JAGIELLONIAN UNIVERSITY
IN KRAKOW

Proceedings of the 27" International Conference on
Probabilistic, Combinatorial and Asymptotic
Methods for the Analysis of Algorithms

AofA16

Editors:

Ralph Neininger and Marek Zaionc

Krakow, Poland, July 4-8, 2016



JAGIELLONIAN UNIVERSITY
IN KRAKOW

AofA16

27" International Conference
on Probabilistic, Combinatorial
and Asymptotic Methods
for the Analysis of Algorithms

July 4-8, 2016, Krakéw, Poland

Confirmed keynote speakers

Jean Bertoin, Zurich Univ., Switzerland

Pawet Btasiak, Polish Academy of Sciences, Krakéw, Poland
Hsien-Kuei Hwang, Academia Sinica, Taipeh, Taiwan

Bob Sedgewick, Princeton Univ., USA — FLAJOLET LECTURE
Wojtek Szpankowski, Purdue Univ., USA

Nick Wormald, Monash Univ., Australia

Scientific Committee

Nicolas Broutin, INRIA Rocquencourt, France
Jacek Cichon, Wroctaw UT, Poland

Michael Drmota, TU Vienna, Austria

Hsien-Kuei Hwang, Academia Sinica, Taiwan
Mihyun Kang, TU Graz, Austria

Jakub Kozik, JU Krakéw, Poland

Gdbor Lugosi, UPF Barcelona, Spain

Markus Nebel, TU Kaiserslautern, Germany

Ralph Neininger, GU Frankfurt, Germany, co-chair
Marc Noy, UPC Barcelona, Spain

Daniel Panario, Carleton Univ., Canada

Alois Panholzer, TU Vienna, Austria

Bruno Salvy, INRIA Lyon, France

Michele Soria, Paris 6, France

Henning Sulzbach, McGill, Montréal, Canada
Brigitte Vallée, Caen Univ., France

Stephan Wagner, Stellenbosch Univ., South Africa
Marek Zaionc, JU Krakéw, Poland, co-chair

Organizing Committee Steering Committee
Marek Zaionc, JU Krakéw, Poland Bob Sedgewick (Chair)
Ralph Neininger, GU Frankfurt, Germany  Nicolas Broutin
Katarzyna Grygiel, JU Krakéw, Poland Michael Drmota

Maciej Bendkowski, JU Krakéw, Poland Conrado Martinez
Agnieszka tupinska, JU Krakdw, Poland Michele Soria
tukasz Lachowski, JU Krakéw, Poland Brigitte Vallée

Conference office Important dates

Submission deadline: February 12, 2016
Notification: April 22, 2016

Final version: May 13, 2016

Early registration: May 13, 2016

Grupa A-05 Meetings £ Events
31-101 Krakéw, pl. Na Groblach 14/2
+4812 429 62 23, info@a05.pl

www.aofa2016.meetings.pl




Preface

The present volume collects the proceedings of AofA 2016, the 27" International Meeting on Probabilistic,
Combinatorial, and Asymptotic Methods for the Analysis of Algorithms held at the Jagiellonian University
in Krakéw, during July 4-8, 2016. The conference builds on the communities of the former series of confer-
ences ‘Mathematics and Computer Science’ and ‘Analysis of Algorithms’, and aims at studying rigorously the
combinatorial objects which appear in the analysis of data structures and algorithms, as well as the essential
ubiquitous combinatorial structures. The program committee selected submissions covering this wide range
of topics. These regular papers, that were presented in 30-minute talks, appear in the present volume. The
conference included poster and software demo sessions.

The conference also presented six invited plenary lectures. The ‘Flajolet lecture’ was given by Bob Sedgewick
(Princeton University, USA) and the five invited talks were the following:

e Jean Bertoin, Ziirich University, Switzerland,

e Pawet Blasiak, Polish Academy of Sciences, Krakéw, Poland,
e Hsien-Kuei Hwang, Academia Sinica, Taipeh, Taiwan,

e Wojtek Szpankowski, Purdue University, USA,

e Nick Wormald, Monash University, Australia.

We thank the members of the steering and program committees for their involvement. We also thank the
invited speakers and the authors of the contributed papers. We express our gratitude to the members of the
organizing committee for their invaluable help in making this meeting a great success. Finally, our special thanks
go to the sponsors of the conference for their contributions: the Department of Mathematics and Computer
Science of Jagiellonian University in Krakéw, the City of Krakow and the Polish Academy of Sciences.

Ralph Neininger and Marek Zaionc
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Analysis of Algorithms for Permutations
Biased by Their Number of Records
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The topic of the article is the parametric study of the complexity of algorithms on arrays of pairwise distinct integers.
‘We introduce a model that takes into account the non-uniformness of data, which we call the Ewens-like distribution
of parameter 6 for records on permutations: the weight 8" of a permutation depends on its number r of records. We
show that this model is meaningful for the notion of presortedness, while still being mathematically tractable. Our
results describe the expected value of several classical permutation statistics in this model, and give the expected
running time of three algorithms: the Insertion Sort, and two variants of the Min-Max search.

Keywords: permutation, Ewens distribution, random generation, analysis of algorithms

1 Introduction

A classical framework for analyzing the average running time of algorithms is to consider uniformly
distributed inputs. Studying the complexity of an algorithm under this uniform model usually gives a
quite good understanding of the algorithm. However, it is not always easy to argue that the uniform
model is relevant, when the algorithm is used on a specific data set. Observe that, in some situations, the
uniform distribution arises by construction, from the randomization of a deterministic algorithm. This is
the case with Quick Sort for instance, when the pivot is chosen uniformly at random. In other situations,
the uniformity assumption may not fit the data very well, but still is a reasonable first step in modeling it,
which makes the analysis mathematically tractable.

In practical applications where the data is a sequence of values, it is not unusual that the input is already
partially sorted, depending on its origin. Consequently, assuming that the input is uniformly distributed,
or shuffling the input as in the case of Quick Sort, may not be a good idea. Indeed, in the last decade,
standard libraries of well-established languages have switched to sorting algorithms that take advantage of
the “almost-sortedness” of the input. A noticeable example is Tim Sort Algorithm, used in Python (since
2002) and Java (since Java 7): it is particularly efficient to process data consisting of long increasing (or
decreasing) subsequences.

In the case of sorting algorithms, the idea of taking advantage of some bias in the data towards sorted
sequences dates back to Knuth [9, p. 336]. It has been embodied by the notion of presortedness, which

Supported by a Marie Heim-Vogtlin grant of the Swiss National Science Foundation.
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quantifies how far from sorted a sequence is. There are many ways of defining measures of presortedness,
and it has been axiomatized by Mannila [10] (see Section 2.2 for a brief overview). For a given measure
of presortedness m, the classical question is to find a sorting algorithm that is optimal for m, meaning that
it minimizes the number of comparisons as a function of both the size of the input and the value of m. For
instance, Knuth’s Natural Merge Sort [9] is optimal for the measure » =“number of runs” , with a worst
case running time of O(n logr) for an array of length n.

Most measures of presortedness studied in the literature are directly related to basic statistics on per-
mutations. Consequently, it is natural to define biased distributions on permutations that depend on such
statistics, and to analyze classical algorithms under these non-uniform models. One such distribution is
very popular in the field of discrete probability: the Ewens distribution. It gives to each permutation ¢ a
probability that is proportional to #°¥°'*(?) where 6 > 0 is a parameter and cycle(o) is the number of cy-
cles in ¢. Similarly, for any classical permutation statistics , a non-uniform distribution on permutations
may be defined by giving to any ¢ a probability proportional to X(?), We call such distributions Ewens-
like distributions. Note that the Ewens-like distribution for the number of inversions is quite popular,
under the name of Mallows distribution [7, and references therein].

In this article, we focus on the Ewens-like distribution according to x = number of records (a.k.a. left
to right maxima). The motivation for this choice is twofold. First, the number of records is directly linked
to the number of cycles by the fundamental bijection (see Section 2.1). So, we are able to exploit the
nice properties of the classical Ewens distribution, and have a non-uniform model that remains mathe-
matically tractable. Second, we observe that the number of non-records is a measure of presortedness.
Therefore, our distribution provides a model for analyzing algorithms which is meaningful for the notion
of presortedness, and consequently which may be more realistic than the uniform distribution. We first
study how this distribution impacts the expected value of some classical permutation statistics, depending
on the choice of §. Letting  depend on n, we can reach different kinds of behavior. Then, we analyze
the expected complexity of Insertion Sort under this biased distribution, as well as the effect of branch
prediction on two variants of the simultaneous minimum and maximum search in an array.

2 Permutations and Ewens-like distributions
2.1 Permutations as words or sets of cycles

For any integers a and b, let [a, b] = {a, ..., b} and for every integer n > 1, let [n] = [1, n]. By convention
[0] = . If E is a finite set, let §(E) denote the set of all permutations on E, i.e., of bijective maps from F
to itself. For convenience, G([n]) is written &,, in the sequel. Permutations of &,, can be seen in several
ways (reviewed for instance in [3]). Here, we use both their representations as words and as sets of cycles.
A permutation ¢ of G,, can be represented as a word wyws . . . w,, containing exactly once each symbol
in [n]: by simply setting w; = o(i) for all ¢ € [n]. Conversely, any sequence (or word) of n distinct
integers can be interpreted as representing a permutation of G,,. For any sequence s = s152...5, of n
distinct integers, the rank rank,(s;) of s; is defined as the number of integers appearing in s that are
smaller than or equal to s;. Then, for any sequence s of n distinct integers, the normalization norm(s)
of s is the unique permutation o of &,, such that o(z) = rank,(s;). For instance, norm(8254) = 4132.
Many permutation statistics are naturally expressed on their representation as words. One will be of
particular interest for us: the number of records. If o is a permutation of &,, and i € [n], there is a
record at position ¢ in o (and subsequently, o(4) is a record) if o(i) > o(j) for every j € [i — 1]. In the
word representation of permutations, records are therefore elements that have no larger elements to their
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left. This equivalent definition of records naturally extends to sequences of distinct integers, and for any
sequence s of distinct integers, the positions of the records in s and in norm(s) are the same. A position
that is not a record is called a non-record.

A cycle of size k in a permutation o € &,, is a subset {i1, ..., i} of [n] such thati; +% ig...+% ig >
i1. It is written (41,2, . .., 7% ). Any permutation can be decomposed as the set of its cycles. For instance,
the cycle decomposition of 7 represented by the word 6321745 is (32)(641)(75).

These two ways of looking at permutations (as words or as set of cycles) are rather orthogonal, but
there is still a link between them, provided by the so-called fundamental bijection or transition lemma.
The fundamental bijection, denoted F/, is the following transformation:

1. Given o a permutation of size n, consider the cycle decomposition of o.

2. Write every cycle starting with its maximal element, and write the cycles in increasing order of their
maximal (i.e., first) element.

3. Erasing the parenthesis gives F'(o).

Continuing our previous example gives F (7') = 3264175. This transformation is a bijection, and trans-
forms a permutation as set of cycles into a permutation as word. Moreover, it maps the number of cycles
to the number of records. For references and details about this bijection, see for example [3, p. 109-110].

2.2 The number of non-records as a measure of presortedness

The concept of presortedness, formalized by Mannila [10], naturally arises when studying sorting algo-
rithms which efficiently sort sequences already almost sorted. Let E be a totally ordered set. We denote
by E* the set of all nonempty sequences of distinct elements of F, and by - the concatenation on E*. A
mapping m from E* to N is a measure of presortedness if it satisfies:

1. if X € E* is sorted then m(X) = 0;

2.if X = (21, - ,z¢)and Y = (y1,-- -, ys) are two elements of E* having same length, and such
that for every ¢, j € [{], z; < z; © y; < y; then m(X) = m(Y);

3. if X is a subsequence of Y then m(X) < m(Y);

4. if every element of X is smaller than every element of Y then m(X - Y) < m(X) + m(Y);

5. for every symbol a € E that does not occur in X, m(a - X) < |X|+ m(X).

