A half-normal distribution scheme for generating functions and the unexpected behavior of Motzkin paths AofA 2016, Kraków – 07.07.2016

Michael Wallner

Institute of Discrete Mathematics and Geometry TU Wien, Austria

michael.wallner@tuwien.ac.at

What is a lattice path?

Definition

- Step set: $\mathcal{S} = \{(1, b_1), \dots, (1, b_m)\} \subset \mathbb{Z}^2$
- **n**-step lattice path: Sequence of vectors $(v_1, \ldots, v_n) \in S^n$

Weights

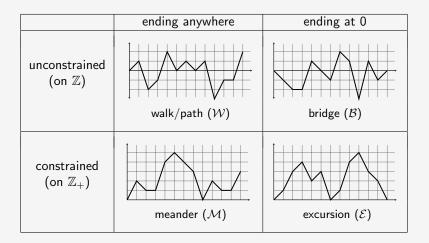
• For
$$S = \{-c, \dots, d\}$$
 define $\Pi = \{p_{-c}, \dots, p_d\}$

- **Jump polynomial:** $P(u) = \sum_{i=-c}^{d} p_i u^i$
- Drift: $\delta = P'(1)$

Examples

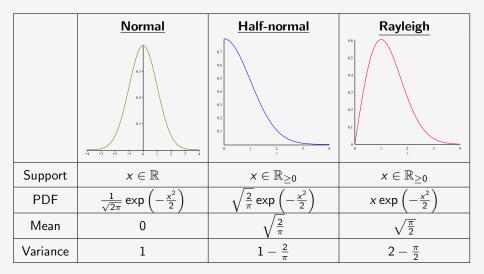
- **Dyck path/Random walk:** $P(u) = p_{-1}u^{-1} + p_1u^1$
- Motzkin walk: $P(u) = p_{-1}u^{-1} + p_0 + p_1u^1$

Terminology of directed paths

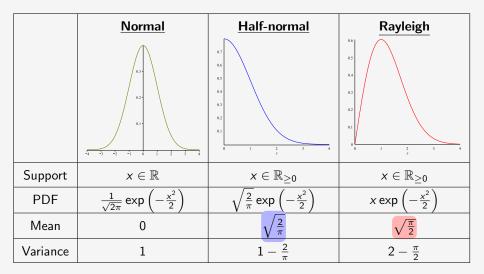


One-dimensional objects

Probability distributions



Probability distributions



Sign changes of Motzkin walks

Motzkin walk

- Unconstrained walk generated from
- Step polynomial $P(u) = p_{-1}u^{-1} + p_0 + p_1u$ with
- $p_{-1}, p_0, p_1 \in \mathbb{R}_+$.

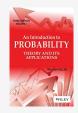
Sign changes

Figure: A signed Motzkin walk with 4 sign changes

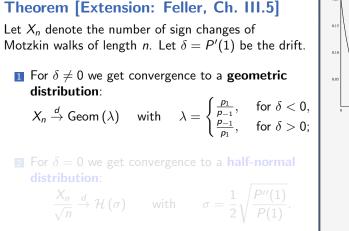
Feller's Caveat

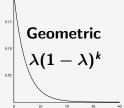
"We shall encounter theoretical conclusions which not only are unexpected but actually come as a shock to intuition and common sense."

(William Feller, An Introduction to Probability Theory and its Applications, Volume 1, Fluctuations in Coin Tossing and Random Walks)

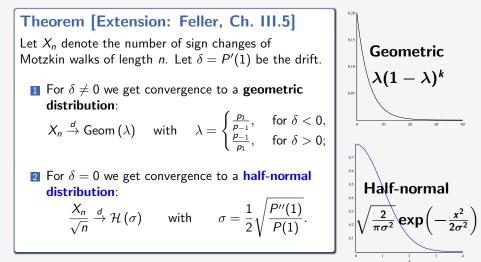


Limit laws for the number of sign changes

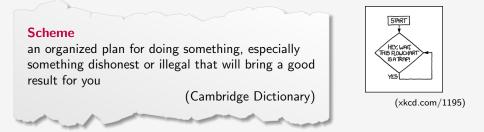




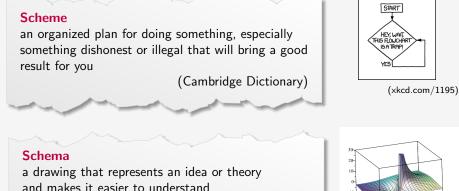
Limit laws for the number of sign changes



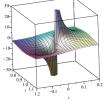
What is a scheme?



What is a scheme?



