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Some combinatorial objects

bipartite graph

3-regular graph

binary matrix
0 1 0 1 1
1 0 0 0 1
0 0 0 1 0
1 0 1 0 0
1 1 0 0 0



How many are there (with given vertex degrees / row and column
sums)?

Notation:

n = number of vertices, d = (d1, . . . , dn) = degree sequence
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Asymptotics as n→∞

Read (58) 3-regular graphs:

g3(n) ∼ (3n)!e−2

(3n/2)!288n/2
.

Békéssy, Békéssy & Komlós (74)
bipartite d-regular graphs (d fixed).

Bender & Canfield (78)
graphs with max degree ∆ = O(1).

Bollobás (80)
∆ = o(

√
log n)

These three used equivalent models
(pairing or configuration)
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The formula

Number of graphs with degrees d1, . . . , dn is

g(d1, . . . , dn) =
|Φ|P(SIMPLE)∏

di!

where

Φ is the set of all pairings, so |Φ| = M1!
(M1/2)!2M1/2

(M1 =
∑
di),

SIMPLE is the event that the corresponding multigraph is simple.

If ∆ = maxi{di} is bounded, method of moments gives

P(SIMPLE) ∼ e−M2/2M1−M2
2 /4M

2
1

where M1 =
∑n

i=1 di, M2 =
∑n

i=1 di(di − 1).
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Reaching for higher degrees

Theorem [McKay 85]

If ∆ = o(M
1/4
1 ) then

P(SIMPLE) ∼ e−M2/2M1−M2
2 /4M

2
1 .

where ∆ = maxi{di}, Mk =
∑n

i=1[di]k.

(Same formula as for ∆ bounded.)



McKay’s method: switchings

Ci: set of pairings with i double edges. (Loops work similarly.)

Set-up:

1

P(C0)
=
|Φ|
|C0|
≈

imax∑
i=0

|Ci|
|C0|

where imax is sufficiently large.

Compute
|Ci|
|C0|

as a telescoping product of
|Ci|
|Ci−1|

.
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Switchings ctd

Find
|Ci|
|Ci−1|

by switchings:
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Even higher degree

Theorem [McKay & W 91]

If ∆ = o(M
1/3
1 )

P(SIMPLE) = exp
(
− M2

2M1
− M2

2

4M2
1

−M
2
2M3

2M4
1

+
M4

2

4M5
1

+
M2

3

6M3
1

+O
(∆3

M1

))

This covers d-regular for d = o(
√
n).

Proof uses better
switchings:
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Other sparse cases

Theorem [Janson 09, 14]

For M1 →∞ with M2 = O(M1),

P(SIMPLE) = o(1)+exp
(
− 1

2

∑
λii−

∑
i<j

(
λij− log(1+λij)

))
where λij =

√
di(di − 1)dj(dj − 1)/(2M1).

Theorem [Gao & W 16]

Let d = (d1, . . . , dn) be a function of n. For an appropriate function
ξ(d), if ξ(d) = o(1), then P(SIMPLE) ∼
exp

(
− M1

2 + M2
2M1
− M3

3M2
1

+ 3
4 +

∑
i<j log(1 + didj/M1)

)
.

The latter is the first case that applies to power law degree
sequences with 5

2 < γ < 3, and to sparse degree sequences with
∆�

√
n (but not d-regular with d >

√
n).



Very high degrees

McKay & W (90): formula for av. degree at least cn/ log n,
provided variation in degrees is not too large. Method uses:

g(d) = [xd1 · · ·xdn]
∏
i<j

(1 + xixj)

=
1

(2πi)n

∮
· · ·
∮ ∏

j<k(1 + zjzk)

zd+1
1 zd+1

2 · · · zd+1
n

dz1dz2 · · · dzn

where the paths of integration are simple closed contours enclosing
the origin.

Barvinok & Hartigan (12): Related integral approach, much wider
range of degrees, but formula not explicit.
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The formula for typical degrees

d := M1/n (average degree)
λ := d/(n− 1) (edge density)
γ2 :=

∑n
j=1(dj − d)2/n2 (scaled variance of degrees)

Theorem [McKay & W 91]

Suppose that dn→∞ and d ≤ n/2, and either

∆ = o(n1/3d1/3) (very sparse case), or

d > 2
3n/ log n (very dense case).