Classical measures of presortedness [10] are the number of inversions, the number of swaps, ...One can
easily see, checking conditions 1 to 5, that mye.(s) = number of non-records in s = |s|— number of
records in s defines a measure of presortedness on sequences of distinct integers. Note that because of
condition 2, studying a measure of presortedness on G,, is not a restriction with respect to studying it on
sequences of distinct integers.

Given a measure of presortedness m, we are interested in optimal sorting algorithms with respect to m.
Let below,,(n, k) = {0 : ¢ € &,, m(c) < k}. A sorting algorithm is m-optimal (see [10] and [11]
for more details) if it performs in the worst case O(n + log | below,, (n, k)|) comparisons when applied
to o € &, such that m(c) = k, uniformly in k. There is a straightforward algorithm that is myec-
optimal. First scan ¢ from left to right and put the records in one (sorted) list L and the non-records
in another list L. Sort Ly using a O(|Ly|log|Ly|) algorithm, then merge it with Lr. The worst
case running time of this algorithm is O(n + klog k) for permutations o of &,, such that m.(c) = k.
Moreover, |below,, . (n,k)| > k! for any k& > n, since it contains the k! permutations of the form
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(k+1)(k+2)...n-7for 7 € &. Consequently, O(n + klogk) = O(n + log|below,, . (n,k)|)),
proving myec.-optimality.

2.3 Ewens and Ewens-like distribution

The Ewens distribution on permutations (see for instance [1, Ch. 4 & 5]) is a generalization of the
uniform distribution on &,,: the probability of a permutation depends on its number of cycles. Denoting
cycle(o) the number of cycles of any permutation o, the Ewens distribution of parameter 6 (where 6 is

peyele(o) As seen in []’ Ch. 5], the
€S

feyele(p) *
normalization constant » PEG gevele(p) js 9() | where the notation (™ (for any real ) denotes the rising

factorial defined by 2(™) = x(x + 1) --- (x +n — 1) (with the convention that 2(*) = 1),

Mimicking the Ewens distribution, it is natural (and has appeared on several occasions in the literature,
see for instance [4, Example 12]) to define other non-uniform distributions on &,,, where we introduce
a bias according to some statistics x. The Ewens-like distribution of parameter 6 (again 6 is any fixed

positive real number) for statistics x is then the one that gives to any o € &,, the probability %.
The classical Ewens distribution corresponds to xy = number of cycles. Ewens-like distributions can be
considered for many permutations statistics, like the number of inversions, of fixed points, of runs, ...In
this article, we focus on the distribution associated with y = number of records. We refer to it as the
Ewens-like distribution for records (with parameter 6). For any o, we let record (o) denote the number of
records of o, and define the weight of o as w(o) = §*°°®*4(?), The Ewens-like distribution for records on

&, gives probability %i) toany o € &,, where W, =3 s w(p). Note that the normalization con-

any fixed positive real number) gives to any o the probability s

stant is W,, = 0( like in the classical Ewens distribution: indeed, the fundamental bijection reviewed
above shows that there are as many permutations with ¢ cycles as permutations with ¢ records. Fig. 1
shows random permutations under the Ewens-like distribution for records, for various values of 6.

Fig. 1: Random permutations under the Ewens-like distribution on G109 with, from left to right, § = 1 (corresponding
to the uniform distribution), 50, 100, and 500. For each diagram, the darkness of a point (i, j) is proportional to the
number of generated permutations o such that o (i) = 7, for a sampling of 10000 random permutations.

2.4 Linear random samplers

Efficient random samplers have several uses for the analysis of algorithms in general. They allow to
estimate quantities of interest (even when their computation with a theoretical approach is not feasible),
and can be used to double-check theoretical results. They are also a precious tool to visualize the objects
under study (the diagrams in Fig. 4 were obtained in this way), allowing to define new problems on these
objects (for example: can we describe the limit shape of the diagrams shown in Fig. 47).
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As mentioned in [6, §2.1], one can easily obtain a linear time and space algorithm to generate a random
permutation according to the Ewens distribution (for cycles), using a variant of the Chinese restaurant
process reviewed in what follows. To generate a permutation of size n, we start with an empty array® ¢
of length n that is used to store the values of the o(i)’s. For 4 from 1 to n, we choose to either create
a new cycle containing only ¢ with probability ﬁ or to insert ¢ in one of the existing cycles with
probability Gi_iil' To create a new cycle, we set o[i] = 4. To insert 7 in an existing cycle, we choose
uniformly at random an element j in [i — 1] to be the element following 4 in its cycle, and we set o[i] = j
and oo ~![j]] = i. To avoid searching for o~1[j] in the array o, we only need to keep o~ in a second
array while adding the elements in o.

Starting from this algorithm, we can easily design a linear random sampler for permutations according
to the Ewens-like distribution for records, using the fundamental bijection. The first step is to gener-
ate a permutation ¢ in &,, with the above algorithm. Then, we write the cycles of o in reverse or-
der of their maximum, as sequences, starting from the last element and up to exhaustion of the cycle:
n,o[n],olo[n]],...,o07[n]. Each time we write an element i, we set o[i] = 0 and each time a cycle is
finished, we search the next value of 4 such that o[i] # 0 to start the next cycle. This new cycle will be
written before the one that has just been written. Note that all these operations can be performed in time
complexity O(1) using doubly linked lists for the resulting permutation. In the end, the cycles will be
written as sequences starting by their maximum, sorted in increasing order of their maximum, which is
the fundamental bijection.

Note that there exists another branching process, known as the Feller coupling, to generate permutations
according to the Ewens distribution (see for instance [1, p.16]). Although it is less natural than with the
Chinese restaurant process, it is also possible to infer linear random samplers from it. Details will be
provided in an extended version of this work.

3 Average value of statistics in biased random permutations

Let 6 be any fixed positive real number. In this section, we study the behavior of several statistics on
permutations, when they follow the Ewens-like distribution for records with parameter 6. Our purpose is
mostly to illustrate methods to obtain precise descriptions of the behavior of such statistics. Such results
allow a fine analysis of algorithms whose complexity depends on the studied statistics.

Recall that, for any o € &, w(o) = grecord(@) and the probability of o is V\VA(,U), with W,, = (),
Recall also that the records of any sequence of distinct integers are well-defined. For any such sequence s
we subsequently set record(s) to be the number of records of s and w(s) = §°¢<°"4(*)_ Note that for any
such sequence s, w(s) = w(norm(s)), because the positions (and hence the number) of records do not

change when normalizing.

3.1 Technical lemmas

Seeing a permutation of G,, as a word, it can be split (in many ways) into two words as o = 7 - T for the
usual concatenation on words. Note that here 7 and 7 are not normalized permutations: 7 belongs to the
set Skinn of all sequences of k distinct integers in [n] where k& = |7|, and 7 belongs to &,,_kinn,. The
weight function w behaves well with respect to this decomposition, as shown in the following lemmas.

@ Note that our array starts at index 1.
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Lemma 1 Let n be an integer, and T be a sequence of k < n distinct integers in [n]. Denote by m the
number of records in T whose value is larger than the largest element of [n] which does not appear in T,
and define w), (1) as 0™. Forallo € &,, ifoc =m -7, thenw(o) = w(mw) - w} (7).

For instance, the definition of w/,(7) gives wg(6489) = 62 (8 and 9 are records of 7 larger than 7) and
W (6489) = 1 (there are no records in 7 larger than 10).

We extend the weight function w to subsets X of &,, as w(X) = >\ w(o). For any sequence 7
of k < n distinct integers in [n], the right-quotient of X with 7 is X/7 = {w : 7 -7 € X}. Since
w(m) = w(norm(n)) for all sequences 7 of distinct integers, we have w(X/7) = w(norm(X /7)) for all
X and 7 as above (As expected, norm(Y) means {norm(7) : 7 € Y'}).

For k € [n], we say that X C &,, is quotient-stable for k if w(X/7) is constant when 7 runs over
Skinn- When X is quotient-stable for k, we denote w} (X') the common value of w(X/7) for T as above.
For instance, X = (4321, 3421,4132,3142,4123, 2143, 3124, 1324) is quotient-stable for k¥ = 1. Indeed,

wi(X) = w(X/1) = w({432,342}) = w(X/2) = w({413,314}) =
w(X/3) =w({412,214}) = w(X/4) = w({312,132}) = 0 + 62.

Note that &,, is quotient-stable for all & € [n]: indeed, for any 7 of size k, norm(&,, /7) = &,,_j so
that w(&,, /7) = w(&,,_) for all T of size k. It follows that w{(&,,) = w(&,,_x) = 05,

Lemma 2 Let X C &,, be quotient-stable for k € [n]. Then w(X) = 9(0:77_1)1@) wi(X).

A typical example of use of Lemma 2 is given in the proof of Theorem 3.
Remark: Lemma 2 is a combinatorial version of a simple probabilistic property: Let E.- be the set of
elements of &,, that end with 7. If A is an event on &,, and if the probability of A given F is the same
for every 7 € Gy inn, then it is equal to the probability of A, by the law of total probabilities. o

3.2 Summary of asymptotic results

The rest of this section is devoted to studying the expected behavior of some permutation statistics, under
the Ewens-like distribution on &,, for records with parameter 6. We are especially interested in the
asymptotics in n when 6 is constant or is a function of n. The studied statistics are: number of records,
number of descents, first value, and number of inversions. A summary of our results is presented in
Table 3.2. The asymptotics reported in Table 3.2 follow from Corollaries 4, 6, 9, 11 either immediately
or using the so-called digamma function. The digamma‘ function is defined by ¥(x) = I''(x)/T'(x). It
satisfies the identity Z;L:_Ol T_lm = ¥(x + n) — ¥(z), and its asymptotic behavior as x — oo is ¥(z) =
log(z) — 5= — 1=z + 0 (= ). We also define A(z,y) = ¥(z +y) — ¥(z), so that A(z,n) = Z?:_Ol z}m
for any positive integer n. In Table 3.2 and in the sequel, we use the notations P,,(E) (resp. E,[x]) to
denote the probability of an event E (resp. the expected value of a statistics x) under the Ewens-like
distribution on &,, for records.

Remark: To some extent, our results may also be interpreted on the classical Ewens distribution, via the
fundamental bijection. Indeed the number of records (resp. the number of descents, resp. the first value) of
o corresponds to the number of cycles (resp. the number of anti-excedances , resp. the minimum over

() For details, see https://en.wikipedia.org/wiki/Digamma_function (accessed on April 27, 2016).
(i) An anti-excedance of o € G,, is i € [n] such that o(i) < i. The proof that descents of o are equinumerous with anti-excedances
of F~1(o) is a simple adaptation of the proof of Theorem 1.36 in [3], p. 110-111.
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=1 fixedd >0 | 6:=n°, 0 := An, 6:=n’ | See

(uniform) 0<e<1 A>0 o6>1 Cor.

