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What is a lattice path? H

‘P’
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Definition
m Step set: S={(1,b1),...,(1, by)} C Z?
m n-step lattice path: Sequence of vectors (v4,...,v,) € S"

 Weights
m For S ={—c,...,d} define N ={p_,...,p4}
= Jump polynomial: P(u) =% _piusi
m Drift: 6 = P/(1)

Examples
m Dyck path/Random walk: P(u) = p_ju~! + pu?
m Motzkin walk: P(u) = p_qu~t + po + prut
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Terminology of directed paths

ending anywhere ending at 0
unconstrained \ / \ / / / \ /
(on Z) \ \l/
walk/path (W) bridge (B)
constrained / /
(on Zy4) \ \
meander (M) excursion (&)

One-dimensional objects
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A half-normal distribution scheme for generating functions

Probability distributions

Normal Half-normal Rayleigh
/.
Support x eR x € R>p x € R>g
PDF \/%exp (7%2) \/gexp (f’;—z) X exp (7%)
Mean 0 \/E Z
™
Variance 1 1-— % B=%
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A half-normal distribution scheme for generating functions

Probability distributions

Normal Half-normal Rayleigh
/.
Support x eR x € R>p x € R>g
PDF \/127 exp (7%2 \/gexp <7X2—2) X exp (7%)
2
Mean 0 = 3
Variance 1 1-— % B=%
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A half-normal distribution scheme for generating functions

Sign changes of Motzkin walks

Motzkin walk
m Unconstrained walk generated from
m Step polynomial P(u) = p_ju=! + py + pru with
® p_1,p0,p1 € Ry,

Sign changes

Figure: A signed Motzkin walk with 4 sign changes
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Feller's Caveat

“We shall encounter theoretical conclusions which not
only are unexpected but actually come as a shock to
intuition and common sense.”

(William Feller, An Introduction to Probability Theory and its Applications,
Volume 1, Fluctuations in Coin Tossing and Random Walks)

An
THEORY AND ITS
APPLICATIONS
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A half-normal distribution scheme for generating functions

Limit laws for the number of sign changes

Theorem [Extension: Feller, Ch. 111.5]

Let X, denote the number of sign changes of
Motzkin walks of length n. Let § = P’(1) be the drift.

For 6 # 0 we get convergence to a geometric
distribution:
L for § < 0,
X, % Geom (\) with A= {p1

%, for § > 0;

020

Geometric
A1 — )\)"
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A half-normal distribution scheme for generating functions

Limit laws for the number of sign changes

Theorem [Extension: Feller, Ch. 111.5]

Let X, denote the number of sign changes of
Motzkin walks of length n. Let § = P’(1) be the drift.

For 6 # 0 we get convergence to a geometric

distribution:
L for § < 0,
X, % Geom (\) with A= P
P10 for § > 0;
P1
For § = 0 we get convergence to a half-normal
distribution:
Xn d ) 1 [P"(1)
th ==
NG — H (o) wi 0= P(D)

020

Half-normal

Geometric
A1 — )\)"
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A half-normal distribution scheme for generating functions

What is a scheme?

Scheme

an organized plan for doing something, especially
something dishonest or illegal that will bring a good
result for you

(Cambridge Dictionary) (xked.com/1195)

"/'\4/ /"-—J/"/_J e
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A half-normal distribution scheme for generating functions

What is a scheme?

Scheme

an organized plan for doing something, especially
something dishonest or illegal that will bring a good
result for you

(Cambridge Dictionary)

’fr/"_,‘/ "//_r"/._

Schema
a drawing that represents an idea or theory
and makes it easier to understand

(Cambridge Dictionary)

g - //‘a"' . / T e v P
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A half-normal distribution scheme for generating functions

Count:
Generating function F(z) =) - fz"
fn... # objects of size n
Mark:
Bivariate generating function F(z,u) = 3", <o fokz"u
fok ... # objects of size n with k occurrences of a certain property

k

Analyze:
Algebraic: Structure of F(z, u), non-negative coefficients, ...
Analytic: Convergence, singularities, ...