Suppose also max{|dj − d|} = o(max{d1/2+ε, n1/8}). Then

g(d) ∼ exp
(1

4
− γ2

2

4λ2(1− λ)2

)√
2(λλ(1− λ)1−λ)(

n
2)

n∏
j=1

(
n− 1

dj

)
.



Asymptotic Enumeration Conjecture (McKay & W 90)

The same formula holds for all d ≤ n/2 such that dn→∞, i.e. the
number of edges tends to infinity.

Remaining gap: o(
√
n) ≤ d ≤ cn/ log n.

The Gap

... it has gained infamy for suicides.
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Asymptotic Enumeration Conjecture (McKay & W 90)

The same formula holds for all d ≤ n/2 such that dn→∞, i.e. the
number of edges tends to infinity.

Remaining gap: o(
√
n) ≤ d ≤ cn/ log n.

The Gap (Sydney)

... it has gained infamy for suicides.



The formula again

d := M1/n (average degree)
λ := d/(n− 1) (edge density)

g(d) ∼ exp
(1

4
− γ2

2

4λ2(1− λ)2

)√
2(λλ(1− λ)1−λ)(

n
2)

n∏
j=1

(
n− 1

dj

)
.

Set m = M1/2.

√
2(λλ(1− λ)1−λ)(

n
2)
∏n
j=1

(
n−1
dj

)
((n

2)
m

) ∼
∏n
j=1

(
n−1
dj

)
(λλ(1− λ)1−λ)n−1

(λλ(1− λ)1−λ)n(n−1)
(
n(n−1)

2m

)
i.e.
√

2(λλ(1− λ)1−λ)(
n
2)
∏n
j=1

(
n−1
dj

)
|G(n,m)|

∼ P(d) in indept binomials

P(Bin(n(n− 1), λ) = 2m)



The degree sequence of G(n, p)
Two sequences of probability spaces, An and Bn, are asymptotically
quite equivalent (a.q.e.) if

PrAn
(Hn) ∼ PrBn

(Hn)

for all events Hn having probability at least n−O(1).

Bp(n) – random sequence of n independent binomial variables
Bin(n− 1, p)

D(G) – degree sequence of a graph G

Binomial Approximation Conjecture (McKay & W 95)

For integer m let p = m

(n
2)

and assume that p(1− p)� logn
n2 . Then

D(G(n,m)) and Bp(n)
∣∣
Σ=2m

are a.q.e.

D(G(n, p)) and Bp̂(n)
∣∣
Σ is even

are a.q.e., where p̂ is a truncated
normal variable, tightly concentrated near p

We showed that this conjecture is true for any density where the

Asymptotic Enumeration Conjecture holds. So it has the same gap.
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The degree sequence of the random graph G(n, p)

Many results derived in 70s – 90s such as

Distribution of number of vertices of degree k (Bollobás 80s,
Barbour, Karoński and Ruciński 89, Barbour, Holst and
Janson 92).

Various results about dm, the mth largest degree (Bollobás,
Pa lka). Examples: distribution when m is fixed, when is d1

determined asymptotically, when is there a.a.s. a unique
vertex of min or max degree, ...

With probability 1−O(n−K) all degrees di satisfy
|di − np| = O(

√
np log n) — unless p(1− p) is very small.

Chapter 3 of “Random Graphs” (89, 01), by Bollobás, is devoted
to this topic.

McKay & W 95 developed ways to obtain these, and more, directly
in Bp̂(n)

∣∣
Σ is even

. Many results follow, but MIND THE GAP.
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New approach for enumeration by degree sequence

Compare numbers of graphs with different degree sequences:

Rij(d) =
g(d− ei)

g(d− ej)
.

Length of telescoping products required is O(n
√
d).

−→ desired accuracy in each ratio is o
(
1/(n
√
d)
)
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Estimating the ratio by ‘degree switching’

Choose a random edge incident with v1 and move it to v2.

d− e2 ←→ d− e1

# ways −→: d1g(d− e2)
(
1− P(bad12(d− e2))

)
# ways ←−: d2g(d− e1)

(
1− P(bad21(d− e1))

) } equal
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Estimating the ratio by ‘degree switching’
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A bad choice giving a multiple edge
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Degree switching ctd
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R12(d) =
d1
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)
d2
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1− P(bad21(d− e1))

)
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Estimating P(bad12(d))

P(bad12(d)) =
1

d1
P12(d) +

1

d1

∑
i≥3

P1i,i2(d)

where

P12(d) = P(v1v2 ∈ E(G)),

P1i,i2(d) = P(v1vi, viv2 ∈ E(G))



Estimating P12(d) - first attempt
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Result of estimating P12(d)

Switchings are prevented by the presence of unwanted edges.
Their probabilities can be estimated by secondary switchings,
and so on.