E, [record] | logn 0 -logn (I—¢)-nlogn | Alog(l+1/X)-n | n 4
E,[desc] | n/2 n/2 n/2 n/2(A+1) n?7%/2 | 6
E,[o(1)] n/2 n/(@+1) | nt=¢ A+1)/A 1 9
E, [inv] n?/4 n?/4 n?/4 n?/4- f(\) n379/6 11

Tab. 1: Asymptotic behavior of some permutation statistics under the Ewens-like distribution on &,, for records. We
use the shorthand f(A\) = 1 — 2X 4 2A% log (1 + 1/)). All the results in this table are asymptotic equivalents.

all cycles of the maximum value in a cycle) of F~!(c). Consequently, Corollary 4 is just a consequence
of the well-known expectation of the number of cycles under the Ewens distribution (see for instance [1,
§5.2]). Similarly, the expected number of anti-excedances (Corollary 6) can be derived easily from the
results of [6]. Those results on the Ewens distribution do not however give access to results as precise as
those stated in Theorems 3 and 5, which are needed to prove our results of Section 4. Finally, to the best
of our knowledge, the behavior of the third statistics (minimum over all cycles of the maximum value in
a cycle) has not been previously studied, and we are not aware of any natural interpretation of the number
of inversions of o in F~1(o). o

3.3 Expected values of some permutation statistics
We start our study by computing how the value of parameter 6 influences the expected number of records.

Theorem 3 Under the Ewens-like distribution on &,, for records with parameter 0, for any i € [n), the
probability that there is a record at position i is: Py, (record at i) = ﬁ.

Proof: We prove this theorem by splitting permutations seen as words after their i-th element, as shown
in Fig. 2. Let R,,; denote the set of permutations of &,, having a record at position 7. We claim that

. . . ™ i o .
the set R,, ; is quotient-stable for n — ¢, and that w(R,, ;) = %T‘) -00=1 . 9. It will immediately follow
that P,, (record at i) = W((;z(,j‘)‘i) = 9(;7(:;'9 =3 +f_1. We now prove the claim. Let 7 be any sequence in

Sy —iinn. Observe that norm(R,,;/7) = R;,;. Since the number of records is stable by normalization,
it follows that w(R,,;/7) = w(R,;,;). By definition, 7 € &, is in R, ; if and only if 7 (i) = i. Thus
Ri; = G;_1 -4 in the word representation of permutations. Hence, w(R;;) = 6=, since the last
element is a record by definition. This yields w(R,,;/7) = 00=19 for any 7 € Sp_jinn, proving
that R, ; is quotient-stable for n — 4, and that wf‘%i(Rn,i) = gli=1)g, By Lemma 2, it follows that

) a _ 0" pli-1
W(Rm) — pin—(mn—) 'ani(,R’n,i) — 9 AR U
1 i i+1 n
‘ 7 ‘ T ‘ Fig. 2: The decomposition used to compute the probability of
\—/\/\/ having a record at . This record has weight 6 and thus, for any
Sum to w(S,;_;) =04 @ w)(r) fixed 7, the weights of all possible 7 sum to w(S;—-1) - 0 =

pG=1) . g,

Corollary 4 Under the Ewens-like distribution on S,, for records with parameter 0, the expected value

of the number of records is: E,[record] = >, 0+3%1 =0-A(6,n).
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Next, we study the expected number of descents. Recall that a permutation ¢ of &,, has a descent at
position ¢ € {2,...,n}if o(i — 1) > o(i). We denote by desc(c) the number of descents in o. We are
interested in descents as they are directly related to the number of increasing runs in a permutation (each
such run but the last one is immediately followed by a descent, and conversely). Some sorting algorithms,
like Knuth’s Natural Merge Sort, use the decomposition into runs.

The following theorem is proved using Lemmas 1 and 2 and the decomposition of Fig. 3.

Theorem 5 Under the Ewens-like distribution on &, for records with parameter 0, foranyi € {2,...,n},

the probability that there is a descent at position i is: P, (o(i — 1) > o(i)) = %.

Sum to w(&,_s) = 602 wl(T) Sum to w(&;_p) =00 1 1 wh(7)

Fig. 3: The two cases for the probability of having a descent at i. We decompose o as 7 - o (i — 1) - o(7) - 7, and we
let p = norm(7 - o(i — 1) - o(¢)). On the left, the case where o (i — 1) is a record, that is, p(¢ — 1) = 4: there are
i — 1 possibilities for p(i). On the right, the case where o'(i — 1) is not a record: there are (*,') possibilities for the
values of p(7) and p(i — 1). In both cases, once the images of j € {i — 1,...n} by o have been chosen, the weight
of all possible beginnings sum to w(S;_») = #¢~2),

Corollary 6 Under the Ewens-like distribution on S, for records with parameter 0, the expected value

of the number of descents is: E, [desc] = %.

In the second row of Table 3.2, remark that the only way of obtaining a sublinear number of descents is
to take very large values for 6.

Finally, we study the expected value of o(1). We are interested in this statistic to show a proof that
differs from the ones for the numbers of records and descents: the expected value of the first element of a
permutation is not obtained using Lemma 2.

Lemma 7 Under the Ewens-like distribution on &,, for records with parameter 0, for any k € [0,n — 1],
_ (n=1)10(""F)
= (—k—Dlom"

the probability that a permutation starts with a value larger than k is: P,,(c(1) > k)
Proof: Let F,, ; denote the set of permutations of &,, such that o(1) > k. Such a permutation can
uniquely be obtained by choosing the preimages of the elements in [k] in {2,...,n}, then by mapping
bijectively the remaining elements to [k + 1,n]. Since none of the elements in [k] is a record and since
the elements of [k + 1,n] can be ordered in all possible ways, we get that w(F, ;) = (", ")k 0=,
Indeeed,there are (”gl)k! ways to position and order the elements of [k], and the total weight of the

w(Fap) _ (RO (no1)pn R
w(G,) T 00 T (n—k—1)1eM "

elements larger than k is 6" ~*). Hence, P,,(c(1) > k) =

Theorem 8 Under the Ewens-like distribution on &,, for records with parameter 0, for any k € [n], the
_ (n=1)16" "M

probability that a permutation starts with k is: P, (o(1) = k) eSO
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Corollary 9 Under the Ewens-like distribution on S,, for records with parameter 0, the expected value

of the first element of a permutation is: E,[o(1)] = ‘ZJFT?.

Remark: Our proof of Corollary 9 relies on calculus, but gives a very simple expression for E,,[o(1)].
We could therefore hope for a more combinatorial proof of Corollary 9, but we were not able to find it. ¢

3.4 Number of inversions and expected running time of INSERTIONSORT

Recall that an inversion in a permutation o € &,, is a pair (i,5) € [n] X [n] such that ¢ < j and
o(t) > o(j). In the word representation of permutations, this corresponds to a pair of elements in which
the largest is to the left of the smallest. This equivalent definition of inversions naturally generalizes to
sequences of distinct integers. For any o € &,,, we denote by inv(c) the number of inversions of o, and
by inv;(c) the number inversions of the form (i, ) in o, for any j € [n]. More formally, inv; (o) = |{i €
[j — 1] : (4,4) is an inversion of o'}|.

Theorem 10 Under the Ewens-like distribution on &,, for records with parameter 6, for any j € [n] and
k € [0, j — 1), the probability that there are k inversions of the form (i, j) is: Py, (inv;(o) = k) =
ifk #0and P, (inv;(c) = k) = % ifk=0.

_ 1
O+j—1

Corollary 11 Under the Ewens-like distribution on &, for records with parameter 0, the expected value
of the number of inversions is: E,[inv] = 7L(7L+i_29) + 9(92_1)A(0, n).

Recall that the INSERTIONSORT algorithm works as follows: at each step i € {2,...,n}, the firsti — 1
elements are already sorted, and the ¢-th element is then inserted at its correct place, by swapping the
needed elements.

It is well known that the number of swaps performed by INSERTIONSORT when applied to o is equal
to the number of inversions inv(c) of o. Moreover, the number of comparisons C (o) performed by the
algorithm satisfies inv(o) < C(o) < inv(o) +n — 1 (see [5] for more information on INSERTIONSORT).

As a direct consequence of Corollary 11 and the asymptotic estimates of the fourth row of Table 3.2,
we get the expected running time of INSERTIONSORT:

Corollary 12 Under the Ewens-like distribution for records with parameter 6 = O(n), the expected
running time of INSERTIONSORT is ©(n?), like under the uniform distribution. If 6 = n® with1 < § < 2,
itis ©(n37°). If§ = Q(n?), it is O(n).

4 Expected Number of Mispredictions for the Min/Max Search
4.1 Presentation

In this section, we turn our attention to a simple and classical problem: computing both the minimum and
the maximum of an array of size n. The straightforward approach (called naive in the sequel) is to compare
all the elements of the array to the current minimum and to the current maximum, updating them when it
is relevant. This is done®™ in Algorithm 1 and uses exactly 2n — 2 comparisons. A classical optimization
is to look at the elements in pairs, and to compare the smallest to the current minimum and the largest to
the current maximum (see Algorithm 2). This uses only 3n/2 comparisons, which is optimal. However,
as reported in [2], with an implementation in C of these two algorithms, the naive algorithm proves to be

(V) Note that, for consistency, our arrays start at index 1, as stated at the beginning of this paper.
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the fastest on uniform permutations as input. The explanation for this is a trade-off between the number
of comparisons involved and an other inherent but less obvious factor that influences the running time of
these algorithms: the behavior of the branch predictor.

Algorithm 1: NAIVEMINMAX (T, n) Algorithm 2: 3/2-MINMAX (T, n)

1 min + T1] 1 min, maz <+ T[n], T[n]

2 max <+ T[1] 2 for i+ 2tonby2do

3 for i< 2tondo 3 if T[i — 1] <TYi] then

4 if T[i] < min then 4 L pMin,pMax < T[i — 1], T[i]

s | min < T[] s | else pMin,pMax < T[i],T[i — 1] if
6 if T[i] > max then pMin < min then min < pMin if
7 L maz < T[i] pMaz > max then mazx < pMax

8 return min, mazx 6 return min, max

In a nutshell, when running on a modern processor, the instructions that constitute a program are not
executed strictly sequentially but instead, they usually overlap one another since most of the instructions
can start before the previous one is finished. This mechanism is commonly described as a pipeline (see [8]
for a comprehensive introduction on this subject). However, not all instructions are well-suited for a
pipelined architecture: this is specifically the case for branching instructions such as an if statement.
When arriving at a branch, the execution of the next instruction should be delayed until the outcome of
the test is known, which stalls the pipeline. To avoid this, the processor tries to predict the result of the test,
in order to decide which instruction will enter the pipeline next. If the prediction is right, the execution
goes on normally, but in case of a misprediction, the pipeline needs to be flushed, which can significantly
slow down the execution of a program.

There is a large variety of branch predictors, but nowadays, most processors use dynamic branch pre-
diction: they remember partial information on the results of the previous tests at a given if statement, and
their prediction for the current test is based on those previous results. These predictors can be quite intri-
cate, but in the sequel, we will only consider local /-bit predictors which are state buffers associated to
each if statement: they store the last outcome of the test and guess that the next outcome will be the same.

Let us come back to the problem of simultaneously finding the minimum and the maximum in an array.
We can easily see that, for Algorithm 1, the behavior of a 1-bit predictor when updating the maximum
(resp. minimum) is directly linked to the succession of records (resp. min-records") in the array. As we
explain later on, for Algorithm 2, this behavior depends on the “pattern” seen in four consecutive elements
of the array, this “pattern” indicating not only which elements are records (resp. min-records), but also
where we find descents between those elements. As shown in [2], for uniform permutations, Algorithm 1
outerperforms Algorithm 2, because the latter makes more mispredictions than the former, compensating
for the fewer comparisons made by Algorithm 2. This corresponds to our Ewens-like distribution for
0 = 1. But when 0 varies, the way records are distributed also changes, influencing the performances of
both Algorithms 1 and 2. Specifically, when # = An, we have a linear number of records (as opposed
to a logarithmic number when # = 1). The next subsections provide a detailed analysis of the number
of mispredictions in Algorithms 1 and 2, under the Ewens-like distribution for records, with a particular
emphasis on # = An (which exhibits a very different behavior w.r.t. the uniform distribution — see Fig. 4).