(Cambridge Dictionary)



Strategy

Count:

Generating function $F(z) = \sum_{n\geq 0} f_n z^n$ $f_n \dots \#$ objects of size n

2 Mark:

Bivariate generating function $F(z, u) = \sum_{n,k\geq 0} f_{n,k} z^n u^k$

 $f_{n,k} \dots \#$ objects of size *n* with *k* occurrences of a certain property

3 Analyze:

1 Algebraic: Structure of F(z, u), non-negative coefficients, ...

2 Analytic: Convergence, singularities, ...

We get:

Probability distribution of a marked parameter for large *n*

Moments

Asymptotic behavior

• • • •

Examples of schemes

Many examples in "Analytic Combinatorics" Chapter IX. Multivariate Asymptotics and Limit Laws [Flajolet-Sedgewick '09].

- Discrete limit laws
- Normal distribution
 - Central limit theorems [Bender '73], [Bender-Richmond '83], [Flajolet-Soria '90], [Hwang '94], ...
 - Quasi-powers Theorem [Hwang '98]
 - Drmota-Lalley-Woods Theorem [Drmota '97]
- Airy distribution [Banderier-Flajolet-Schaeffer-Soria '01]

Examples of schemes

Many examples in "Analytic Combinatorics" Chapter IX. Multivariate Asymptotics and Limit Laws [Flajolet-Sedgewick '09].

- Discrete limit laws
- Normal distribution
 - Central limit theorems [Bender '73], [Bender-Richmond '83], [Flajolet-Soria '90], [Hwang '94], ...
 - Quasi-powers Theorem [Hwang '98]
 - Drmota-Lalley-Woods Theorem [Drmota '97]
- Airy distribution [Banderier-Flajolet-Schaeffer-Soria '01]

Family of three limit laws: [Drmota-Soria '97]

- 1 Rayleigh distribution
- 2 Normal distribution
- 3 Convolution of Normal and Rayleigh distribution

Examples of schemes

Many examples in "Analytic Combinatorics" Chapter IX. Multivariate Asymptotics and Limit Laws [Flajolet-Sedgewick '09].

- Discrete limit laws
- Normal distribution
 - Central limit theorems [Bender '73], [Bender-Richmond '83], [Flajolet-Soria '90], [Hwang '94], ...
 - Quasi-powers Theorem [Hwang '98]
 - Drmota-Lalley-Woods Theorem [Drmota '97]
- Airy distribution [Banderier-Flajolet-Schaeffer-Soria '01]

Family of three limit laws: [Drmota-Soria '97]

- 1 Rayleigh distribution
- 2 Normal distribution
- 3 Convolution of Normal and Rayleigh distribution

Goal: Extend this family by a half-normal distribution [W '16]

Hypothesis [H]. Let $F(z, u) = \sum_{n,k} f_{nk} z^n u^k$ be a power series in two variables with nonnegative coefficients $f_{nk} \ge 0$ such that f(z, 1) has a radius of convergence of $\rho > 0$.

Hypothesis [H]. Let $F(z, u) = \sum_{n,k} f_{nk} z^n u^k$ be a power series in two variables with nonnegative coefficients $f_{nk} \ge 0$ such that f(z, 1) has a radius of convergence of $\rho > 0$.

We suppose that F(z, u) has the local representation

(25)
$$\frac{1}{F(z,u)} = g(z,u) + h(z,u)\sqrt{1 - \frac{z}{\rho(u)}}$$

for $|u-1| < \varepsilon$ and $|z - \rho(u)| < \varepsilon$, $\arg(z - \rho(u)) \neq 0$, where $\varepsilon > 0$ is some fixed real number, and g(z, u), h(z, u), and $\rho(u)$ are analytic functions.

Hypothesis [H]. Let $F(z, u) = \sum_{n,k} f_{nk} z^n u^k$ be a power series in two variables with nonnegative coefficients $f_{nk} \ge 0$ such that f(z, 1) has a radius of convergence of $\rho > 0$.

We suppose that F(z, u) has the local representation

(25)
$$\frac{1}{F(z,u)} = g(z,u) + h(z,u)\sqrt{1 - \frac{z}{\rho(u)}}$$

for $|u-1| < \varepsilon$ and $|z - \rho(u)| < \varepsilon$, $\arg(z - \rho(u)) \neq 0$, where $\varepsilon > 0$ is some fixed real number, and g(z, u), h(z, u), and $\rho(u)$ are analytic functions.

Furthermore, these functions satisfy $g(\rho, 1) = 0$, $h(\rho, 1) > 0$, and $\rho(1) = \rho$.

In addition, $z = \rho(u)$ is the only singularity on the circle of convergence $|z| = |\rho(u)|$ for $|u - 1| < \varepsilon$ and F(z, u), can be analytically continued to a region $|z| < \frac{\varepsilon}{2} + \delta$, $|u| < 1 + \delta$, $|u - 1| > \frac{\varepsilon}{2}$ for some $\delta > 0$.

