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A half-normal distribution scheme for generating functions

What is a lattice path?

Definition

Step set: S = {(1, b1), . . . , (1, bm)} ⊂ Z2

n-step lattice path: Sequence of vectors (v1, . . . , vn) ∈ Sn

Weights

For S = {−c , . . . , d} define Π = {p−c , . . . , pd}
Jump polynomial: P(u) =

∑d
i=−c piu

i

Drift: δ = P ′(1)

Examples

Dyck path/Random walk: P(u) = p−1u
−1 + p1u

1

Motzkin walk: P(u) = p−1u
−1 + p0 + p1u

1
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Terminology of directed paths

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W) bridge (B)

constrained
(on Z+)

meander (M) excursion (E)

One-dimensional objects
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Probability distributions

Normal Half-normal Rayleigh

Support x ∈ R x ∈ R≥0 x ∈ R≥0
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2π
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) √
2
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x exp
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Mean 0
√

2
π

√
π
2

Variance 1 1− 2
π 2− π

2
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A half-normal distribution scheme for generating functions

Sign changes of Motzkin walks

Motzkin walk

Unconstrained walk generated from

Step polynomial P(u) = p−1u
−1 + p0 + p1u with

p−1, p0, p1 ∈ R+.

Sign changes

+
0 0

+
+ +

+
0 0 -

-
-

-
-

-
-

-
- 0

+
0 -

-
- 0

+
0

Figure: A signed Motzkin walk with 4 sign changes
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Feller’s Caveat

“We shall encounter theoretical conclusions which not
only are unexpected but actually come as a shock to

intuition and common sense.”

(William Feller, An Introduction to Probability Theory and its Applications,
Volume 1, Fluctuations in Coin Tossing and Random Walks)
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Limit laws for the number of sign changes

Theorem [Extension: Feller, Ch. III.5]

Let Xn denote the number of sign changes of
Motzkin walks of length n. Let δ = P ′(1) be the drift.

1 For δ 6= 0 we get convergence to a geometric
distribution:

Xn
d→ Geom (λ) with λ =

{
p1

p−1
, for δ < 0,

p−1

p1
, for δ > 0;

2 For δ = 0 we get convergence to a half-normal
distribution:

Xn√
n

d→ H (σ) with σ =
1

2

√
P ′′(1)

P(1)
.

Geometric

λ(1− λ)k

Half-normal
√

2
πσ2 exp

(
− x2

2σ2

)
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What is a scheme?

Scheme
an organized plan for doing something, especially
something dishonest or illegal that will bring a good
result for you

(Cambridge Dictionary)

Schema
a drawing that represents an idea or theory
and makes it easier to understand

(Cambridge Dictionary)

(xkcd.com/1195)
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Strategy

1 Count:
Generating function F (z) =

∑
n≥0 fnz

n

fn . . . # objects of size n

2 Mark:
Bivariate generating function F (z , u) =

∑
n,k≥0 fn,kz

nuk

fn,k . . . # objects of size n with k occurrences of a certain property

3 Analyze:

1 Algebraic: Structure of F (z , u), non-negative coefficients, . . .
2 Analytic: Convergence, singularities, . . .

We get:

Probability distribution of a marked parameter for large n

Moments

Asymptotic behavior

. . .

Michael Wallner | TU Wien | 07.07.2016 9 / 20



A half-normal distribution scheme for generating functions

Examples of schemes

Many examples in “Analytic Combinatorics” Chapter IX. Multivariate Asymptotics
and Limit Laws [Flajolet–Sedgewick ’09].

Discrete limit laws
Normal distribution

Central limit theorems [Bender ’73], [Bender–Richmond ’83],
[Flajolet–Soria ’90], [Hwang ’94], . . .
Quasi-powers Theorem [Hwang ’98]
Drmota-Lalley-Woods Theorem [Drmota ’97]

Airy distribution [Banderier–Flajolet–Schaeffer–Soria ’01]

Family of three limit laws: [Drmota–Soria ’97]

1 Rayleigh distribution

2 Normal distribution

3 Convolution of Normal and Rayleigh distribution

Goal: Extend this family by a half-normal distribution [W ’16]
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Images and preimages in random mappings
[Drmota–Soria, ’97]

Hypothesis [H]. Let F (z, u) =
∑

n,k fnkz
nuk be a power series in two variables

with nonnegative coefficients fnk ≥ 0 such that f (z, 1) has a radius of convergence of
ρ > 0.