™ A min-record (ak.a. left to right minimum) is an element of the array such that no smaller element appears to its left.
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4.2 Expected Number of Mispredictions in NaiveMinMax

Theorem 13 Under the Ewens-like distribution on &,, for records with parameter 0, the expected num-
bers of mispredictions at lines 4 and 6 of Algorithm 1 satisfy respectively E,[us] < %En [record] and

E, (5] = 20A(8,n — 1) — 2201,

Consequently, with our previous results on E,, [record], the expected number of mispredictions at line 4
is O(logn) when 6 = Q(1) (i.e., when 6 = 0(n) is constant or larger). Moreover, using the asymptotic
estimates of the digamma function, the asymptotics of the expected number of mispredictions at line 6 is
such that (again, for A > 0,0 < e < land d > 1):
‘ﬁxed9>0‘ 0:=n ‘ 0:=An ‘9::716
Enlue] | ~20-logn | ~2(1—¢)-nlogn | ~2X(log(1+1/X) —1/(A+1))-n | o(n)

In particular, asymptotically, the expected total number of mispredictions of Algorithm 1 is given by
E,.[16] (up to a constant factor when 6 is constant).

4.3 Expected Number of Mispredictions in 3 MinMax

Mispredictions in Algorithm 2 can arise in any of the three if statements. We first compute the expected
number of mispredictions at each of them independently. We start with the if statement of line 3, which
compares T'[¢ — 1] and T'[¢]. For our 1-bit model, there is a misprediction whenever there is a descent at
7 — 2 and an ascent at ¢, or an ascent at ¢ and a descent at 7 — 2. A tedious study of all possible cases gives:

Theorem 14 Under the Ewens-like distribution on S, for records with parameter 0, the expected number
of mispredictions at line 3 of Algorithm 2 satisfies

IE[V]Jz—2+9(9—1)2+92(9—1)2 1 B 3 1
n7sl Ty 4 12 0+n—1 60+n-2 0+1
200 _ 1)2 _ _
+0(9 1) A 0+1’n 2 A Q’n 2 .
6 2 2 2 2
As a consequence, if 0 = \n, then E,,[v3] ~ %’7_%\1;;3

Theorem 15 Under the Ewens-like distribution on &, for records with parameter 0, the expected number
of mispredictions at line 5 of Algorithm 2 satisfies E,,[v7] < 2E,, [record]. As a consequence, if = An,
then E,[v7] = O(1).

We now consider the third if statement of Algorithm 2. If there is a record (resp. no record) at position
1 — 3 or ¢ — 2, then there is a misprediction when there is no record (resp. a record) at position ¢ — 1 or .
Studying all the possible configurations at these four positions gives the following result.

Theorem 16 Under the Ewens-like distribution on S, for records with parameter 0, the expected number
of mispredictions at line 5 of Algorithm 2 satisfies
(n —2)((20% + 6% — 90 — 3)n + 20* — 562 + 90 + 3)
30+n—-1)(0+n—2)
+9(293+9+3)A<9+1 n—2)9(293+0—3) (9 n—2>

]En [VS] =

3 2 72 3 27 2

As a consequence, if 0 = \n, then E,,[v7] ~ (2)\ log (1 + %) — W)
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It follows from Theorems 14, 15 and 16 that:

Corollary 17 Under the Ewens-like distribution on S, for records with parameter 6 = An, the total
number of mispredictions of Algorithm 2 is

1 2403 + 5402 + 32X -3
E,[v] ~ (2)\log (1+ )\> - 200+ 1)° ) n.

Fig. 4 shows that, unlike in the uniform case (§ = 1), Algorithm 2 is more efficient than Algorithm 1
under the Ewens-like distribution for records with 6 := An, as soon as A is large enough.

N[

PN

#mispredictions/n

Fig. 4: The expected number of mispredictions produced by the naive al-

gorithm (u) and for %-minmax (v), when 0 := An. We have E,[u] ~

E,[v] for Ao = @ ~ 0.305, and there are fewer mispredictions on

1E, (1] average with %-minmax as soon as A > \g. However, since %-minmax
1E,[v] performs 7 fewer comparisons than the naive algorithm, it becomes more
A efficient before A\o. For instance, if a misprediction is worth 4 compar-

isons, g—minmax is the most efficient as soon as A > 0.110.
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We present an average case analysis of two variants of dual-pivot quicksort, one with a non-algorithmic
comparison-optimal partitioning strategy, the other with a closely related algorithmic strategy. For both
we calculate the expected number of comparisons exactly as well as asymptotically, in particular, we
provide exact expressions for the linear, logarithmic, and constant terms. An essential step is the analysis
of zeros of lattice paths in a certain probability model. Along the way a combinatorial identity is proven.

Keywords: Dual-pivot quicksort, lattice paths, asymptotic enumeration, combinatorial identity

1 Introduction

Dual-pivot quicksort [Sed75, WNN15, AD15] is a family of sorting algorithms related to the well-
known quicksort algorithm. In order to sort an input sequence (aq,...,a,) of distinct elements,
dual-pivot quicksort algorithms work as follows. (For simplicity we forbid repeated elements in the
input.) If n < 1, there is nothing to do. If n > 2, two input elements are selected as pivots. Let p
be the smaller and ¢ be the larger pivot. The next step is to partition the remaining elements into

e the elements smaller than p (“small elements”),
e the elements between p and ¢ (“medium elements”), and
e the elements larger than ¢ (“large elements”).

£C. Heuberger and D. Krenn are supported by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl
Popper Kolleg “Modeling—Simulation—-Optimization” funded by the Alpen-Adria-Universitat Klagenfurt and by the
Carinthian Economic Promotion Fund (KWF).

$H. Prodinger is supported by an incentive grant of the National Research Foundation of South Africa.
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Then the procedure is applied recursively to these three groups to complete the sorting.

The cost measure used in this work is the number of comparisons between elements. As
is common, we will assume the input sequence is in random order, which means that each
permutation of the n elements occurs with probability /nt. With this assumption we may,
without loss of generality, choose a; and a,, as the pivots. Even in this setting there are different
dual-pivot quicksort algorithms; their difference lies in the way the partitioning is organized, which
influences the partitioning cost. This is in contrast to standard quicksort with one pivot, where
the partitioning strategy does not influence the cost—in partitioning always one comparison is
needed per non-pivot element. In dual-pivot quicksort, the average cost (over all permutations) of
partitioning and of sorting can be analyzed only when the partitioning strategy is fixed.

Only in 2009, Yaroslavskiy, Bentley, and Bloch [Yar09] described a dual-pivot quicksort algo-
rithm that makes 1.9nlogn + O(n) comparisons [WNN15].() This beats the classical quicksort
algorithm [Hoa62], which needs 2nlogn + O(n) comparisons on average. In [AD15], the first two
authors of this article described the full design space for dual-pivot quicksort algorithms with
respect to counting element comparisons. Among others, they studied two special partitioning
strategies. The first one—we call it “Clairvoyant” in this work—assumes that the number of small
and large elements is given (by an “oracle”) before partitioning starts. It cannot be implemented,;
however, it is optimal among all partioning strategies that have access to such an oracle, and hence
its cost provides a lower bound for the cost of all algorithmic partitioning strategies. In [AD15] it
was shown that dual-pivot quicksort carries out 1.8nlogn+O(n) comparisons on average when this
partitioning strategy is used. Further a closely related algorithmic partitioning strategy—called
“Count” here—was described, which makes only O(logn) more comparisons on average than
“Clairvoyant” and hence leads to a dual-quicksort variant with only O(n) more comparisons. (1)

One purpose of this paper is to make the expected number of comparisons in both variants precise
and to determine the exact difference of the cost of these two strategies, both for partitioning and
for the resulting dual-pivot quicksort variants.

Already in [AD15] it was noted that the exact value of the expected partitioning cost (i.e.,
the number of comparisons) of both strategies depends on the expected number of the zeros of
certain lattice paths (Parts I and II). A complete understanding of this situation is the basis for
our analysis of dual-pivot quicksort, which appears in Part III.

Lattice path enumeration has a long tradition. An early reference is [Moh79]; a recent survey
paper is [Kralb]. As space is limited, many proofs and some additional results can be found in an
appendix at arXiv:1602.04031v1.

2 Overview and Results

This work is split into three parts. We give a brief overview on the main results of each of these
parts here. We use the Iversonian expression

1 if expr is true,
[expr] = : :
0 if expr is false,

(@) In this paper “log” denotes the natural logarithm to base e.
(1) After completing this extended abstract we found a proof that “Count” is optimal among all algorithmic
strategies. Details to be given in the full version.
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popularized by Graham, Knuth, and Patashnik [GKP94].
The harmonic numbers and their variants will be denoted by

m m
m=1 m=1

~ 1 ad _ N\~ [modd] I ~ (=™
Hn:ZE, H =" and  H' =)~ :
m=1
Of course, there are relations between these three definitions such as H* = H,, — 2H2%% and
Hed g In/2)/2 = Hy, but it will turn out to be much more convenient to use all three notations.

Part |: Lattice Paths

In the first part we analyze certain lattice paths of a fixed length n. We start on the vertical
axis, allow steps/increments (1,+1) and (1, —1) and end on the horizontal axis at (n,0). To
be precise, the starting point on the vertical axis is chosen uniformly at random from the set
{(0,—n), (0, —n+2),...,(0,n —2),(0,n)} of feasible points. Once this starting point is fixed, all
paths to (n,0) are equally likely. We are interested in the number of zeros, denoted by the random
variable Z,,, of such paths.

An exact formula for the expected number E(Z,,) of zeros is derived in two different ways (see
identity (2.1) for these formulae): On the one hand, we use the symbolic method and generating
functions (see Appendix A), which gives the result in form of a double sum. This machinery extends
well to higher moments and also allows us to obtain the distribution. The exact distribution is
given in Appendix E; its limiting behavior as n — oo is the discrete distribution

1
PZ,=71)~—.
(Zn =1) r(r+1)
On the other hand, a more probabilistic approach gives the expectation E(Z,,) as the simple single
sum

n+1
m odd o
B(Z) =Y [mi] — o,
m=1

see Section 4 for more details. The asymptotic behavior E(Z,) ~ %logn can be extracted
(Appendix D).
The two approaches above give rise to the identity

n+1 n n
ZM: 4 Z (Ln)—l—[neven] ! (2—1>+1; (2.1)

m=1 1 0Sk<g<"n/2" (f) n+ 1 (n72)

the double sum above equals the single sum of Theorem 4.1 by combinatorial considerations.
One might ask about a direct proof of this identity. This can be achieved by methods related to
hypergeometric sums and the computational proof is presented in Appendix C. We also provide a
completely elementary proof which is “purely human”.
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Part Il: More Lattice Paths and Zeros

The second part acts as connecting link between the lattice paths of fixed length of Part I and
the dual-pivot quicksort algorithms of Part III.

The probabilistic model introduced in Section 3 (in Part I) is extended, and lattice paths are
allowed to vary in length. For a number n (the number of elements to sort) the length of a path
is the number of elements remaining when the two pivots, given by a random set of elements of
size two, and the elements between these pivots are cut out.

The number of zeros X, in this full model is analyzed; we provide again exact as well as
asymptotic formulee for the expectation E(X,,). Details are given in Section 7. Moreover, more
specialized zero-configurations (needed for the analysis of different partitioning strategies in
Part III) are considered as well (Section 6).

Part Ill: Dual-Pivot Quicksort

The main result of this work analyzes comparisons in the dual-pivot quicksort algorithm that uses
the optimal (but unrealistic) partitioning strategy “Clairvoyant”. Aumiiller and Dietzfelbinger
showed in [AD15] that this algorithm requires 1.8nlogn + O(n) comparisons on average, which
improves on the average number of comparisons in quicksort (2nlogn + O(n)) and the recent
dual-pivot algorithm of Yaroslavskiy et al. (1.9nlogn + O(n), see [WNN15]). However, for real-
world input sizes n the (usually negative) factor in the linear term has a great influence on the
comparison count. Our asymptotic result is stated as the following theorem.