We get:
Probability distribution of a marked parameter for large n
Moments

Asymptotic behavior
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Examples of schemes

Many examples in “Analytic Combinatorics” Chapter IX. Multivariate Asymptotics
and Limit Laws [Flajolet-Sedgewick '09].

m Discrete limit laws
m Normal distribution
m Central limit theorems [Bender '73], [Bender—Richmond '83],
[Flajolet-Soria '90], [Hwang '94], ...
m Quasi-powers Theorem [Hwang '98]
= Drmota-Lalley-Woods Theorem [Drmota '97]

m Airy distribution [Banderier—Flajolet—Schaeffer—Soria '01]
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Examples of schemes

Many examples in “Analytic Combinatorics” Chapter IX. Multivariate Asymptotics
and Limit Laws [Flajolet-Sedgewick '09].

m Discrete limit laws
m Normal distribution
m Central limit theorems [Bender '73], [Bender—Richmond '83],
[Flajolet-Soria '90], [Hwang '94], ...
m Quasi-powers Theorem [Hwang '98]
= Drmota-Lalley-Woods Theorem [Drmota '97]

m Airy distribution [Banderier—Flajolet—Schaeffer—Soria '01]

Family of three limit laws: [Drmota—Soria '97]
Rayleigh distribution
Normal distribution
Convolution of Normal and Rayleigh distribution
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Examples of schemes

Many examples in “Analytic Combinatorics” Chapter IX. Multivariate Asymptotics
and Limit Laws [Flajolet-Sedgewick '09].

m Discrete limit laws
m Normal distribution
m Central limit theorems [Bender '73], [Bender—Richmond '83],
[Flajolet-Soria '90], [Hwang '94], ...
m Quasi-powers Theorem [Hwang '98]
= Drmota-Lalley-Woods Theorem [Drmota '97]

m Airy distribution [Banderier—Flajolet—Schaeffer—Soria '01]

Family of three limit laws: [Drmota—Soria '97]
Rayleigh distribution
Normal distribution
Convolution of Normal and Rayleigh distribution

Goal: Extend this family by a half-normal distribution [W '16]
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Images and preimages in random mappings
[Drmota—Soria, '97]

Hypothesis [H]. Let F(z,u) = >=, , f.xz"u* be a power series in two variables
with nonnegative coefficients f,x > 0 such that f(z,1) has a radius of convergence of
p>0.

’I—‘ ) . —
e _/J/ .J/’, / - 7-/ e e—
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A half-normal distribution scheme for generating functions

Images and preimages in random mappings
[Drmota—Soria, '97]

Hypothesis [H]. Let F(z,u) = =, , f.cz"uk be a power series in two variables
with nonnegative coefficients f,x > 0 such that f(z,1) has a radius of convergence of
p > 0.

We suppose that F(z, u) has the local representation

1 z
m—g(z,u)ﬂ-h(z,u) l—m

for |u—1| < e and |z — p(u)| < ¢, arg(z — p(u)) # 0, where € > 0 is some fixed real
number, and g(z, u), h(z, u), and p(u) are analytic functions.

(25)

e ™ Vo T P /J‘f’—rlr o~ wu—
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A half-normal distribution scheme for generating functions

Images and preimages in random mappings
[Drmota—Soria, '97]

Hypothesis [H]. Let F(z,u) = 3=, focz"uk be a power series in two variables
with nonnegative coefficients f,x > 0 such that f(z, 1) has a radius of convergence of
p>0.

We suppose that F(z, u) has the local representation

1 z
Foo) g(z,u) + h(z,u), /1 — m

for lu—1| < e and |z — p(u)| < ¢, arg(z — p(u)) # 0, where € > 0 is some fixed real
number, and g(z, u), h(z, u), and p(u) are analytic functions.

Furthermore, these functions satisfy g(p,1) =0, h(p,1) > 0, and p(1) = p.

In addition, z = p(u) is the only singularity on the circle of convergence |z| =
|p(u)| for |u — 1| < € and F(z,u), can be analytically continued to a region |z| <
540, ul <146, |u—1] > 5 for some § > 0.

__//7/’/ '7//'_// S

(25)

gl
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A half-normal distribution scheme for generating functions

Images and preimages in random mappings
[Drmota—Soria, '97]

Hypothesis [H']. Let F(z,u) = 3=, , fcz"uk be a power series in two variables
with nonnegative coefficients f,, > 0 such that f(z, 1) has a radius of convergence of
p>0.

We suppose that F(z, u) has the local representation

(25) F(zl P = g(z,u) + h(z, U)H

for [u—1| < e and |z — p(u)| < ¢, arg(z — p(u)) # 0, where € > 0 is some fixed real
number, and g(z, u), h(z, u), and p(u) are analytic functions.

Furthermore, these functions satisfy g(p,1) =0, W, and p(1) = p.