We suppose that F (z, u) has the local representation

(25)
1

F (z, u)
= g(z, u) + h(z, u)

√
1−

z

ρ(u)

for |u − 1| < ε and |z − ρ(u)| < ε, arg(z − ρ(u)) 6= 0, where ε > 0 is some fixed real
number, and g(z, u), h(z, u), and ρ(u) are analytic functions.

Furthermore, these functions satisfy g(ρ, 1) = 0, h(ρ, 1) > 0,and ρ(1) = ρ.
In addition, z = ρ(u) is the only singularity on the circle of convergence |z| =

|ρ(u)| for |u − 1| < ε and F (z, u), can be analytically continued to a region |z| <
ε
2

+ δ, |u| < 1 + δ, |u − 1| > ε
2

for some δ > 0.
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Extension to the half-normal distribution

Theorem [Drmota–Soria, ’97]
Let F (z, u) be a bivariate generating function satisfying [H] . If ρ(u) = ρ = const for
|u − 1| < ε and gu(ρ, 1) < 0,
then the sequence of random variables Xn defined by

P[Xn = k] =

[
znuk

]
F (z, u)

[zn]F (z, 1)

has a Rayleigh limiting distribution; i.e.

Xn√
n

d→R(λ),

where λ = h(ρ,1)2

2gu(ρ,1)2 and R(λ) has density λx exp
(
−λx

2

2

)
for x ≥ 0.

Expected value and variance are given by

EXn =

√
π

2

1
√
λ

√
n +O(1) and VXn =

(
2−

π

2

) n

λ
+O(

√
n).

Moreover, we have uniformly for all k ≥ 0 the local law

P[Xn = k] =
λk

n
exp

(
−
λk2

2n

)
+O((k + 1)n−3/2) +O(n−1).
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Extension to the half-normal distribution

Theorem [DrSo, ’97] → Half Normal Theorem [W, ’16]
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and H(σ) has density
√

2
πσ2 exp
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− x2
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EXn =

√
π
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√
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Extension to the half-normal distribution

Half Normal Theorem [W, ’16]
Let F (z, u) be a bivariate generating function satisfying [H’] . If ρ(u) = ρ = const for
|u − 1| < ε and gu(ρ, 1) = guu(ρ, 1) = h(ρ, 1) = 0, gz (ρ, 1) 6= 0, and hu(ρ, 1) 6= 0,
then the sequence of random variables Xn defined by

P[Xn = k] =

[
znuk

]
F (z, u)

[zn]F (z, 1)

has a half-normal limiting distribution; i.e.

Xn√
n

d→H(σ),

where σ =
√

2 hu(ρ,1)
ρgz (ρ,1)

and H(σ) has density
√

2
πσ2 exp

(
− x2

2σ2

)
for x ≥ 0.

Expected value and variance are given by

EXn =

√
2

π
σ
√
n +O(1) and VXn =

(
1−

2

π

)
σ2n +O(

√
n).

Moreover, we have uniformly for all k ≥ 0 the local law

P[Xn = k] =
1

σ

√
2

πn
exp

(
−
k2/n

2σ2

)
+O

(
kn−3/2

)
+O(n−1).
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Sketch of the proof

Technique: Pointwise convergence of characteristic function

E[e itXn/
√
n] =

[zn]F (z , e
it√
n )

[zn]F (z , 1)
n→∞→ ϕH

(√
2hu(ρ, 1)

ρgz(ρ, 1)
t

)

Necessary steps:

Contour integration to extract asymptotic coefficients

Bound and estimate gamma function-like integrals

ρ
n

ρ

Γ1

ρ
(
1 + log2 n

n

)

R

Γ2

1
n

1
n

1 + log2 n
n

1
n

Figure: Hankel contour decomposition (left), and contour at singularity ρ (right).
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(√
2hu(ρ, 1)

ρgz(ρ, 1)
t

)

Necessary steps:

Contour integration to extract asymptotic coefficients

Bound and estimate gamma function-like integrals

ρ
n

ρ

Γ1

ρ
(
1 + log2 n

n

)

R

Γ2

1
n

1
n

1 + log2 n
n

1
n

Figure: Hankel contour decomposition (left), and contour at singularity ρ (right).
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A half-normal distribution scheme for generating functions

Returns to zero

Definition

A return to zero is a vertex of a path of
altitude 0 whose abscissa is positive.

An arch is a bridge of size > 0 whose
only contact with the x-axis is at its end
points.