Theorem. The average number of comparisons in the dual-pivot quicksort algorithm with a
comparison-optimal partitioning strateqy is

gnlogn+An+Blogn+C+O(1/n)

asn — oo, with A= 2y — 1log2 — 52 = —2.659... .

The constants B and C are explicitly given, too, and more terms of the asymptotics are
presented. The precise result is formulated as Corollary 10.2.

In fact, we even get an exact expression for the average comparison count. The precise result
is formulated as Theorem 10.1. Moreover the same analysis is carried out for the partitioning
strategy “Count”, which is an algorithmic variant of the comparison-optimal strategy “Clairvoyant”.
Aumiiller and Dietzfelbinger [AD15] could show that it requires 2nlogn + O(n) comparisons as
well. In this paper we obtain the exact average comparison count (Theorem 10.3). The asymptotic
result is again %nlogn + An 4+ O(logn), but now with A = —2.382..., so there is only a small
gap between the average number of comparisons in the comparison-optimal strategy “Clairvoyant”
and its algorithmic variant.

Part |: Lattice Paths

In this first part we analyze lattice paths of a fixed length n. These are introduced in Section 3 by
a precise description of our probabilistic model. We will work with this model throughout Part I,
and we analyze the number of zeros Z,.

The outline is as follows: We derive an exact expression for the expected number E(Z,,) of
zeros by the generating functions machinery in Appendix A; a more probabilistic approach can
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be found in Section 4. Appendix D deals with asymptotic considerations. Direct proofs of the
obtained identity are given in Appendix C and the distribution of Z, is tackled in Appendix E.

3 Probabilistic Model

We consider paths of a given length n on the lattice Z?2, where only steps (1,+1) and (1, —1) are
allowed. These paths are chosen at random according to the rules below.

Let us fix a length n € Ny. A path P, ending in (n,0) (no choice for this end-point) is chosen
according to the following rules.

1. First, choose a starting point (0,.5) where S is a random integer uniformly distributed in
{-n,—m+2,...,n—2,n}, i.e., S = s occurs only for integers s with |s| < n and s =n
(mod 2).

2. Second, a path is chosen uniformly at random among all paths from (0, S) to (n,0).

The conditions on S characterize those starting points from which (n,0) is reachable.

We are interested in the number of intersections with the horizontal axis of a path. To make
this precise, we define a zero of a path P, as a point (z,0) € P,.

Thus, let P, be a path of length n which is chosen according to the probabilistic model above
and define the random variable

Z,, = number of zeros of P,.

In the following sections, we determine the value of E(Z,,) exactly (Appendix A and Section 4),
as well as asymptotically (Appendix D). In Appendix A, we use the machinery of generating
functions. This machinery turns out to be overkill if we are just interested in the expectation
E(Z,). However, it easily allows extension to higher moments and the limiting distribution.

In Section 4, we follow a probabilistic approach, which first gives a result on the probability
model that at the first glance looks surprising: the equidistribution at the initial values turns out
to carry over to every fixed length of the remaining path. This result yields a simple expression
for the expectation E(Z,) in terms of harmonic numbers, and thus immediately yields a precise
asymptotic expansion for E(Z,,). The generating function approach, however, gives the expectation
in terms of a double sum of quotients of binomial coefficients (the right-hand side of (2.1)), see
Appendix A.

Appendix C gives a direct computational proof that these two results coincide. The original
expression in [AD15] (a double sum over a quotient of a product of binomial coefficients and a
binomial coefficient) is also shown to be equal in Appendix C. Explicit as well as asymptotic
expressions for the distribution P(Z,, = r) can be found in Appendix E.

4 A Probabilistic Approach

Theorem 4.1. For a randomly (as described in Section 3) chosen path of length n, the expected
number of zeros is
E(Zn) = Hggirdl
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Before proving the theorem, we consider an equivalent probability model for our random paths
formulated as an urn model. A number R from {0,...,n} is chosen uniformly at random. We
place R red balls and B = n — R black balls in an urn. Subsequently, in n rounds the balls are
taken from the urn (without replacements), in each round choosing one uniformly at random.
The color of the ball chosen in round ¢ is denoted by Ui.

We construct a random walk (W;)o<i<n on {—n,...,n} from Uy, ..., U, by setting Wy =
R—B=2R—nand

Wifl —1 if Ul = red

for 1 < i < n. In each step, W; equals the difference of the number of remaining red and black
balls in the urn. Clearly, then, W,, = 0.

One can look at the trajectories of this random walk, represented in the grid {0,...,n} x
{—n,...,n} as sequences ((0, W), (1,W1),...,(n,W,,)). Appendix B explains the equivalence
between the two models.

In order to prove Theorem 4.1, we need the following property of our paths.

Lemma 4.2. Let m € Ng with m < n. The probability that a random path P, (as defined in
Section 8) runs through (n —m, k) is

W {Wil +1 if U; = black,

P((n — m, k) € P,) = %ﬂ (4.1)

for all k with |k| < m and k = m (mod 2), otherwise 0.

The proof of this lemma can be found in Appendix B.

A closer look reveals that when we reverse the paths, our model is equivalent to a contagion
Pélya urn model with two colors, starting with one ball of each color, where we sample with
replacement and put another ball of the color just drawn into the urn. In this setting, uniform
distribution for feasible points with the same first coordinate and hence the result of the lemma
are well-known phenomena. These results and more on the urn model can be found, for example,
in Mahmoud [Mah08].

We continue with the actual proof of our theorem.

Proof of Theorem 4.1: By Lemma 4.2, the expected number of zeros of P, is

n n n+1
m even m odd o
E(Zn):ZP((n_m,o)epn)zz%:Z[ o - .
m=0 m=0 m=1

5 Additional Results

The expected number of zeros can be evaluated asymptotically. We obtain

Corollary 5.1.

v+1log2 1+ [neven] 2+ 9[n even] 1
- (s
2 + 2n 12n2 *

asymptotically as n tends to infinity.

1
E(Zy) = 5 logn +
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The proof of this result uses the well-known asymptotic expansion of the harmonic numbers.
The actual asymptotic computations(') have been carried out using the asymptotic expansions
module [HK15] of SageMath [Dev16], see Appendix D.

By combining the generating function and probabilistic approach we obtain the following
identity.

Theorem 5.2. Forn > 0, we have

4 () 1 2"
ot Z + [n even] +1<(n)—1>+1

1 0<k<t<[n/2] ( )

[n/2] n—m (Qm) (’r Qm)

1 m
=i 2

m=0 f=m £

The second expression for the expected number of zeros, but without taking the zero at (n,0)
into account, has been given in [AD15, displayed equation after (14)]. In Appendix C we give two
direct proofs of the identity above: One of them follows a computer generated proof (“creative
telescoping”) by extracting the essential recurrence. The second proof is “human” and completely
elementary using not more than Vandermonde’s convolution.

Furthermore, the generating function machinery allows us to determine the distribution of the
number Z,, of zeros. Beside an exact formula (see Appendix E), we get the following asymptotic
result.

Theorem 5.3. Let0 < e < % For positive integers r with r = O(n1/2_5), we have asymptotically
1
P(Z,=1)=—— (1+0(1/n*
(0= = s (- 0(1))

as n tends to infinity.

Part IlI: More Lattice Paths and Zeros

This second part deals with an analysis of some special zero-configurations, which are needed for
the analysis of the partitioning strategies in Part ITII. Moreover, in Section 7, we extend the model
introduced in Section 3 to accommodate lattice paths of variable length. Again expectations are
studied exactly and asymptotically.

6 Going to Zero and Coming From Zero

For the analysis of comparison-optimal dual-pivot quicksort algorithms (see Part III) we need the
following two variants of zeros on the lattice path.

e An up-to-zero situation is a point (x,0) € P, such that (z —1,—1) € P,.

e A down-from-zero situation is a point (z,0) € P, such that (x +1,—1) € P,.

(i) A worksheet containing the computations can be found at http://www.danielkrenn.at/downloads/
quicksort-paths/quicksort-paths.ipynb.
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We show

1
E(number of up-to-zero situations on P,) = — (E(Zn) - [nei—zeln]) =3 odd
n

and

(E(Zn) —1) = 5 (Hp55 - 1)

1
E(number of down-from-zero situations on P,) = 3

DN | =

Proof idea: The factor % stems from symmetry: Up-to-zero situations at (z,0) occur with the

same probability as the symmetric “down-to-zero” situations at (x,0), similarly for down-from-zero

situations. The correction terms % and 1 are caused by the fact that there is a zero, but no

up-to-zero situation, at (0,0), and a zero, but no down-from-zero situation, at (n,0). The full
proofs are in Appendix F. O

7 Lattice Paths of Variable Length

In this section, we use a random variable N’ instead of the fixed n above. Let us fix an n € N
with n > 2. We choose a path length N’ according to the following rules.

1. Choose (P, Q) with 1 < P < @ < n uniformly at random from all (721) possibilities.
2. Let NN=n—-1—-(Q—P).
3. Choose a path of length N’ according to Section 3.

Let us denote the number of up-to-zero and down-from-zero situations on the path by X" and
X respectively. In Appendix G, we show

’
n—2 n

1 w41 1 1 (=1)"
N\ __ ~gpyodd _ ~ N
BOX) = gy 22 2 odd) = = 5 = 5 o even)
and
1 n—2 n'+1 n/+1 1 1
Ny - SE(X) i
B(Xw) = 5y 22 2 lm oddl == = B(XT) — 5+ o e

Part Ill: Dual-Pivot Quicksort

In this third and last part of this work, we finally analyze two different partitioning strategies and
the dual-pivot quicksort algorithm itself.

As mentioned in the introduction, the number of comparisons of dual-pivot quicksort depends
on the concrete partitioning procedure. For example, if one wants to classify a large element, i.e.,
an element larger than the larger pivot, comparing it with the larger pivot is unavoidable, but it
depends on the partitioning procedure whether a comparison with the smaller pivot occurs, too.
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First, in Section 8, we make our set-up precise, fix notions, and start solving the dual-pivot
quicksort recurrence (8.1). This recurrence relates the cost of the partitioning step to the total
number of comparisons of dual-pivot quicksort.

In Section 9 two partitioning strategies, called “Clairvoyant” and “Count”, are introduced and
their respective cost is analyzed. It will turn out that the results on lattice paths obtained in
Parts I and II are central in determining the partitioning cost exactly.

Everything is put together in Section 10: We obtain the exact comparison count for two versions
of dual-pivot quicksort (Theorems 10.1 and 10.3). The asymptotic behavior is extracted out of
the exact results (Corollaries 10.2 and 10.4).

8 Solving the Dual-Pivot Quicksort Recurrence

We consider versions of dual-pivot quicksort that act as follows on an input sequence (aq, ..., a,)
consisting of distinct numbers: If n < 1, do nothing, otherwise choose a1 and a,, as pivots, and by
one comparison determine p = min(ay, a,) and ¢ = max(ay, a,). Use a partitioning procedure to
partition the remaining n — 2 elements into the three classes small, medium, and large. Then call
dual-pivot quicksort recursively on each of these three classes to finish the sorting, using the same
partitioning procedure in all recursive calls.

Let P,, a random variable, denote the partitioning cost. This is defined as the number of
comparisons made by the partitioning procedure if the input (aq,...,a,) is assumed to be in
random order. Further, let C,, be the random variable that denotes the number of comparisons
carried out when sorting n elements with dual-pivot quicksort. The reader should be aware that
both P, and C,, are determined by the partitioning procedure used.