Hypothesis [H']. Let $F(z, u) = \sum_{n,k} f_{nk} z^n u^k$ be a power series in two variables with nonnegative coefficients $f_{nk} \ge 0$ such that f(z, 1) has a radius of convergence of $\rho > 0$.

We suppose that F(z, u) has the local representation

(25)
$$\frac{1}{F(z,u)} = g(z,u) + h(z,u)\sqrt{1 - \frac{z}{\rho(u)}}$$

for $|u-1| < \varepsilon$ and $|z - \rho(u)| < \varepsilon$, $\arg(z - \rho(u)) \neq 0$, where $\varepsilon > 0$ is some fixed real number, and g(z, u), h(z, u), and $\rho(u)$ are analytic functions.

Furthermore, these functions satisfy $g(\rho, 1) = 0$, $h(\rho, 1) > 0$, and $\rho(1) = \rho$.

In addition, $z = \rho(u)$ is the only singularity on the circle of convergence $|z| = |\rho(u)|$ for $|u - 1| < \varepsilon$ and F(z, u), can be analytically continued to a region $|z| < \frac{\varepsilon}{2} + \delta$, $|u| < 1 + \delta$, $|u - 1| > \frac{\varepsilon}{2}$ for some $\delta > 0$.

Theorem [Drmota–Soria, '97]

Let F(z, u) be a bivariate generating function satisfying [H]. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) < 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

Xn d

$$\frac{-}{\sqrt{n}} \xrightarrow{\rightarrow} \mathcal{R}(\lambda),$$
where $\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$ and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.

Theorem [Drmota–Soria, '97]

Let F(z, u) be a bivariate generating function satisfying [H]. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) < 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

 $\frac{X_n}{d} \xrightarrow{d} \mathcal{R}(\lambda),$

has a Rayleigh limiting distribution; i.e.

where
$$\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$$
 and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.
Expected value and variance are given by

$$\mathbb{E}X_n = \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{\lambda}} \sqrt{n} + \mathcal{O}(1) \quad \text{and} \quad \mathbb{V}X_n = \left(2 - \frac{\pi}{2}\right) \frac{n}{\lambda} + \mathcal{O}(\sqrt{n}).$$

Moreover, we have uniformly for all $k \ge 0$ the local law

$$\mathbb{P}[X_n = k] = \frac{\lambda k}{n} \exp\left(-\frac{\lambda k^2}{2n}\right) + \mathcal{O}((k+1)n^{-3/2}) + \mathcal{O}(n^{-1}).$$

Theorem [Drmota–Soria, '97]

Let F(z, u) be a bivariate generating function satisfying [H]. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) < 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

has a Rayleigh limiting distribution; i.e.

 $\begin{aligned} & \frac{X_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{R}(\lambda), \\ & \text{where } \lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2} \text{ and } \mathcal{R}(\lambda) \text{ has density } \lambda x \exp\left(-\frac{\lambda x^2}{2}\right) \text{ for } x \geq 0. \\ & \text{Expected value and variance are given by} \end{aligned}$

$$\mathbb{E}X_n = \sqrt{\frac{\pi}{2}} \frac{1}{\sqrt{\lambda}} \sqrt{n} + \mathcal{O}(1) \quad \text{and} \quad \mathbb{V}X_n = \left(2 - \frac{\pi}{2}\right) \frac{n}{\lambda} + \mathcal{O}(\sqrt{n}).$$

Moreover, we have uniformly for all $k \ge 0$ the local law

$$\mathbb{P}[X_n = k] = \frac{\lambda k}{n} \exp\left(-\frac{\lambda k^2}{2n}\right) + \mathcal{O}((k+1)n^{-3/2}) + \mathcal{O}(n^{-1}).$$

Theorem [DrSo, '97] \rightarrow Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H]. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) < 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

$$\frac{\chi_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{R}(\lambda),$$
where $\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$ and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.

Theorem [DrSo, '97] \rightarrow Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H']. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) < 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

$$\frac{\chi_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{R}(\lambda),$$
where $\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$ and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.

Theorem [DrSo, '97] \rightarrow Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H']. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) = g_{uu}(\rho, 1) = h(\rho, 1) = 0$, $g_z(\rho, 1) \neq 0$, and $h_u(\rho, 1) \neq 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

$$\frac{\chi_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{R}(\lambda),$$
where $\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$ and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.