Switchings k-deep indexed by graphs with up to 3k edges.

Similar computation for P1i,i2.

Maple computations use up to 2Gb memory for k = 6.

R12(d) computed to verify both conjectures (binomial-type
distribution, and asymptotic formula) for d = o(n4/5)

The gap is now much smaller. But ...
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New results

The gap is now completely filled:

Theorem [Liebanau & W 16+]

Binomial approximation conjecture holds. New argument
covers d = o(n/

√
log n).

Conjectured formula for graphs with given degrees holds. In
particular, for regular graphs.





Simple observation

Let gab(d) be the number of graphs with degree sequence d and
containing the edge vavb. Thus

gab(d) = g(d)Pab(d).

Removing the edge shows that

gab(d) = g(d− ea − eb)− gab(d− ea − eb)

and hence we have a simple observation:

gab(d) = g(d− ea − eb)
(
1− Pab(d− ea − eb)

)
.



Second approach for P12(d)

d1 = Edeg(v1) =

n∑
i=2

P1i(d)

(by linearity of expectation)

= P12(d)

n∑
i=2

P1i(d)

P12(d)
= P12(d)

n∑
i=2

g1i(d)

g12(d)

= P12(d)

n∑
i=2

g(d− e1 − ei)
(
1− P1i(d− e1 − ei)

)
g(d− e1 − e2)

(
1− P12(d− e1 − e2)

)
d1 = P12(d)

n∑
i=2

Ri2(d− e1)
1− P1i(d− e1 − ei)

1− P12(d− e1 − e2)



Second approach for P1i,i2(d)

The same equation from removing an edge

gab(d) = g(d− ea − eb)− gab(d− ea − eb)

iterates to give our second simple observation:

gab(d) = g(d− ea − eb)− gab(d− ea − eb)

= g(d− ea − eb)− g(d− 2ea − 2eb) + gab(d− 2ea − 2eb)

·
·
·
=

∑
k≥1

(−1)k−1g(d− kea − keb)



Computation for P1i,i2(d) (ctd)

That equation again:

gab(d) =
∑
k≥1

(−1)k−1g(d− kea − keb)

Similarly edge 1i fixed and operating on i2:

g1i,i2(d) =
∑
k≥1

(−1)k−1g1i(d− kei − ke2)

g1i,i2(d)

g(d)
=
∑
k≥1

(−1)k−1P1i(d− kei − ke2)g(d− kei − ke2)

g(d)

P1i,i2(d) =
∑
k≥1

(−1)k−1P1i(d− kei − ke2)
g(d− kei − ke2)

g(d)
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g1i,i2(d)

g(d)
=
∑
k≥1

(−1)k−1P1i(d− kei − ke2)g(d− kei − ke2)

g(d)
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∑
k≥1

(−1)k−1P1i(d− kei − ke2)
g(d− kei − ke2)

g(d)



Computation for P1i,i2(d) (ctd 2)

That equation again:

P1i,i2(d) =
∑
k≥1

(−1)k−1P1i(d− kei − ke2)
g(d− kei − ke2)

g(d)

Our third simple observation:

g(d− kei − ke2)

g(d− (k − 1)ei − (k − 1)e2)
=
Pi2(d− (k − 1)ei − (k − 1)e2)

1− Pi2(d− kei − ke2)

finally gives

P1i,i2(d) = F(P1i, Pi2, P1i(d− ei − e2), . . .)



The resulting equations for Pab and Rab

Pab(d) = da

(∑
i 6=a

Rib(d− ea)
1− Pai(d− ea − eb)

1− Pab(d− ea − eb)

)−1

Rab(d) =
da
(
1− P(badab(d− eb))

)
db
(
1− P(badba(d− ea))

)
where P(badab), P(badba) are functions of various Pij .

RHS’s can be viewed as an operator on the set of Pab and Rab for
which we desire an appropriate fixed point.