Since the input (a,...,a,) is in random order and the partitioning procedure does nothing
but compare elements with the two pivots, the inputs for the recursive calls are in random order
as well, which implies that the distributions of P,, and C,, only depend on n. In particular we
may assume that when the sorting algorithm is called on n elements during recursion, the input
is a permutation of {1,...,n}.

The recurrence
n—2

E(C,) = E(P,) + (3) S (-1 k)E(CY) (.1)
2/ k=1

for n > 0 describes the connection between the expected sorting cost E(C,,) and the expected
partitioning cost E(P,). It will be central for our analysis. Note that it is irrelevant for (8.1) how
the partitioning cost E(P,) is determined; it need not even be referring to comparisons. The
recurrence is simple and well-known; a version of it occurs already in Sedgewick’s thesis [Sed75]. For
the convenience of the reader we give a brief justification in Appendix H. In Hennequin [Hen91]
recurrence (8.1) was solved exactly for E(P,) = an + b, where a and b are constants. For
E(P,) = an + O(n'~¢) the solution is E(C,,) = Sanlogn + O(n), see [AD15, Theorem 1].

9 Partitioning Algorithms and Their Cost

In Section 8 we saw that in order to calculate the average number of comparisons E(C,,) of a
dual-pivot quicksort algorithm we need the expected partitioning cost E(P,,) of the partitioning
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procedure used. The aim of this section is to determine E(P,,) for two such partitioning procedures,
“Clairvoyant” and “Count”, to be described below.

We use the set-up described at the beginning of Section 8. For partitioning we use comparisons
to classify the n — 2 elements asg, ..., a,—1 as small, medium, or large. We will be using the
term classification for this central aspect of partitioning. Details of a partitioning procedure that
concern how the classes are represented or elements are moved around may and will be ignored.
(Nonetheless, in Appendix M we provide pseudocode for the considered classification strategies
turned into dual-pivot quicksort algorithms.) The cost P, depends on the concrete classification
strategy used, the only relevant difference between classification strategies being whether the next
element to be classified is compared with the smaller pivot p or the larger pivot ¢ first. This
decision may depend on the whole history of outcomes of previous comparisons. (The resulting
abstract classification strategies may conveniently be described as classification trees, see [AD15],
but we do not need this model here.)

Two comparisons are necessary for each medium element. Furthermore, one comparison with p
is necessary for small and one comparison with ¢ is necessary for large elements. As the input
consists of the elements 1, ..., n, there are p— 1 small, ¢ — p — 1 medium, and n — ¢ large elements.
Averaging over all (g) positions of the pivots, we see that on average

%(n—2)+1 9.1)
necessary comparisons are required no matter how the classification procedure works, see [AD15,
(5)]; the summand +1 corresponds to the comparison of a; and a,, when choosing the two pivots.

We call other comparisons occurring during classification additional comparisons. That means,
an additional comparison arises when a small element is compared with ¢ first or a large element
is compared with p first. In order to obtain E(P,) for some classification strategy, we have to
calculate the expected number of additional comparisons.

Next we describe two (closely related) classification strategies from [AD15]. Let s; and ¢; denote
the number of elements that have been classified as small and large, respectively, in the first ¢
classification rounds. Set so = ¢y = 0.

Strategy “Clairvoyant”.  Assume the input contains s = p — 1 small and { = n — q large
elements. When classifying the ith element, for 1 <i <mn — 2, proceed as follows: If s — s;_1 >
{—€;_1, compare with p first, otherwise compare with q first.

The number of additional comparisons of Clairvoyant is denoted by ASY, its partitioning cost
Py,

Note that the strategy “Clairvoyant” cannot be implemented algorithmically, since s and ¢ are
not known until the classification is completed.

As shown in [AD15, Section 6], this strategy offers the smallest expected classification cost
among all strategies that have oracle access to s and £ at the outset of a classification round. As
such, its expected cost is a lower bound for the cost of all algorithmic classification procedures;
hence we call it an optimal strategy.

The non-algorithmic strategy “Clairvoyant” can be turned into an algorithmic classification
strategy, which is described next. It will turn out that its cost is only marginally larger than that
of strategy “Clairvoyant”.
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Strategy “Count”. When classifying the ith element, for 1 <i < n — 2, proceed as follows: If
Si—1 > €;_1, compare with p first, otherwise compare with q first.

The number of additional comparisons of this strategy is called AS', its cost PS'.

No algorithmic solution for the classification problem can have cost smaller than “Clairvoyant”.
Strategy “Count” is algorithmic. Thus any cost-minimal algorithmic classification procedure has
cost between E(PSY) and E(P<Y), and a precise analysis of both will lead to good lower and upper
bounds for the cost of such a procedure. It was shown in [AD15] that E(PS*) —E(PSY) = O(logn)
and that, as a consequence, both strategies lead to dual-pivot quicksort algorithms that use
%nlogn + O(n) comparisons on average. In the following, we carry out a precise analysis of
E(PY) and E(PSY), which will make it possible to determine the expected comparison count of

an optimal dual-pivot quicksort algorithm up to 0.28n.

Lemma 9.1. (a) The expected number of additional comparisons of strategy “Clairvoyant” is

n 7 1
E(4.) = 6 12 + 4(n — [n even]) E(X,).

(b) The expected number of additional comparisons of strategy “Count” is

ct _E_l 1 /
B(47) = 6 127" 4(n — [n even]) +E(XT).-

Proof ideas: (The full proof can be found in Appendix J. A different proof of a related statement
was given in [AD15].)

(a) Noticing that medium elements can be ignored, we consider a reduced input of size n’ = s+¢,
consisting only of the s small and the ¢ large elements in the input. For 0 <i <n'let s, =s—s;
and ¢, = £ — ¢; denote the number of small respectively large elements left unclassified after step i.
Then {(i,s; — ¢}) | 0 < i <n'} is a lattice path with distribution (including the distribution of n’)
exactly as in Section 7, so that the results on the expected number of zeros on such paths given
there may be applied. We also note that the sign of s,_; —¢,_; decides whether the ith element to
be classified is compared with p first or with ¢ first, and that additional comparisons correspond
to steps on the path that lead away from the horizontal axis, excepting down-from-zero steps (due
to the asymmetry in treating the situation s — s; = £ — ¢; in strategy “Clairvoyant”). For the
number of steps away from the horizontal axis one easily finds the expression min(s, ¢). Averaging
over all choices for n’ and the two pivots leads to the formula claimed in (a).

(b) Now assume strategy “Count” is applied to n’ = s + ¢ elements. The set {(i,s; — ¢;) | 0 <
i < n'} forms a lattice path that starts at (0,0) and ends at (n,s — £). It can be shown that
reflection with respect to the vertical line at n’/2 maps these paths in a probability-preserving
way to the paths from from (a) (and thus from our model), and it turns out that additional
comparisons in this strategy correspond to steps away from the horizontal axis and up-to-zero
steps. As in (a), averaging leads to the formula claimed in (b). O

Lemma 9.1 allows us to give an exact expression for the average number of comparisons of
“Clairvoyant” and “Count” in a single partitioning step. The expressions for E(PSY) and E(PSY)
are obtained by adding the expected number of necessary comparisons 4 (n — 2) + 1 to the cost

3
terms in Lemma 9.1 (see Appendix J).
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10 Main Results and their Asymptotic Aspects

In this section we give precise formulations of our main results. We use the partitioning cost
from the previous section to calculate the expected number of comparisons of the two dual-
pivot quicksort variants obtained by using classification strategies “Clairvoyant” and “Count”,
respectively. We call these sorting algorithms “Clairvoyant” and “Count” again. Recall that
“Clairvoyant” uses an oracle and is comparison-optimal, and that “Count” is its algorithmic version.
We validated our main results in experiments which can be found in Appendix L. They show that
the error term O(n~*) is small already for real-life input sizes n, and that the linear term has a
big influence even for larger n.

Theorem 10.1. For n > 4, the average number of comparisons in the comparison-optimal
dual-pivot quicksort algorithm “Clairvoyant” (with oracle) is

9 1 89 7T 3 67  (-1)"
E(C) = 2 Hn - Halt _2Y 7Hn 7Halt ot n
(CF) = gnln & gnHyt = opn+ ol + G H 4 505~ 77
where
[n even] ( 1 3 ) [n odd] ( 3 1)
rn p— - - .
320 n—3 n-—1 320 n—2 n

Corollary 10.2. The average number of comparisons in the algorithm “Clairvoyant” is

9 D FE F G 1
E(CS) = 5n10gn+An+Blogn—i—C—l—z—i-ﬁ_Fw_i_O(ﬁ)

n3
with
9 1 89 77
A= —-~v—=-log2 — — = —2. 412392892 . .. B=—=1.92
57 : og 55 659641239289 , 0 925,
77 3 787 13
= —~v— —log2+ — =2.04290411 455 ... D="—=0.812
10 0 og?2+ 300 042904116393455... ., 16 0.8125,
77 1 19
E=—— =-0.1604166... F=-=0.12 =——=-0.04
150 0.1604166.. .., 3 0.125, G 100 0.0475,

asymptotically as n tends to infinity.

Before continuing with the second partitioning strategy, let us make a remark on the (non-
)influence of the parity of n. It is noteworthy that in Corollary 10.2 no such influence is visible in
the first six terms (down to 1/n2); only from 1/n3 on the parity of n appears. This is somewhat
unexpected, since a term (—1)™ appears in Theorem 10.1.

Theorem 10.3. The average number of comparisons in the dual-pivot quicksort algorithm “Count”

18

9 1 89 67 3 83  (—1)"
E(C®) = ZnH, — —nHM - —n+ —H, — —H' - =
(Cn ) 5n . 5n . 2511 + 10— ot <00 0

where r,, is defined in Theorem 10.1.

— T

Again, the asymptotic behavior follows from the exact result.
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Corollary 10.4. The average number of comparisons in the algorithm “Count” is

with

E F[neven]+G+O( 1)
na

9 D
E(Cff):5nlogn+An+Blogn+C+g+ﬁ+ =

9 1 89 67
A= 57 + 3 log 2 — % = —2.3823823670652. . ., B = 0 1.675,
67 3 637 11
= — —log2 4+ —— = 1.81507227725206. .. D=—=0.
C 40'y+ 10 0og 2 + 300 81507227725206 . . ., 16 0.6875,
67 1 31
EF=——=-0.1395833... F=——=-0.125 G=—=0.0775
480 ’ 8 ’ 400 )

asymptotically as n tends to infinity.

The idea of the proofs of Theorems 10.1 and 10.3 is to translate the recurrence (8.1) into
a second order differential equation for the generating function C'(z) of E(C),) in terms of the
generating function P(z) of E(P,). Integrating twice yields C(z). This generating function
then allows extraction of the exact expressions for E(C),). The asymptotic results follow. See
Appendix K for details.

Appendix

The appendices can be found at arXiv:1602.04031v1.
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We investigate the number of survivors in the Leader Green Election (LGE) algorithm introduced by P. Jacquet, D.
Milioris and P. Miihlethaler in 2013. Our method is based on the Rice method and gives quite precise formulas. We
derive upper bounds on the number of survivors in this algorithm and we propose a proper use of LGE.

Finally, we discuss one property of a general urns and balls problem and show a lower bound for a required number
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1 Introduction

In Jacquet et al. (2013) Philippe Jacquet, Dimitris Milioris and Paul Miihlethaler introduced a novel energy
efficient broadcast leader election algorithm, which they called, in accordance with the popular fashion
in those years, a Leader Green Election (LGE). This algorithm was also presented by P. Jacquet at the
conference AofA’13.

We will use the same model as in Jacquet et al. (2013), namely we assume that the communication
medium is of the broadcast type and is prone to collisions. We also assume that the time is slotted. Each
slot can be empty (the slot does not contain any burst), collision (the slot contains at least two burst) or
successful (the slot contains a single burst).