Theorem [DrSo, '97] \rightarrow Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H']. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) = g_{uu}(\rho, 1) = h(\rho, 1) = 0$, $g_z(\rho, 1) \neq 0$, and $h_u(\rho, 1) \neq 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

has a **half-normal** limiting distribution; i.e.

$$\frac{X_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{H}(\sigma),$$
where $\lambda = \frac{h(\rho, 1)^2}{2g_u(\rho, 1)^2}$ and $\mathcal{R}(\lambda)$ has density $\lambda x \exp\left(-\frac{\lambda x^2}{2}\right)$ for $x \ge 0$.

Theorem [DrSo, '97] \rightarrow Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H']. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) = g_{uu}(\rho, 1) = h(\rho, 1) = 0$, $g_z(\rho, 1) \neq 0$, and $h_u(\rho, 1) \neq 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

has a **half-normal** limiting distribution; i.e.

$$\frac{X_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{H}(\sigma),$$
where $\sigma = \sqrt{2} \frac{h_u(\rho, 1)}{\rho g_z(\rho, 1)}$ and $\mathcal{H}(\sigma)$ has density $\sqrt{\frac{2}{\pi \sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$ for $x \ge 0$.

Half Normal Theorem [W, '16]

Let F(z, u) be a bivariate generating function satisfying [H']. If $\rho(u) = \rho = const$ for $|u - 1| < \varepsilon$ and $g_u(\rho, 1) = g_{uu}(\rho, 1) = h(\rho, 1) = 0$, $g_z(\rho, 1) \neq 0$, and $h_u(\rho, 1) \neq 0$, then the sequence of random variables X_n defined by

$$\mathbb{P}[X_n = k] = \frac{\left[z^n u^k\right] F(z, u)}{\left[z^n\right] F(z, 1)}$$

has a half-normal limiting distribution; i.e.

$$\frac{X_n}{\sqrt{n}} \stackrel{d}{\to} \mathcal{H}(\sigma),$$

where $\sigma = \sqrt{2} \frac{h_u(\rho, 1)}{\rho_{g_2}(\rho, 1)}$ and $\mathcal{H}(\sigma)$ has density $\sqrt{\frac{2}{\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$ for $x \ge 0$. Expected value and variance are given by

$$\mathbb{E}X_n = \sqrt{\frac{2}{\pi}}\sigma\sqrt{n} + \mathcal{O}(1) \quad \text{and} \quad \mathbb{V}X_n = \left(1 - \frac{2}{\pi}\right)\sigma^2 n + \mathcal{O}(\sqrt{n}).$$

Moreover, we have uniformly for all $k \ge 0$ the local law

$$\mathbb{P}[X_n = k] = \frac{1}{\sigma} \sqrt{\frac{2}{\pi n}} \exp\left(-\frac{k^2/n}{2\sigma^2}\right) + \mathcal{O}\left(kn^{-3/2}\right) + \mathcal{O}(n^{-1}).$$

Sketch of the proof

Technique: Pointwise convergence of characteristic function

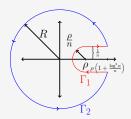
$$\mathbb{E}[e^{itX_n/\sqrt{n}}] = \frac{[z^n]F(z, e^{\frac{it}{\sqrt{n}}})}{[z^n]F(z, 1)} \stackrel{n \to \infty}{\to} \varphi_{\mathcal{H}}\left(\frac{\sqrt{2}h_u(\rho, 1)}{\rho g_z(\rho, 1)}t\right)$$

Sketch of the proof

Technique: Pointwise convergence of characteristic function $\mathbb{E}[e^{itX_n/\sqrt{n}}] = \frac{[z^n]F(z, e^{\frac{it}{\sqrt{n}}})}{[z^n]F(z, 1)} \stackrel{n \to \infty}{\to} \varphi_{\mathcal{H}}\left(\frac{\sqrt{2}h_u(\rho, 1)}{\rho g_z(\rho, 1)}t\right)$

Necessary steps:

- Contour integration to extract asymptotic coefficients
- Bound and estimate gamma function-like integrals



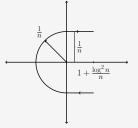


Figure: Hankel contour decomposition (left), and contour at singularity ρ (right).

Returns to zero

Definition

- A return to zero is a vertex of a path of altitude 0 whose abscissa is positive.
- An arch is a bridge of size > 0 whose only contact with the x-axis is at its end points.

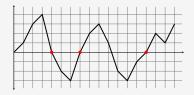


Figure: A walk with 3 returns to zero

Returns to zero

Definition

- A return to zero is a vertex of a path of altitude 0 whose abscissa is positive.
- An arch is a bridge of size > 0 whose only contact with the x-axis is at its end points.