Initial step of recursive computation

With d = (n− 1)p, assume d = o(n/
√

log n).
We can assume things that hold ‘asymptotically quite surely’ for
say d > n1/3:

|di − d| = O(
√
d log n) for all i;∑

|di − d|2 = dn+O(d3/4n)

First step: by ordinary switchings it’s easy to see

P12(d) = O(d/n)



Recursive computation
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n2
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Pab(d) = da
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i 6=a
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1− Pai(d− ea − eb)
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)−1

Rab(d) =
da
(
1− P(badab(d− eb))

)
db
(
1− P(badba(d− ea))

)

P12(d) =
d1d2

dn

(
1− (d− d1)(d− d2)

dn

(
1 +

dd1 + dd2 − d1d2

dn

))
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( d4

n4

)

R12(d) =
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d2(n− d1)
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Recursive computation
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Recursive computation

Pab(d) = da

(∑
i 6=a

Rib(d− ea)
1− Pai(d− ea − eb)

1− Pab(d− ea − eb)

)−1

Rab(d) =
da
(
1− P(badab(d− eb))

)
db
(
1− P(badba(d− ea))

)

P12(d) =
d1d2

dn

(
1− (d− d1)(d− d2)

dn

(
1 + T + T 2

))
+O

( d5

n5

)

(T = (dd1 + dd2 − d1d2)/dn)

R12(d) =
d1(n− d2)

d2(n− d1)
+O

(√d log n

n2

)



Recursive computation

Pab(d) = da

(∑
i 6=a

Rib(d− ea)
1− Pai(d− ea − eb)

1− Pab(d− ea − eb)

)−1

Rab(d) =
da
(
1− P(badab(d− eb))

)
db
(
1− P(badba(d− ea))

)

P12(d) =
d1d2

dn

(
1− (d− d1)(d− d2)

dn

(
1 + T + T 2 + T 3

))
+O

( d6

n6

)

(T = (dd1 + dd2 − d1d2)/dn)

R12(d) =
d1(n− d2)
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+O
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Recursive computation

Pab(d) = da

(∑
i 6=a

Rib(d− ea)
1− Pai(d− ea − eb)

1− Pab(d− ea − eb)

)−1

Rab(d) =
da
(
1− P(badab(d− eb))

)
db
(
1− P(badba(d− ea))

)

P12(d) =
d1d2(n− d)

n(dn− d1d− d2d+ d1d2)
+O

(√d log n

n2

)

[Both these relations are now easily verified]

R12(d) =
d1(n− d2)

d2(n− d1)
+O

(√d log n

n2

)



Results

This proves the binomial approximation conjecture.

Continuing the same process to get more accuracy gives the
asymptotic formula conjecture in the gap (and with a wider range
of degrees):

Theorem [Liebenau & W 16+]

Let d = 1
n

∑
di and λ = d/(n − 1). Suppose that

∑
di is even,

log3 n < d = o(n/
√

log n), max{|dj − d|} = o(d3/5). Then

g(d) ∼ exp
(1

4
− γ2

2

4λ2(1− λ)2

)√
2(λλ(1− λ)1−λ)(

n
2)

n∏
j=1

(
n− 1

dj

)
.
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.



d-regular case

g(d) ∼ e
1
4

√
2

(
dd(n− 1− d)n−1−d

(n− 1)n−1

)n/2(n− 1

d

)n
.

McKay and Isaev have announced another proof of this (mid June
2016) for d� n3/4, by analysing the Cauchy integrals using
complex martingales.



Digraphs, bipartite graphs (0/1 matrices), hypergraphs

Almost identical argument gives analogous enumeration
results for all these objects.

This completes the obvious binomial approximation theorems
for degree sequences of random digraphs and random bipartite
graphs with given numbers of edges. (Very dense cases not
yet done for hypergraphs, but Greenhill, Isaev and McKay
claim a result for k-uniform.)

Applies also to restricted versions of hypergraphs (such as
linear).



Results with more restricted sparsity

Graphs:

Read (60)

Bender & Canfield (78)

Bollobás (80)

McKay (85)

McKay & W (91)

Bipartite graphs:

O’Neil (69)

Békessy, Békessy and Komlós (72)

Bender (74)

McKay (84)

McKay & Wang (03)

Greenhill, McKay & Wang (06)

Hypergraphs:

Cooper, Frieze, Molloy &
Reed (96)

Dudek, Frieze, Ruciński
& Šileikis (13)

Blinovsky & Greenhill
(16)

Blinovsky & Greenhill
(16+)



What remains

Work in progress (with Leckey and Liebenau): enumeration of
k × n Latin rectangles.

Work in progress (with McKay, since 1990): implications of
the binomial model for the degree sequence of a random
graph.

UNSOLVED PROBLEM: number of linear hypergraphs in the
dense case (∼ cn edges)
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