In addition, z = p(u) is the only singularity on the circle of convergence |z| =
|p(u)| for |u — 1| < € and F(z,u), can be analytically continued to a region |z| <
540, ul <1+6,|u—1] > 5 for some § > 0.

o N N P - - P

" e ) e -
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Extension to the half-normal distribution

 Theorem [Drmota—Soria, '97]

Let F(z,u) be a bivariate generating function satisfying [H] . If p(u) = p = const for
|lu—1| <e and gu(p,1) <O,
then the sequence of random variables X, defined by

[z”uk] F(z,u)

P[X, = k] =
o =1 = R
has a Rayleigh limiting distribution; i.e.
Xn 4
— = R(N),
AR
2
where \ = 2256’)1,)1)2 and R(X) has density Ax exp <—>‘TX2) for x > 0.
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Extension to the half-normal distribution

 Theorem [Drmota—Soria, '97]

Let F(z,u) be a bivariate generating function satisfying [H] . If p(u) = p = const for
|lu—1| <e and gu(p,1) <O,
then the sequence of random variables X, defined by

[z”uk] F(z,u)

P[X, = k] =
o =1 = R
has a Rayleigh limiting distribution; i.e.
Xn 4
— = R(N),
AR
2
where \ = 2256’)1,)1)2 and R(X) has density Ax exp <—>‘TX2) for x > 0.

Expected value and variance are given by
T 1 T™ n
EXp =4/ -— o1 d VXp=(2——-)-+0 .
=15 5 VIO an n=( 2)/\Jr(\/E)
Moreover, we have uniformly for all k > 0 the local law
Ak Ak?
P[X, = k] = == exp ( 5 ) +O((k+1)n~32) + O(n7Y).
n

n
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Extension to the half-normal distribution

 Theorem [Drmota—Soria, '97]

Let F(z,u) be a bivariate generating function satisfying [H] . If p(u) = p = const for
|lu—1| < e and gu(p,1) <O,
then the sequence of random variables X, defined by

nykl F
P[Xy — k] = [z7uk] F(z,u)
[z"] F(z,1)
has a Rayleigh limiting distribution; i.e.
Xn
24 R(A
2RO
where X\ = %’(L)l? and R(X) has density Ax exp ( ) for x > 0.

Expected value and variance are given by

T 1 T\ N
X, = ‘/Eﬁ‘/ﬂ o@1) and VX, =(2- E) 1 +O(/n).
Moreover, we have uniformly for all k > 0 the local law

P[X, = k] = % exp (7)\271:12) O((k + 1)n—3/2) + O(n—l).
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A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

Let F(z,u) be a bivariate generating function satisfying [H] . If p(u) = p = const for
|u—1] < e and gu(p,1) <O,
then the sequence of random variables X, defined by

z"uk] F(z,u
P[Xn:k]:i[ 1F(z,0)
[z"] F(z,1)
has a Rayleigh limiting distribution; i.e.

% 4 RN,

where A = % and R(\) has density Ax exp ( ) for x > 0.
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A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

Let F(z,u) be a bivariate generating function satisfying [H'] . If p(u) = p = const for
|u—1] < e and gu(p,1) <O,
then the sequence of random variables X, defined by

z"uk] F(z,u
P[Xn:k]:i[ 1F(z,0)
[z"] F(z,1)
has a Rayleigh limiting distribution; i.e.

% 4 RN,

where A = % and R(\) has density Ax exp ( ) for x > 0.

Michael Wallner  TU Wien = 07.07.2016 12 /20



A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

then the sequence of random variables X, defined by

[z"uk] F(z,u)

P[Xh = k] =
o =1 = R
has a Rayleigh limiting distribution; i.e.
Xn 4
— = R(N),
TSRO

where A = % and R(\) has density Ax exp ( ) for x > 0.

Let F(z,u) be a bivariate generating function satisfying [H'] . If p(u) = p = const for
lu—1] <e and gu(p,1) = guu(p; 1) = h(p,1) =0, gz(p, 1) # 0, and hu(p,1) # 0,
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A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

then the sequence of random variables X, defined by

[z"uk] F(z,u)

P[X, = k] =
o =K = r )
has a half-normal /imiting distribution; i.e.
X
RALIA H(o),

\/>
where A\ = % and R(X) has density Ax exp ( ) for x > 0.