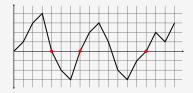


Figure: A walk with 3 returns to zero

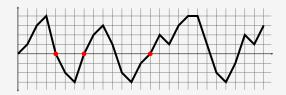
Results for directed walks

•
$$P(u) = p_{-1}u^{-1} + p_0 + p_1u$$

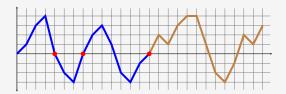
• Walks:
$$W(z) = \frac{1}{1-zP(1)}$$

 Bridges: B(z) known from [Banderier-Flajolet, '02] (Square-root singularity)

Construction of the generating function for returns to zero



Construction of the generating function for returns to zero

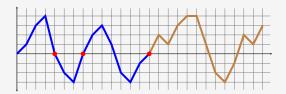


Generating function of Bridges

$$B(z)=\frac{1}{1-A(z)},$$

$$B(z,u)=\frac{1}{1-uA(z)}$$

Construction of the generating function for returns to zero



Generating function of Bridges

$$B(z) = rac{1}{1 - A(z)}, \qquad \qquad B(z, u) = rac{1}{1 - uA(z)}$$

Generating function of the Tail

$$T(z) = \frac{W(z)}{B(z)}$$

Generating function of Walks

$$W(z, u) = \frac{1}{1 - uA(z)}T(z) = \frac{W(z)}{u + (1 - u)B(z)}$$

Limit laws for the number of returns to zero

Walks of length *n* having *k* returns to zero

$$\mathbb{P}[X_n = k] = \mathbb{P}[\text{size} = n, \text{ } \#\text{returns to zero} = k] = \frac{[z^n u^k]W(z, u)}{[z^n]W(z, 1)}$$

Theorem [Extension: Feller, Ch. III, Problems 9-10]

Let X_n denote the number of returns to zero of unconstrained walks of length n. Let $\delta = P'(1)$ be the drift.

1 For $\delta \neq 0$ we get convergence to a geometric distribution:

$$X_n \stackrel{d}{\to} \operatorname{Geom}\left(\frac{|p_1 - p_{-1}|}{P(1)}\right);$$

2 For $\delta = 0$ we get convergence to a half-normal distribution:

$$\frac{X_n}{\sqrt{n}} \xrightarrow{d} \mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right).$$

Proof sketch

$$W(z, u) = \frac{W(z)}{u + (1 - u)B(z)} = \frac{1}{1 - zP(1)} \cdot \frac{1}{u + (1 - u)B(z)}$$

1 $\delta \neq 0$: **Geometric distribution:** Geom $\left(\frac{1}{B(1/P(1))}\right)$ Dominant singularity $\frac{1}{P(1)}$ and second factor analytic

$$[z^{n}]W(z,u) = \frac{1}{B(1/P(1))} \frac{P(1)^{n}}{1 - u\left(1 - \frac{1}{B(1/P(1))}\right)} + o(P(1)^{n}).$$

= 0: Half-normal distribution: $\mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$

Proof sketch

2

$$W(z, u) = \frac{W(z)}{u + (1 - u)B(z)} = \frac{1}{1 - zP(1)} \cdot \frac{1}{u + (1 - u)B(z)}$$

1 $\delta \neq 0$: **Geometric distribution:** Geom $\left(\frac{1}{B(1/P(1))}\right)$ Dominant singularity $\frac{1}{P(1)}$ and second factor analytic

$$[z^n]W(z,u) = \frac{1}{B(1/P(1))} \frac{P(1)^n}{1 - u\left(1 - \frac{1}{B(1/P(1))}\right)} + o(P(1)^n).$$

$$\delta = 0: \text{ Half-normal distribution: } \mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$$

Both factors singular at $\rho := \frac{1}{P(1)}$ and we get for $z \to \rho$ and $u \to 1$

$$\frac{1}{W(z,u)} = \frac{g(z,u)}{g(z,u)} + \frac{h(z,u)}{\sqrt{1-\frac{z}{\rho}}}$$
$$= \frac{\left(1-\frac{z}{\rho}\right)u}{\sqrt{1-\frac{z}{\rho}}} + O\left(\left(1-\frac{z}{\rho}\right)(1-u)\right)$$

Proof sketch

2

$$W(z, u) = \frac{W(z)}{u + (1 - u)B(z)} = \frac{1}{1 - zP(1)} \cdot \frac{1}{u + (1 - u)B(z)}$$

Conditions leading to a half-normal distribution
• $g(\rho, 1) = 0$
• $g_u(\rho, 1) = 0$
• $g_{uu}(\rho, 1) = 0$
• $g_{uu}(\rho, 1) = 0$
• $g_z(\rho, 1) \neq 0$
2 $\delta = 0$: Half-normal distribution: $\mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$
Both factors singular at $\rho := \frac{1}{P(1)}$ and we get for $z \to \rho$ and $u \to 1$

$$\frac{1}{W(z,u)} = g(z,u) + \frac{h(z,u)}{\sqrt{1-\frac{z}{\rho}}}$$
$$= \left(1-\frac{z}{\rho}\right)u + C(1-u)\sqrt{1-\frac{z}{\rho}} + O\left(\left(1-\frac{z}{\rho}\right)(1-u)\right)$$

Height of Motzkin walks

Motzkin walk

- Unconstrained walk generated from
- Step polynomial $P(u) = p_{-1}u^{-1} + p_0 + p_1u$ with
- $p_{-1}, p_0, p_1 \in \mathbb{R}_+$.