During the investigation of efficiency of LGE algorithm we found a connection of the leader election
problem with some properties of the general ”‘urns and balls”” model. This connection is discussed in
Section 3.

1.1 Short Description of LGE

We will give a short description of a slightly simplified version of the LGE algorithm (for example, authors
of Jacquet et al. (2013) consider an arbitrary base of numeral systems, but we restrict our considerations
only to base 3, since some additional arguments, not presented in this paper, show that base-3 is an optimal
choice for our purposes).

T This paper was supported by Polish National Science Center (NCN) grant number 2013/09/B/ST6/02258
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We assume that the broadcast medium has N connected users (assume N =2 10°) and that the number
of contenders n is always smaller or equal to N. We fix a number p € (0, 1) and we assume that p is not
close to one (e.g. p = 0.01). We also fix a number L = O (loglog N).

Each contender w selects independently a random number g,, according to the geometric distribution
with parameter p (see next section for details). If g,, > 3%*! then we put g,, = 0. The number g, is
written

L
9o = bi-3F, (1)
k=0

where by, € {0, 1,2}. We fix a function f : {0,1,2} — {0,1}? by f(0) = 00, f(1) = 01 and f(2) = 10,
and define the transmission key K, for a contender w as the concatenation

Ko = O G-Il - - 1F(B)]1f (bo) -

Notice that lenght(K,,) = O (log log N). This key K, is used in the following algorithm played in discrete
rounds:

1: candidate = true

2: for i=1 to lenght(K ) do

3. if K, (i) = 1 then

4: send a beep
5. else
6: listen
7: if you hear a beep then
8: candidate = false
9: exit loop
10: end if
11:  endif
12: end for

The survivors of this algorithm are those contenders which at the end have the variable “candidate” set
to true. In Jacquet et al. (2013) authors propose to repeat this algorithm several times in order to reduce
the number of survivors to 1. However we propose in this paper an another approach: we propose to use
this algorithm only once (in order to reduce number of survivors to a small number) and then to use other
leader election algorithm for final selection a leader.

1.2 Mathematical Background

The core of LGE algorithm is based on properties of extremal statistics of random variables with geometric
distributions. Let us recall that a random variable X has a geometric distribution with parameter p € [0, 1]
(X ~ Geo(p)) if P[X = k] = (1 — p)*'pfor k > 1. In the first part of LGE, each user chooses
independently a random variable with geometric distribution with a fixed parameter p. The winners of
this part of LGE are those users who select a maximal number.

Definition 1 A random variable M has distribution MGeo(n, p) if there are independent random vari-
ables X1, ..., X, with distribution Geo(p) such that

M = max{Xy,..., X,}.



On Leader Green Election 3

It is well known (see e.g. Szpankowski and Rego (1990), Cichori and Klonowski (2013)) that if M ~
MGeo(n, p) then E[M] = § + lan + P(n) + O (1), where P(n) is a periodic function with small
amplitude and H,, is the n'™ harmonic number. Let us recall that H, = Inn + v + O (1), where
v = 0.557. .. is the Euler constant.

The distribution MGeo(n, p) controls the number of time slots used in LGE algorithm. More precisely,
the LGE algorithm requires some upper approximation on the variable with the MGeo(n, p) distribution.
The next Lemma gives some upper bound for it.

Lemma 1l Let M ~ MGeo(n,p), C > 0and Q = ip Then

Inn 1
Pr[M >C——] <
r[M > an] — nc-1
Proof: Let ¢ = 1 — p. Let us recall that if X ~ Geo(p) and k is an integer then Pr[X > k] = ¢".
Therefore Pr[M > k] < ng”, hence Pr {]V[ > C}:—g} < nqcﬁ% = nc{l, m|

We introduce the next distribution which models the number of survivors in LGE algorithm.

Definition 2 A random variable W has distribution WMGeo(n, p) if there are independent random vari-
ables X1, ..., X, with distribution Geo(p) such that

W = card ({k : X), = max{Xq,..., X, }}) .

2 Probabilistic Propeties of LGE

The formal analysis of LGE algorithm in Jacquet et al. (2013) is based on the Mellin transform. In this
section, we use an approach based on Rice’s method (see e.g. Knuth (1998) and Flajolet and Sedgewick
(1995)). We shall derive formulas for expected number of survivors and probabilities for the number of
survivors. By W, ,, we denote a random variable with WMGeo(n, p) distribution.

Theorem 1 Letn > 2,p € (0,1) and ¢ =1 — p. Let Wy, , ~ WMGeo(n, p) and a > 1. Then

n\ ,x—~(n—a\ (-1
Pr[Wyp =a] = <a>p Z< b >1qt)z+b
b=0
and
n—1
np n—1\ (=1)°
E[Wn,p]qz< b >l_qb+1
b=0

Proof: Letus fixn > 2,p € (0,1) and g = 1 —p. Let X1, ..., X, be independent random variables with
distribution Geo(p) and let

Apika = (max{Xy,...,Xp} =k) A(card {i : X; =k} = a)) .



4
Then (W, , = a] = U,€21 Apkq and Pr[A,.; o] = (Z) (¢"'p)2(1 — ¢*~1)"—2. Therefore,

a=1 a=1
- ~ (n—1 - a— n a
ng"'p> (a 1)( Py (1 = g <
a=1
-1
nqk 1 Z( ) >( k 1p)b(1 k 1)(n 1)—b

Therefore, for fixed n, we have

ZZaPrAka anqk 12(";1> 1)hght =

k>1a=1 E>1
n n—1
n— np n—1
(—1) k 1 kb < ) k kb
" Z_:( > ,; q Z b ;;q
n—1
EON G IETDWEEELS ol Ul [SERESD DUCU IS
q k>1 q k>0

1)b b+1

np n—1
S )

J. Cichoni, R. Kapelko and D. Markiewicz
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Since we assumed that n > 2, we have

P TR

7=
npn_1 n—1 npn_1 n
Z( b >(1)b+ ( b >( )b P
7% b=0
n—1 n—1
np ne1 . D (-1) np n—1\ (=1)®
Loyt S () = ()i

O
From Theorem 1 we obtain the following equality Pr[WW,, , = 1] =np ZZ:_OI (";1) % Therefore,
we have the following nice equality

E W, ,] = 7})

Remark Quite recently we learned that Theorem 1 and part of results from the next subsection has been
proved in Kirschenhofer and Prodinger (1996). Due to the completeness of arguments we decided to leave
the proof in this paper. Our new contribution in this section is the Theorem 3.

2.1 Approximations

Let us fix the number p € (0,1) and let ¢ = 1 — p. Let f,(2) = 1—(1%“ We shall consider complex
variable functions f, for such indexes a which are integers such that a > 1. Notice that the function f,

has singularities at points from the set {(, 1 : k € Z}, where (,, = —a + 1215(7;; The function f, is
periodic with period 27i/ In(g), has single poles at points ¢, ; and
—1
Res(fa(2) 12 =C(op) = g

It is easy to check that lim,_, | fo (2 + iy)| = 1 and lim,_, _ | fo(z + iy)| = O for each fixed y € R.

Let K,,(s) = m Notice thatif n > 1 then | K, (s)| = (ﬁ) as |s| grows to infinity. Also
notice that if @ > 0 is an integer, then K,,(—a) = (—1)"*'1 (a) . Notice also that the sets of singularity
points of functions f, and K, are disjoint. This fact greatly simplifies the analysis of the singular points

of the product of these functions

Lemma?2 [fm >1,a> 1and q € (0,1) then
om\ (—1)° 1

— -  =(-=1 m___ KTTL a .
> (3) 1o = 0" iy X Hna)
b=0 k€EZ

Proof: Rice’s integrals summation method (see Knuth (1998)) is based on the formula

> (WD (=1)’g(b) = % 7£ 9(3) Kom(s)ds ,

b=0
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where ¢ is analytic in a domain containing [0, +00) and C is a positively oriented closed curve that lies in
the domain of analyticity of g and encircles the real interval [0, mn].
We use Rice’ formula for functions f,. Notice that

1
211

fé fa(8)Km(s)ds = Res(fa(2)Km(2) : 2 =k).
k=0

Let C}, be the positively oriented square with corners at points %1 ;; &+ 74 %1, where 1, = (2k +
1)m/Ingq. We consider such k that |1, 5| > m. For such k the interval [0, m] lies inside the square C.
The mentioned before Lemma 2 properties of the function f, (periodicity and boundedness on horizontal
lines not crossing singular points) and the kernel function K, imply that

k—o00

lim fa(8) K (s)ds =0,
Cy
from which we deduce that

> Res(fal(2)Km(2) 1 2= Cak) + > Res(fa(2)Km(2) : 2=k) =0.
k=0

kEZ =

Therefore,

m _1\b
> (ZL) 1(_7;3% = (=)™ "Res(fa(2)Km(2) 1 2 = Cag) =

b=0 keZ

(_1)m+1 ZRBS(fa(Z) L2 = Ca,k)Km(Ca,k) = (_1)m+1 Z iKm(ga,k)-

kez kez
O
Lemma 3 Suppose that a > 0 is an integer and that b € C. Then
(_1)m+1 1
Km(ia’+b) = atmy m+a :
Proof: Directly from the definition of the kernel function K,,, we have
Kn(—a+b)=m!|]| ————— = (-1)""m! || ——— =
ooy =m [ s =0 m ] 5y
7=0 7=0
m—+a 1 m—+a 1
m+1 _ m+1 _
(-1) m!Hm_(—n m!Hm_
j=a j=a J
(a—1)! "7 1
(=)™ ml .
(m+a)! ]1;[(1 (1- ?)
O

The next Lemma follows directly from Theorem 1, Lemmas 2 and 3:
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Lemmad4 [fn > athen

p° 1
1+ n

1 2kri/ In

q kezZ\{0} Hj:a(l - l] q)

)

where g =1 — p.

Theorem 2 If 0 < a < n then Pr[W, , = a] = alﬁil(LQ) + 7, where |r,| < %p“ In(Q), where
Q=1

27Tk1

Proof: Let n;, = , where ¢ = 1 — p. Notice that

-3 -0 )

j=a j=a
Therefore,
> 1 =1
——— <2(a+1 2 =
ez Z 14 Al ( ) Z |7k|?
\{0} j=a k=1 (a+1) k=1
(a+1)%(Ing)? i 1 (a+1)*(Ing)?
o a2 12 ’
so the conclusion follows from Lemma 4. O
Letus fix p € (0,1), let Q@ = . We put
¢ (a): pa + (a+1)2pa1nQ
P aln@ 12a '
Notice that Pr[W,, , = a] < ¢,(a).
Theorem 3 Pr[W,, > k] < ¢ k)
Proof: It can be observed that ¢2((l(+)1) < 2p. Therefore,
S ¢(k)
Pr[W, > k| = PrlW,, = o(a
W2 4= 3Pl =) < 3 >
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Fig. 1: Plot of Pr[WL,% =1]forn=1,...,600.

2.2 Discussion

Let us observe that formulas from Theorem 2 do not depend on the number n. However, small fluctuations
(which are very interesting from theoretical point of view) are hidden inside the error term, which can be
observed on the Fig. 2.2.