Let F(z,u) be a bivariate generating function satisfying [H'] . If p(u) = p = const for
lu—1] <e and gu(p,1) = guu(p; 1) = h(p,1) =0, gz(p, 1) # 0, and hu(p,1) # 0,
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A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

Let F(z,u) be a bivariate generating function satisfying [H'] . If p(u) = p = const for
lu—1] <e and gu(p,1) = guu(p;1) = h(p,1) =0, gz(p, 1) # 0, and hu(p,1) # 0,
then the sequence of random variables X, defined by

[z”uk] F(z,u)

P[X, = k] =
o =K = r e
has a half-normal /imiting distribution; i.e.
Xn d
— — H(o),
)
where o = \/5%(‘;—’% and H(c) has density ,/# exp (—gf) for x > 0.
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A half-normal distribution scheme for generating functions

Extension to the half-normal distribution

Half Normal Theorem [W, '16]

Let F(z,u) be a bivariate generating function satisfying [H'] . If p(u) = p = const for

lu—1] < e and gu(p,1) = guu(p,1) = h(p,1) =0, gz(p,1) # 0, and hy(p,1) # 0,
then the sequence of random variables X, defined by

o [z"uk] F(z,u)
=K = "oFe

has a half-normal limiting distribution; i.e.

X0 4 34(0),

— o

NG |
where 0 = 2;;2((’:;’11)) and H(o) has density 2 exp ( ) for x > 0.

Expected value and variance are given by

EX, = \/ga\/ﬁ—i- O(1) and VX, = (1 - %) a2n+ O(y/n).

Moreover, we have uniformly for all k > 0 the local law

]P’[X,,:k]:% iexp( 220/")+O< *3/2)+O(n*1).

m™n
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Sketch of the proof

Technique: Pointwise convergence of characteristic function

Bfe/vi] = EIF@ ) e (ﬁhu(p’ ) t)

Analytic
Combinatorics

[z7]F(z,1) rgz(p;1)
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A half-normal distribution scheme for generating functions

Sketch of the proof

Technique: Pointwise convergence of characteristic function

itX,//n [Z"]F(Z,e%) n—00 ﬁhu(p,l)
E[e ] - ? - |l ——F ¢ Analytic
[Z ] (Z, 1) sz(P, 1) Combinatorics

Necessary steps:
m Contour integration to extract asymptotic coefficients

m Bound and estimate gamma function-like integrals

—

Sl

]og_zn
\ 141
L
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Returns to zero

Definition

m A return to zero is a vertex of a path of \
altitude 0 whose abscissa is positive.

m An arch is a bridge of size > 0 whose /
only contact with the x-axis is at its end
points.

Figure: A walk with 3 returns to zero
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A half-normal distribution scheme for generating functions

Returns to zero

Definition

m A return to zero is a vertex of a path of \\
altitude 0 whose abscissa is positive.

m An arch is a bridge of size > 0 whose / \

only contact with the x-axis is at its end
points.

Figure: A walk with 3 returns to zero

Results for directed walks

m P(u)=p_1u™t + py + pru

m Walks: W(z) = %P(I)

m Bridges: B(z) known from [Banderier-Flajolet, '02]
(Square-root singularity)
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Construction of the generating function for returns to zero

L]
N
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Construction of the generating function for returns to zero

\ \
\ /
/
\ \
/
Generating function of Bridges

1 1
B(z) = ———— B ="
@) =T2@y (v =T
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Construction of the generating function for returns to zero

\ \
\ /
/
\ \
/
Generating function of Bridges
1 1
B = — B g
@) =T2@y (v =T
Generating function of the Tail
W(z)
T —
Generating function of Walks
1 w
W(z,u) = ———T(z) = __We)

T il= uA(z)
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Limit laws for the number of returns to zero

Walks of length n having k returns to zero
[z"uK]W(z, u)

P[X, = k] = P[size = n, #freturns to zero = k| = [2W(z,1)

Theorem [Extension: Feller, Ch. Ill, Problems 9-10]

Let X, denote the number of returns to zero of unconstrained walks of length n.
Let 6 = P’(1) be the drift.