Height

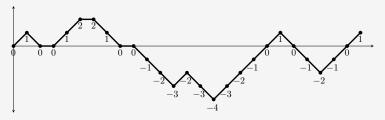
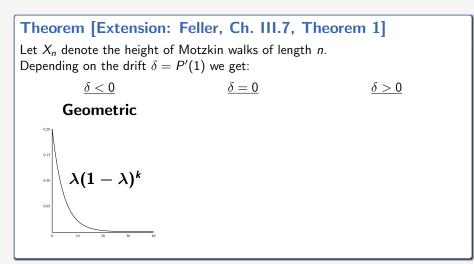
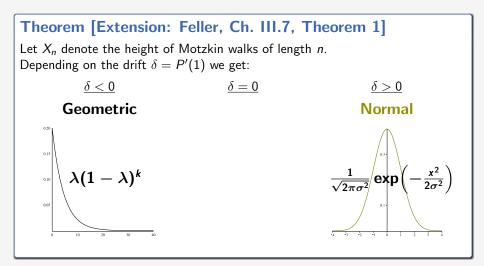
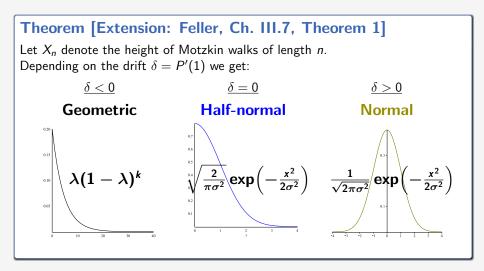


Figure: A Motzkin walk of height 2

Theorem [Extension: Feller, Ch. III.7, Theorem 1] Let X_n denote the height of Motzkin walks of length n. Depending on the drift $\delta = P'(1)$ we get: $\delta < 0$ $\delta = 0$ $\delta > 0$







Results for Motzkin paths

	<u>Geometric</u>	Normal	Half-normal	Rayleigh
PDF	$\lambda(1-\lambda)^k$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\sqrt{\frac{2}{\pi\sigma^2}}\exp\left(-\frac{x^2}{2\sigma^2}\right)$	$\frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$
Mean	$\frac{1-\lambda}{\lambda}$	μ	$\sigma \sqrt{\frac{2}{\pi}}$	$\sigma\sqrt{\frac{\pi}{2}}$
Var	$\frac{1-\lambda}{\lambda^2}$	σ^2	$\sigma^2\left(1-\frac{2}{\pi}\right)$	$\sigma^2 \left(2 - \frac{\pi}{2}\right)$

drift	returns to zero	sign changes	height
$\delta < 0$	$\mathcal{G}\left(\frac{p_{-1}-p_1}{P(1)}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$
$\delta = 0$	$\mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$	$\mathcal{H}\left(\frac{1}{2}\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$	$\mathcal{H}\left(\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$
$\delta > 0$	$\mathcal{G}\left(rac{p_1-p_{-1}}{P(1)} ight)$	$\mathcal{G}\left(\frac{p_{-1}}{p_1}\right)$	$\mathcal{N}(0,1)$

Table: Limit laws for Motzkin paths $(P(u) = \frac{p_{-1}}{u} + p_0 + p_1 u)$ after proper rescaling.

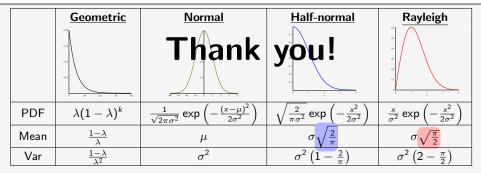
Results for Motzkin paths

	<u>Geometric</u>	Normal	Half-normal	Rayleigh
PDF	$\lambda(1-\lambda)^k$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$\sqrt{\frac{2}{\pi\sigma^2}}\exp\left(-\frac{x^2}{2\sigma^2}\right)$	$\frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right)$
Mean	$\frac{1-\lambda}{\lambda}$	μ	$\sigma \sqrt{\frac{2}{\pi}}$	$\sigma\sqrt{\frac{\pi}{2}}$
Var	$\frac{1-\lambda}{\lambda^2}$	σ^2	$\sigma^2 \left(1 - \frac{2}{\pi}\right)$	$\sigma^2 \left(2 - \frac{\pi}{2}\right)$

drift	returns to zero	sign changes	height
$\delta < 0$	$\mathcal{G}\left(\frac{p_{-1}-p_1}{P(1)}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$
$\delta = 0$	$\mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$	$\mathcal{H}\left(\frac{1}{2}\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$	$\mathcal{H}\left(\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$
$\delta > 0$	$\mathcal{G}\left(\frac{p_1-p_{-1}}{P(1)}\right)$	$\mathcal{G}\left(\frac{p_{-1}}{p_1}\right)$	$\mathcal{N}(0,1)$