Figure: A walk with 3 returns to zero

Results for directed walks

P(u) = p−1u
−1 + p0 + p1u

Walks: W (z) = 1
1−zP(1)

Bridges: B(z) known from [Banderier–Flajolet, ’02]
(Square-root singularity)
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A half-normal distribution scheme for generating functions

Construction of the generating function for returns to zero

Generating function of Bridges

B(z) =
1

1− A(z)
, B(z , u) =

1

1− uA(z)

Generating function of the Tail

T (z) =
W (z)

B(z)

Generating function of Walks

W (z , u) =
1

1− uA(z)
T (z) =

W (z)

u + (1− u)B(z)
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A half-normal distribution scheme for generating functions

Limit laws for the number of returns to zero

Walks of length n having k returns to zero

P[Xn = k] = P[size = n, #returns to zero = k] =
[znuk ]W (z , u)

[zn]W (z , 1)

Theorem [Extension: Feller, Ch. III, Problems 9-10]

Let Xn denote the number of returns to zero of unconstrained walks of length n.
Let δ = P ′(1) be the drift.

1 For δ 6= 0 we get convergence to a geometric distribution:

Xn
d→ Geom

( |p1 − p−1|
P(1)

)
;

2 For δ = 0 we get convergence to a half-normal distribution:

Xn√
n

d→ H
(√

P(1)

P ′′(1)

)
.
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A half-normal distribution scheme for generating functions

Proof sketch

W (z , u) =
W (z)

u + (1− u)B(z)
=

1

1− zP(1)
· 1

u + (1− u)B(z)

1 δ 6= 0: Geometric distribution: Geom
(

1
B(1/P(1))

)

Dominant singularity 1
P(1) and second factor analytic

[zn]W (z , u) =
1

B (1/P(1))

P(1)n

1− u
(

1− 1
B(1/P(1))

) + o(P(1)n).

2 δ = 0: Half-normal distribution: H
(√

P(1)
P′′(1)

)

Both factors singular at ρ := 1
P(1) and we get for z → ρ and u → 1

1

W (z , u)
= g(z , u) + h(z,u)

√
1− z

ρ

=
(

1− z
ρ

)
u + C (1− u)

√
1− z

ρ
+O

((
1− z

ρ

)
(1− u)

)
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Conditions leading to a half-normal distribution

g(ρ, 1) = 0

gu(ρ, 1) = 0

guu(ρ, 1) = 0

gz(ρ, 1) 6= 0

h(ρ, 1) = 0

hu(ρ, 1) 6= 0



A half-normal distribution scheme for generating functions

Height of Motzkin walks

Motzkin walk

Unconstrained walk generated from

Step polynomial P(u) = p−1u
−1 + p0 + p1u with

p−1, p0, p1 ∈ R+.

Height

1

0 0

1

2 2

1

0 0

−1

−2

−3

−2

−3

−4

−3

−2

−1

0

1

0

−1

−2

−1

0

1

0

Figure: A Motzkin walk of height 2
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A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

Theorem [Extension: Feller, Ch. III.7, Theorem 1]

Let Xn denote the height of Motzkin walks of length n.
Depending on the drift δ = P ′(1) we get:

δ < 0 δ = 0 δ > 0

Geometric Half-normal Normal

λ(1− λ)k
√

2
πσ2 exp

(
− x2

2σ2

)
1√

2πσ2
exp
(
− x2

2σ2

)

Michael Wallner | TU Wien | 07.07.2016 19 / 20



A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

Theorem [Extension: Feller, Ch. III.7, Theorem 1]

Let Xn denote the height of Motzkin walks of length n.
Depending on the drift δ = P ′(1) we get:

δ < 0 δ = 0 δ > 0

Geometric

Half-normal Normal

λ(1− λ)k

√
2

πσ2 exp
(
− x2

2σ2

)
1√

2πσ2
exp
(
− x2

2σ2

)

Michael Wallner | TU Wien | 07.07.2016 19 / 20



A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

Theorem [Extension: Feller, Ch. III.7, Theorem 1]

Let Xn denote the height of Motzkin walks of length n.
Depending on the drift δ = P ′(1) we get:

δ < 0 δ = 0 δ > 0

Geometric

Half-normal

Normal

λ(1− λ)k

√
2

πσ2 exp
(
− x2

2σ2

)

1√
2πσ2

exp
(
− x2

2σ2

)

Michael Wallner | TU Wien | 07.07.2016 19 / 20



A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

Theorem [Extension: Feller, Ch. III.7, Theorem 1]

Let Xn denote the height of Motzkin walks of length n.
Depending on the drift δ = P ′(1) we get:

δ < 0 δ = 0 δ > 0

Geometric Half-normal Normal

λ(1− λ)k
√

2
πσ2 exp

(
− x2

2σ2

)
1√

2πσ2
exp
(
− x2

2σ2

)

Michael Wallner | TU Wien | 07.07.2016 19 / 20



A half-normal distribution scheme for generating functions

Results for Motzkin paths

Geometric Normal Half-normal Rayleigh

Thank you!