For 6 # 0 we get convergence to a geometric distribution:

d |P1—P71\ .
X, — Geom <P(1) >

For § = 0 we get convergence to a half-normal distribution:

Xn d P(1)
\/E%H< P”(l))
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Proof sketch

Wz 1 1
u+(1—-u)B(z) 1—-2zP(1) u+(1-u)B(z2)

W(z,u) =

: i distribution: 1
6 # 0. Geometric distribution: Geom (W)
Dominant singularity ﬁ and second factor analytic
1 P(1)"

(/PN 1 - u (1 - gy

[2"|W(z,u) = 5 + o(P(1)").
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Proof sketch

Wz 1 1
u+(1—-u)B(z) 1—-2zP(1) u+(1-u)B(z2)

W(z,u) =

6 # 0. Geometric distribution: Geom (m)

Dominant singularity ﬁ and second factor analytic

X P(1)"
(/PN 1 - u (1 - gy

6 = 0: Half-normal distribution: H( %)

Both factors singular at p := ﬁ and we get forz -+ pand u — 1

[2"|W(z,u) = 5 + o(P(1)").

= g(z,u) + h(z,u), /1 — p

(9 - @20 ((-3)0-0)

W(z,u)
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Proof sketch

W(z 1 1
Wz u) = i —(u))B(z) T1-2zP(1) u+(1-u)B(z)
Conditions leading to a half-normal distribution
mg(p,1)=0 = h(p,1)=0
= gu(p,1)=0 m hy(p,1) #0
® gu(p,1) =0
= g (p,1) #0

6 = 0: Half-normal distribution: 7 (/£

Both factors singular at p := % and we get for z — pand u — 1

=g(z,u) + h(z,u), /1 — ;

:<l—§>u + C(1-u) 1—£+0<<1—£>(1—“)>

W(z,u)
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A half-normal distribution scheme for generating functions

Height of Motzkin walks

Motzkin walk
m Unconstrained walk generated from
m Step polynomial P(u) = p_ju~! + po + pru with
B p_1,p0,p1 € Ry.

Height

Figure: A Motzkin walk of height 2
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Limit laws for the height of Motzkin walks

 Theorem [Extension: Feller, Ch. 111.7, Theorem 1]

Let X, denote the height of Motzkin walks of length n.
Depending on the drift § = P’(1) we get:

0<0 0=0 >0

Michael Wallner  TU Wien = 07.07.2016



A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

 Theorem [Extension: Feller, Ch. 111.7, Theorem 1]

Let X, denote the height of Motzkin walks of length n.
Depending on the drift § = P’(1) we get:

0<0 0=0 >0
Geometric

A(1 — )
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A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

 Theorem [Extension: Feller, Ch. 111.7, Theorem 1]

Let X, denote the height of Motzkin walks of length n.
Depending on the drift § = P’(1) we get:

0<0 0=0 >0
Geometric Normal

A(1 — )
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A half-normal distribution scheme for generating functions

Limit laws for the height of Motzkin walks

 Theorem [Extension: Feller, Ch. 111.7, Theorem 1]

Let X, denote the height of Motzkin walks of length n.
Depending on the drift § = P’(1) we get:

0<0 6=0 §>0
Geometric Half-normal Normal

A(1 — )
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A half-normal distribution scheme for generating functions

Results for Motzkin paths

Geometric Normal Half-normal Rayleigh
2 2 2
POF | A1-X" | o ee (_ 252 ) 707 P (—27) -z eXp ( 357
Mean =2 a\/g /3
Var | 2 70-2) | 7e-3)

’ drift H returns to zero ‘ sign changes ‘

height

s<0 | o(%) G () G ()
o= | (R [y [n(/2)
6>0 | o(%) g (%) N(0,1)

Table: Limit laws for Motzkin paths (P(u) = p—zl + po + p1u) after proper rescaling.
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A half-normal distribution scheme for generating functions

Results for Motzkin paths

Geometric Normal Half-normal Rayleigh

w| [
/
o

/

x—p)? X2 X X2
PDF A1 — M)k oz ©XP (—( —4) ) 25 exp ( @) 2 exp (—?)

1-X 2 ™
Mean =8 I a\/; o5

Var 1 o’ *(1-2) *(2-3)

| drift || returns to zero | sign changes | height |

5>0 | o (2) g (%) N(0,1)
pP—1

Table: Limit laws for Motzkin paths (P(u) = =* + po + p1u) after proper rescaling.
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Rayleigh

A half-normal distribution scheme for generating functions

Results for Motzkin paths
Geometric Normal Half-normal
; oy
PDF | A(1— M) -7 &P ( %)
Mean o5
Var o2 (2 — %)

p—1
5 (%)
P=1 4 po + pru) after proper rescaling

Table: Limit laws for Motzkin paths (P(u)
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A half-normal distribution scheme for generating functions

Backup slides
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A half-normal distribution scheme for generating functions