Table: Limit laws for Motzkin paths $(P(u) = \frac{p_{-1}}{u} + p_0 + p_1 u)$ after proper rescaling.

Results for Motzkin paths



drift	returns to zero	sign changes	height
$\delta < 0$	$\mathcal{G}\left(\frac{p_{-1}-p_1}{P(1)}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$	$\mathcal{G}\left(\frac{p_1}{p_{-1}}\right)$
$\delta = 0$	$\mathcal{H}\left(\sqrt{\frac{P(1)}{P''(1)}}\right)$	$\mathcal{H}\left(\frac{1}{2}\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$	$\mathcal{H}\left(\sqrt{\frac{P^{\prime\prime}(1)}{P(1)}}\right)$
$\delta > 0$	$\mathcal{G}\left(rac{p_1-p_{-1}}{P(1)} ight)$	$\mathcal{G}\left(\frac{p_{-1}}{p_1}\right)$	$\mathcal{N}(0,1)$

Table: Limit laws for Motzkin paths $(P(u) = \frac{p_{-1}}{u} + p_0 + p_1 u)$ after proper rescaling.

Backup slides

Lemmas

Lemma

Let γ be the Hankel contour starting from "+ $e^{2\pi i}\infty$ ", passing around 0 and tending to $+\infty.$ Then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{e^{-z}}{z+is\sqrt{-z}}\,dz=\varphi_{\mathcal{H}}\left(\sqrt{2}s\right),$$

where

$$\varphi_{\mathcal{H}}(t) = \sqrt{\frac{2}{\pi}} \int_0^\infty e^{itz} e^{-z^2/2} \, dz,$$

denotes the characteristic function of the Half-normal distribution.

Lemma

Let
$$\gamma$$
 be as in Lemma ??. Then

$$\frac{1}{2\pi i}\int_{\gamma}\frac{e^{-s\sqrt{-z}-z}}{\sqrt{-z}}\,dz=\frac{1}{\sqrt{\pi}}e^{-s^2/4}$$

Marking the height

$$F(z, u) = \frac{1}{1 - zP(1)} \frac{1 - \frac{p_1}{p_{-1}} u_1(z)}{1 - u \frac{p_1}{p_{-1}} u_1(z)}$$

Marking the height

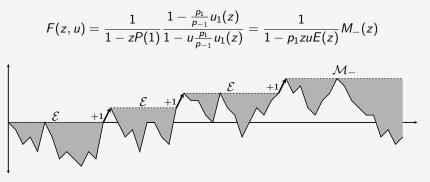


Figure: The first passage decomposition of a Motzkin walks into (negative) excursions and a trailing negative meander.

Marking the height

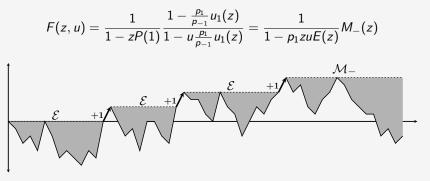


Figure: The first passage decomposition of a Motzkin walks into (negative) excursions and a trailing negative meander.

$$\mathbb{P}[X_n = k] = \frac{[u^k z^n] F(z, u)}{[z^n] F(z, 1)} = \frac{[u^k z^n] F(z, u)}{P(1)^n}.$$

A half-normal distribution scheme for generating functions

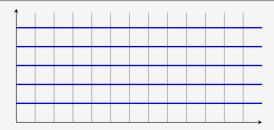
Reflection-absorption model

• Lattice: \mathbb{Z}^2_+

Absorption model (extends [Banderier–Flajolet, '02]) Loss of mass at 0: $P_0(1) < 1$

Reflection-absorption model

- Lattice: \mathbb{Z}^2_+
- Altitude $k \neq 0$
 - \blacksquare Weighted step set ${\mathcal S}$
 - $\square P(u) = \sum_{i=-c}^{d} p_i u^i$

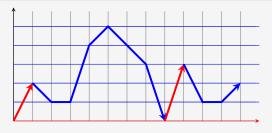


time-independent

Absorption model (extends [Banderier–Flajolet, '02]) Loss of mass at 0: $P_0(1) < 1$

