

cr =
1

φ(r − 1)((r + 1)φ+ 1)

r−1∑
k=1

(kφ+ 1)ckcr−k , for r ≥ 2

19 / 22

Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

Dn: degree of sink in random size-n SP-net

Limiting distribution behaviour: Dn

n
√
2−1

(d)−−→ D,

E(Dr) =
r !(r(
√

2− 1) + 1)cr

Γ(r(
√

2− 1) + 1)
, r ≥ 0,

where sequence (cr)r≥0 satisfies “convolution-type recurrence”

Theorem (Kuba & Pan, 2016)

Pn: number of source-to-sink paths in random size-n SP-net

Expectation: E(Pn) =
2

ρn
·
(

1− ρ2

(ρ− 1)2(n − 1)(n − 2)
+O

(log n

n4

))
,

with ρ ≈ 0.89 . . .

20 / 22

Further Parameters for Binary model

Theorem (Kuba & Pan, 2016)

Dn: degree of sink in random size-n SP-net

Limiting distribution behaviour: Dn

n
√
2−1

(d)−−→ D,

E(Dr) =
r !(r(
√

2− 1) + 1)cr

Γ(r(
√

2− 1) + 1)
, r ≥ 0,

where sequence (cr)r≥0 satisfies “convolution-type recurrence”

Theorem (Kuba & Pan, 2016)

Pn: number of source-to-sink paths in random size-n SP-net

Expectation: E(Pn) =
2

ρn
·
(

1− ρ2

(ρ− 1)2(n − 1)(n − 2)
+O

(log n

n4

))
,

with ρ ≈ 0.89 . . .

20 / 22

Relations to other work

Increasing diamonds:
SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
different structure, study yields second-order non-linear DEQs

Mittag-Leffler limiting distributions in comb. contexts:

triangular balanced urn models [Janson, 2010]
extra clustering model for animal grouping [Drmota, Fuchs and
Lee, 2015]

Recurrences of “convolution type”:
similar to ones studied via Psi-series method in [Chern,
Fernández-Camacho, Hwang and Mart́ınez, 2014]

Top-down decomposition:
maybe alternative characterizations via contraction method,
e.g., [Neininger and Rschendorf, 2004]

21 / 22

Relations to other work

Increasing diamonds:
SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
different structure, study yields second-order non-linear DEQs

Mittag-Leffler limiting distributions in comb. contexts:

triangular balanced urn models [Janson, 2010]
extra clustering model for animal grouping [Drmota, Fuchs and
Lee, 2015]

Recurrences of “convolution type”:
similar to ones studied via Psi-series method in [Chern,
Fernández-Camacho, Hwang and Mart́ınez, 2014]

Top-down decomposition:
maybe alternative characterizations via contraction method,
e.g., [Neininger and Rschendorf, 2004]

21 / 22

Relations to other work

Increasing diamonds:
SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
different structure, study yields second-order non-linear DEQs

Mittag-Leffler limiting distributions in comb. contexts:

triangular balanced urn models [Janson, 2010]
extra clustering model for animal grouping [Drmota, Fuchs and
Lee, 2015]

Recurrences of “convolution type”:
similar to ones studied via Psi-series method in [Chern,
Fernández-Camacho, Hwang and Mart́ınez, 2014]

Top-down decomposition:
maybe alternative characterizations via contraction method,
e.g., [Neininger and Rschendorf, 2004]

21 / 22

Relations to other work

Increasing diamonds:
SP-net model introduced by [Bodini, Dien, Fontaine, Genitrini
and Hwang, 2016]
different structure, study yields second-order non-linear DEQs

Mittag-Leffler limiting distributions in comb. contexts:

triangular balanced urn models [Janson, 2010]
extra clustering model for animal grouping [Drmota, Fuchs and
Lee, 2015]

Recurrences of “convolution type”:
similar to ones studied via Psi-series method in [Chern,
Fernández-Camacho, Hwang and Mart́ınez, 2014]

Top-down decomposition:
maybe alternative characterizations via contraction method,
e.g., [Neininger and Rschendorf, 2004]

21 / 22

Outlook

Study further quantities via combinatorial decomposition:

number of ancestors of nodes/edges

number of descendants of nodes/edges

node degrees

number of spanning trees

number of independent sets

Further stochastic SP-net models with comb. description:

b-ary saturation model for SP-nets ↔ bucket recursive trees
with bucket-size b ≥ 2

“preferential edge-duplication rule” for Bernoulli model ↔
edge-coloured plane increasing trees

22 / 22

Outlook

Study further quantities via combinatorial decomposition:

number of ancestors of nodes/edges

number of descendants of nodes/edges

node degrees

number of spanning trees

number of independent sets

Further stochastic SP-net models with comb. description:

b-ary saturation model for SP-nets ↔ bucket recursive trees
with bucket-size b ≥ 2

“preferential edge-duplication rule” for Bernoulli model ↔
edge-coloured plane increasing trees

22 / 22