Lemma

Let v be the Hankel contour starting from “+e?™'00”, passing around 0 and
tending to +00. Then

1 e ?
— | ———dz = 2
2mi /,Y Z+is\/—z 2= n (\[S) ’

2 [ .
o) =2 [ el
™ Jo

denotes the characteristic function of the Half-normal distribution.

where

Lemma

Let v be as in Lemma ??. Then
1 e—SV—z—z

— | ———dz = e /4,
i ), =z

1
T
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Marking the height

1 1--Pou(2)
1-2zP(1) 1 - uttu(2)

F(z,u) =
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Marking the height

1 1-2u(?) 1

Flzu) =12 P()1—uw(z)  1- pzuE(2) M

Figure: The first passage decomposition of a Motzkin walks into (negative) excursions
and a trailing negative meander.
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Marking the height

1— 2 yy(z
_ 1 = 1(2) 1 M_(2)
1-zP(1)1—utu(z) 1-pzuE(2)

F(z,u)

Figure: The first passage decomposition of a Motzkin walks into (negative) excursions
and a trailing negative meander.

[ukz"]F(z, u) _ [ukz"]|F(z, u)
[z"]F(z,1) P(1)"

P[X, = k] =
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Reflection-absorption model

. 72
m Lattice: Z4
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Reflection-absorption model

m Lattice: Z2
m Altitude k # 0

m Weighted step set S
= P(u) =0 pied

time-independent
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Reflection-absorption model

m Lattice: Z2
m Altitude k # 0

m Weighted step set S
= P(u) =YL pief /

m Altitude k =0 \ /
m Weighted step set Sp V
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Reflection-absorption model

m Lattice: Z2
m Altitude k # 0
m Weighted step set S

= P(u) =YL pief /
m Altitude k =0 \ /
m Weighted step set So V

m Po(u) = 1 po,ivf
time-independent

VAbsorption model (extends [Banderier—Flajolet, '02])
Loss of mass at 0: Py(1) < 1

| Reflection model [Banderier-W, '14]
No loss of mass at 0: Py(1) =1
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Final altitude of meanders

Definition
The final altitude of a path is defined as the
ordinate of its endpoint.

k =
Generating function / \ K :2
1—z(P(u) — Po(u)) E(2) k-l
F = =
(z,u) 1—zP(u) =0
c Figure: The final altitude is 3
(=)
E(z) = ——— ui(z
@)=, ITuea

Meanders of length n and final altitude k

[2"u¥]F (2, u)

PP =K = [z7]F(z,1)
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: § = P'(1)

Theorem (Reflection-absorption model)

| o] 5=0 T 350
it Tow | 1 | 1
B~ || const \/Em \/Zm 5n
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: § = P'(1)

Theorem (Reflection-absorption model)

\ [ 6<0 ] 5=0 [ 6>0
| Limit law || Discrete || | I
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: § = P'(1)

Theorem (Reflection-absorption model)

\ [ 6<0 ] 5=0 [ 6>0 |
| Limit law || Discrete || | | Gaussian |
B~ || const \/Em \/Zm 5n
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: § = P/(1)

Theorem (Reflection-absorption model)

\ | o<o0 ] =0 | >0 |
| Limit law || Discrete || | | Gaussian |

E[X,] ~ const \/g P""(1)n \/?\/W on

0
1 2 3 4 0 1 2 3 4

Figure: Limit distributions of final altitude of meanders for drift § = 0 in the reflection
(left) and absorption (right) model.
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A half-normal distribution scheme for generating functions

Limit laws for the final altitude of meanders

Drift: § = P/(1)

Theorem (Reflection-absorption model)
\ | o<o0 ] =0 | >0 |
| Limit law || Discrete || Half-normal | | Gaussian |
E[X,] ~ const %\/P”(l)n \/gx/P”(l)n on

«| Half-normal

0
1 2 3 4 0 1 2 3 4

Figure: Limit distributions of final altitude of meanders for drift § = 0 in the reflection
(left) and absorption (right) model.
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Limit laws for the final altitude of meanders

Drift: § = P/(1)

Theorem (Reflection-absorption model)

\ | o<o0 ] 5=0 | >0 |
| Limit law || Discrete || Half-normal | Rayleigh [ Gaussian |

E[X,] ~ const \/g P""(1)n \/?\/W on

«| Half-normal

Figure: Limit distributions of final altitude of meanders for drift § = 0 in the reflection
(left) and absorption (right) model.

Michael Wallner  TU Wien = 07.07.2016