Reflection-absorption model

- Lattice: \mathbb{Z}^2_+
- Altitude $k \neq 0$
 - \blacksquare Weighted step set ${\mathcal S}$
 - $\square P(u) = \sum_{i=-c}^{d} p_i u^i$
- Altitude k = 0
 - Weighted step set S_0
 - $P_0(u) = \sum_{i=0}^{d_0} p_{0,i} u^i$

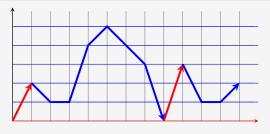


time-independent

Absorption model (extends [Banderier–Flajolet, '02]) Loss of mass at 0: $P_0(1) < 1$

Reflection-absorption model

- Lattice: \mathbb{Z}^2_+
- Altitude $k \neq 0$
 - Weighted step set S
 - $\square P(u) = \sum_{i=-c}^{d} p_i u^i$
- Altitude k = 0
 - Weighted step set S_0
 - $P_0(u) = \sum_{i=0}^{d_0} p_{0,i} u^i$



time-independent

Absorption model (extends [Banderier–Flajolet, '02]) Loss of mass at 0: $P_0(1) < 1$

Final altitude of meanders

Definition

The *final altitude* of a path is defined as the ordinate of its endpoint.

Generating function

$$F(z, u) = \frac{1 - z (P(u) - P_0(u)) E(z)}{1 - z P(u)}$$
$$E(z) = \frac{(-1)^{c+1}}{z p_{-c}} \prod_{i=1}^c u_i(z)$$

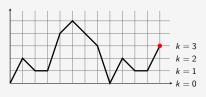


Figure: The final altitude is 3

Meanders of length n and final altitude k

$$\mathbb{P}[X_n = k] = \frac{[z^n u^k]F(z, u)}{[z^n]F(z, 1)}$$

Drift: $\delta = P'(1)$

Theorem (Reflection-absorption model)

	$\delta < 0$	$\delta = 0$		$\delta > 0$
Limit law				
$\mathbb{E}[X_n] \sim$	const	$\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n}$	$\sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$	δn

Drift: $\delta = P'(1)$

Theorem (Reflection-absorption model) $\delta < 0$ $\delta = 0$ $\delta > 0$ Limit lawDiscrete $\mathbb{E}[X_n] \sim$ const $\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n}$ $\sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$

Drift: $\delta = P'(1)$

Th	Theorem (Reflection-absorption model)					
		$\delta < 0$	$\delta = 0$	$\delta > 0$		
	Limit law	Discrete		Gaussian		
	$\mathbb{E}[X_n] \sim$	const	$\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n} \sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$	δn		

Drift: $\delta = P'(1)$

Theorem (Reflection-absorption model) $\delta < 0$ $\delta = 0$ $\delta > 0$ Limit lawDiscreteGaussian $\mathbb{E}[X_n] \sim$ const $\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n}$ $\sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$

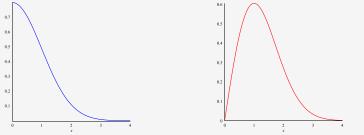


Figure: Limit distributions of final altitude of meanders for drift $\delta = 0$ in the reflection (left) and absorption (right) model.

Michael Wallner | TU Wien | 07.07.2016

Drift: $\delta = P'(1)$

Theorem (Reflection-absorption model)				
	$\delta < 0$	$\delta = 0$	$\delta > 0$	
Limit law	Discrete	Half-normal	Gaussian	
$\mathbb{E}[X_n] \sim$	const	$\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n} \sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$	δη	

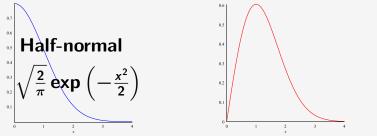


Figure: Limit distributions of final altitude of meanders for drift $\delta = 0$ in the reflection (left) and absorption (right) model.

Michael Wallner | TU Wien | 07.07.2016

Drift: $\delta = P'(1)$

Theorem (Reflection-absorption model)					
		$\delta < 0$	$\delta =$	$\delta > 0$	
	Limit law	Discrete	Half-normal	Rayleigh	Gaussian
	$\mathbb{E}[X_n] \sim$	const	$\sqrt{\frac{2}{\pi}}\sqrt{P''(1)n}$	$\sqrt{\frac{\pi}{2}}\sqrt{P''(1)n}$	δn

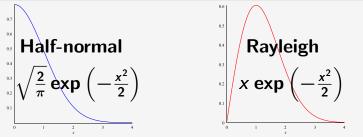


Figure: Limit distributions of final altitude of meanders for drift $\delta = 0$ in the reflection (left) and absorption (right) model.

Michael Wallner | TU Wien | 07.07.2016