PDF λ(1− λ)k 1√
2πσ2

exp
(
− (x−µ)2

2σ2

) √
2
πσ2 exp

(
− x2

2σ2

)
x
σ2 exp

(
− x2

2σ2

)
Mean 1−λ

λ
µ σ

√
2
π

σ
√

π
2

Var 1−λ
λ2 σ2 σ2

(
1− 2

π

)
σ2
(
2− π

2

)
drift returns to zero sign changes height

δ < 0 G
(

p−1−p1

P(1)

)
G
(

p1
p−1

)
G
(

p1
p−1

)
δ = 0 H

(√
P(1)
P′′(1)

)
H
(

1
2

√
P′′(1)
P(1)

)
H
(√

P′′(1)
P(1)

)
δ > 0 G

(
p1−p−1

P(1)

)
G
(

p−1

p1

)
N (0, 1)

Table: Limit laws for Motzkin paths (P(u) =
p−1

u
+ p0 + p1u) after proper rescaling.
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A half-normal distribution scheme for generating functions

Backup

Backup slides
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A half-normal distribution scheme for generating functions

Lemmas

Lemma

Let γ be the Hankel contour starting from “+e2πi∞”, passing around 0 and
tending to +∞. Then

1

2πi

∫

γ

e−z

z + is
√−z dz = ϕH

(√
2s
)
,

where

ϕH(t) =

√
2

π

∫ ∞

0

e itze−z
2/2 dz ,

denotes the characteristic function of the Half-normal distribution.

Lemma

Let γ be as in Lemma ??. Then
1

2πi

∫

γ

e−s
√
−z−z

√−z dz =
1√
π
e−s

2/4.
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A half-normal distribution scheme for generating functions

Marking the height

F (z , u) =
1

1− zP(1)

1− p1

p−1
u1(z)

1− u p1

p−1
u1(z)

=
1

1− p1zuE (z)
M−(z)

E +1

E +1

E +1

M−

Figure: The first passage decomposition of a Motzkin walks into (negative) excursions
and a trailing negative meander.

P[Xn = k] =
[ukzn]F (z , u)

[zn]F (z , 1)
=

[ukzn]F (z , u)

P(1)n
.
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A half-normal distribution scheme for generating functions

Reflection-absorption model

Lattice: Z2
+

Altitude k 6= 0

Weighted step set S
P(u) =

∑
d

i=−c
piu

i

Altitude k = 0

Weighted step set S0

P0(u) =
∑d0

i=0 p0,iu
i

time-independent

Absorption model (extends [Banderier–Flajolet, ’02])

Loss of mass at 0: P0(1) < 1

Reflection model [Banderier–W, ’14]

No loss of mass at 0: P0(1) = 1
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A half-normal distribution scheme for generating functions

Final altitude of meanders

Definition
The final altitude of a path is defined as the
ordinate of its endpoint.

Generating function

F (z , u) =
1− z (P(u)− P0(u))E (z)

1− zP(u)

E (z) =
(−1)c+1

zp−c

c∏

i=1

ui (z)

k = 3

k = 2

k = 1

k = 0

Figure: The final altitude is 3

Meanders of length n and final altitude k

P[Xn = k] =
[znuk ]F (z , u)

[zn]F (z , 1)
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: δ = P ′(1)

Theorem (Reflection-absorption model)

δ < 0 δ = 0 δ > 0

Limit law

Discrete Half-normal Rayleigh Gaussian

E[Xn] ∼ const

√
2

π

√
P ′′(1)n

√
π

2

√
P ′′(1)n δn

Half-normal√
2
π

exp
(
−x

2

2

)
Rayleigh

x exp
(
−x

2

2

)

Figure: Limit distributions of final altitude of meanders for drift δ = 0 in the reflection
(left) and absorption (right) model.
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