This practical independence of the number n of nodes on the number of survivors is very interest-
ing. However, the number n has an influence on the required number of rounds in LGE. This number
may be controlled by Lemma 1: from this lemma we deduce that if X ~ MGeo(n, p) then Pr[X >
(In10%° + Inn)/In(Q)] < 1072° (where Q@ = 1/(1 — p)), and hence from a practical point of view
it is negligible. This implies that (see Jacquet et al. (2013) for details) the LGE algorithm should run

2. {log3 (ﬁ (Inn + ln(lOQO))—‘ rounds in order to ensure that its probabilistic properties are controlled
by the distribution WGeo with probability at least 1 — 10720,

From Theorem 2 we deduce that Pr[W,, , = 1] =1 — 5 + O (p?) and Pr[W,, , = 2] = £ 4+ O (p?).
From these formulas we deduce that the probability of failure of one phase of LGE is quite large. However,
notice that from Theorem 3 we get Pr[W,, 0.01 > 10] &~ 1.006 - 10—, Therefore, the LGE algorithm
may be used for quick reduction of potential leaders to a small subgroup. We see that if we use this
algorithm with parameter p = T%o’ then with probability at least 1 — 10719, the number of survivors will
be less or equal 10. The survivors may then take part in another algorithm (e.g. in an algorithm based
on paper Prodinger (1993) or in algorithm based on paper Janson and Szpankowski (1997), Louchard and
Prodinger (2009)), which deals better with small sets of nodes, in order to select a leader with high and

controllable probability.
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3 Lower Bound

In the previous section we recalled that the LGE algorithm should use O (Inln(n)) rounds in order to
achieve high effectiveness. In this section we prove a general result confirming that this bound is near
to an optimal. We use a method applied by D. E. Willard in Willard (1986) for an analysis of resolution
protocols in a multiple access channel.

Let us consider a system (U;);=1,...z of L urns and let us fix a number n. We consider a process of
throwing an arbitrary number @) € {2, ..., n} of balls into these urns. We assume that all balls are thrown
independently and that the probability that the ball is thrown into 4th urn is equal p;. This process is fully
described by the vector p'of probabilities from the simplex X, = {(py,...,pz) € [0,1]F : p1+.. . +pL =
1} and the number @ of balls.

The most broadly studied model of urns and balls is the uniform case, i.e. the case when p' =
(%, e %) However, in several papers (see e.g. Flajolet et al. (1992), Boneh and Hofri (1997)) one
can find some results for the general case. In this section we are interested in the existence of at least
one singleton, i.e. in the existence of an urn U; with precisely one ball. The problem of estimation of the
number of singletons was quite recently analyzed in Penrose (2009).

Let Sp,q denote the event “there exists at least one urn with a single ball” and let Sz, ; denote the
event "there is exactly one ball in ith urn”. Then, Pr[Sy.q.i] = Qpi(1 —p:)@~ ' and S50 = U=, Sp.0.»
therefore, Pr[Sz.0] < Q Ele pi(l—pi)@ L.

Let us assume that the number @ of balls is unknown but it is bounded by a number n. We are going to
show that if the number 7 is sufficiently large compared to L, then there is no p’ € ¥, which will guarantee
the existence of singleton with a high probability for arbitrary @ from {2,...,n}. More precisely, let

MSP (L, n) = in Pr[Ss0] .
SP(L,n) = max min Pr(S;q]

(term MSP is an abbreviation of "Maximal Success Probability”).

Theorem 4 For arbitrary L > 1 and n > 2, we have

L-1
MSP (L,n) < .
(Ln) < g —7
Proof: Let us observe that if 7' € ¥y, is such that for some ¢ we have p; = 1 and @ > 2, then Pr[S; ] =
0, so mins<g<n Pr[Spo] = 0. Hence, we may consider only such 5 € ¥ that p; < 1 for each
i=1,...,L.

Let us fix the number L of urns and let us consider the following function (this is the trick which we
borrow from Willard (1986)):

n

f@%ZEZPﬂ%@L

Q=2 Q
Then we have
n L PI‘[S 0 Z] n L B L o B
RS Sp LTI 3 S IR ALEED B DY AL
Q=21=1 Q=21=1 =1 Q=2
L 1 L
;pt(l i) 1—(1—p) ;(1 pi) =1L ;pz L-1
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On the other side, let p* = min{Pr[S; ] : 2 < Q < n}. Then we have
f@ =Y % =p Y = =p(Ha—1).
Q Q
Therefore, we have

prH,—1) < f(p)<L-1.

Hence, if we take Q* such that Pr[S; o«] = p*, then

L-1
PI‘[S@Q*] Hn _ 1 ?
SO
in Pr[Ssq] < —— !
ZénQHSln "Pre H,-1
for arbitrary p € ¥,,. |
Corollary 1 If1 < L < J1Inn+ 37 then MSP (L,n) < 3.
Corollary 2 Ifn > exp(2L — (1 + 1)) then MSP (L, n) < 1.
Proof: Both proofs follow directly from Theorem 4 and the inequality H,, > In(n) + ~. a

3.1 Application to Leader Election Problem

Let us consider any oblivious leader election algorithm in which at the beginning each station selects
randomly and independently a sequence of bits of length M, and later this station use the sequence in the
algorithm in a deterministic way. Let n denote the upper bound on the number of stations taking part in
this algorithm and let b; denote the sequence of bits chosen by the ith station. Observe that if for each
i there is j # ¢ such that b; = b;, then the algorithm must fail. Hence, success is possible only if there
is a singleton in choices made from the space {0, 1}* of all possible sequences of bits. When we use
Corollary 1 with L = 2 then we deduce that if M < log, (% Inn + H'T”) then the probability that the
considered algorithm chooses a leader is less than % We may say that logz(% Inn) random bits are too
few for distinguishing an arbitrary collection of < n objects with a high probability.
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We prove a general multi-dimensional central limit theorem for the expected number of vertices of a given degree in
the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers
D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined
analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss some possible
extension to maps of higher genus.
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1 Introduction and Results

In this paper we study statistical properties of planar maps, which are connected planar graphs, possibly
with loops and multiple edges, together with an embedding into the plane. Such objects are frequently
used to describe topological features of geometric arrangements in two or three spatial dimensions. Thus,
the knowledge of the structure and of properties of “typical” objects may turn out to be very useful in the
analysis of particular algorithms that operate on planar maps. We say that map is rooted if an edge e is
distinguished and oriented. It is called the root edge. The first vertex v of this oriented edge is called the
root-vertex. The face to the right of e is called the root-face and is usually taken as the outer (or infinite)
face. Similarly, we call a planar map pointed if just a vertex v is distinguished. However, we have to be
really careful with the model. In rooted maps the root edge destroys potential symmetries, which is not
the case if we consider pointed maps.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960’s, see [11]. Among
many other results, Tutte computed the number M,, of rooted maps with n edges, proving the formula

_2(2n)!
" (n+2)n!

n

which directly provides the asymptotic formula

2 _
Mn ~ ﬁn 5/212n.
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1365-8050 (© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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We are mainly interested in planar maps with degree restrictions. Actually, it turns out that this kind
of asymptotic expansion is quite universal. Furthermore, there is always a (very general) central limit
theorem for the number of vertices of given degree.

Theorem 1. Suppose that D is an arbitrary set of positive integers but not a subset of {1, 2}, let M p be
the class of planar rooted maps with the property that all vertex degrees are in D and let Mp ,, denote
the number of maps in Mp with n edges. Furthermore, if D contains only even numbers, then set
d = ged{i : 2i € D}; set d = 1 otherwise.

Then there exist positive constants cp and pp with

Mp ., Nch*E’/zpB”, n = 0mod d. (D

Furthermore, let X,(Ld) denote the random variable counting vertices of degree d (€ D) in maps in Mp.
Then IE(XT(Ld)) ~ lgn for some constant piq > 0 and for n = 0 mod d, and the (possibly infinite) random
vector X,, = (Xr(bd))deD (n = 0 mod d) satisfies a central limit theorem, that is,

% (X, —~E(X,)), n=0modd, @

converges weakly to a centered Gaussian random variable Z (in (2).

Note that maps where all vertex degrees are 1 or 2 are very easy to characterize and are not really of
interest, and that actually, their asymptotic properties are different from the general case. It is therefore
natural to assume that D is not a subset of {1, 2}.

Since we can equivalently consider dual maps, this kind of problem is the same as considering planar
maps with restrictions on the face valencies. This means that the same results hold if we replace vertex
degree by face valency. For example, if we assume that all face valencies equal 4, then we just consider
planar quadrangulations (which have also been studied by Tutte [11]). In fact, our proofs will refer just to
face valencies.

Theorem 1 goes far beyond known results. There are some general results for the Eulerian case where
all vertex degrees are even. First, the asymptotic expansion (1) is known for Eulerian maps by Bender and
Canfield [2]. Furthermore, a central limit theorem of the form (2) is known for all Eulerian maps (without
degree restrictions) [9]. However, in the non-Eulerian case there are almost no results of this kind; there

is only a one-dimensional central limit theorem for Xf{i) for all planar maps [10].

Section 2 introduces planar mobiles which, being in bijection with pointed planar maps, will reduce our
analysis to simpler objects with a tree structure. Their asymptotic behaviour is derived in Section 3, first
for the simpler case of bipartite maps (i.e., when D contains only even integers), then for families of maps
without constraints on D. Section 4 is devoted to the proof of the central limit theorem using analytic tools
from [8, 9]. Finally, in Section 5 we discuss the combinatorics of maps on orientable surface of higher
genus. The expressions we obtain are much more involved than in the planar case, but it is expected to
lead to similar analytic results.

2 Mobiles

Instead of investigating planar maps themselves, we will follow the principle presented in [5], whereby
pointed planar maps are bijectively related to a certain class of trees called mobiles. (Their version of



Vertex Degrees in Planar Maps 3

mobiles differ from the definition originally given in [3]; the equivalence of the two definitions is not
shown explicitly in [5], but [7] gives a straightforward proof.)

Definition 1. A mobile is a planar tree — that is, a map with a single face — such that there are two kinds
of vertices (black and white), edges only occur as black—black edges or black—white edges, and black
vertices additionally have so-called “legs” attached to them (which are not considered edges), whose
number equals the number of white neighbor vertices.

A bipartite mobile is a mobile without black—black edges.

The degree of a black vertex is the number of half-edges plus the number of legs that are attached to it.
A mobile is called rooted if an edge is distinguished and oriented.

The essential observation is that mobiles are in bijection to pointed planar maps.

Theorem 2. There is a bijection between mobiles that contain at least one black vertex and pointed planar
maps, where white vertices in the mobile correspond to non-pointed vertices in the equivalent planar map,
black vertices correspond to faces of the map, and the degrees of the black vertices correspond to the face
valencies. This bijection induces a bijection on the edge sets so that the number of edges is the same.
(Only the pointed vertex of the map has no counterpart.)

Similarly, rooted mobiles that contain at least one black vertex are in bijection to rooted and vertex-
pointed planar maps.

Finally, bipartite mobiles with at least two vertices correspond to bipartite maps with at least two
vertices, in the unrooted as well as in the rooted case.

Proof. For the proof of the bijection between mobiles and pointed maps we refer to [7], where the bipartite
case is also discussed. It just remains to note that the induced bijection on the edges can be directly used
to transfer the root edge together with its direction. |

2.1 Bipartite Mobile Counting

We start with bipartite mobiles since they are more easy to count, in particular if we consider rooted
bipartite mobiles, see [7].

Proposition 1. Let R = R(t, z, 1,2, . ..) be the solution of the equation

% —1\ ..,

i>1
Then the generating function M = M (t, z,x1,x2, .. .) of bipartite rooted maps satisfies

oM
— =2(R/z—t 4
51 (R/z—1t), ()
where the variable t corresponds to the number of vertices, z to the number of edges, and x2;, © > 1, to
the number of faces of valency 21.

Proof. Since rooted mobiles can be considered as ordered rooted trees (which means that the neighboring
vertices of the root vertex are linearly ordered and the subtrees rooted at these neighboring vertices are
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again ordered trees) we can describe them recursively. This directly leads to a functional equation for R

of the form
tz

=23 20 (P R

which is apparently the same as (3). Note that the factor (Qii_l) is precisely the number of ways of
grouping ¢ legs and ¢ — 1 edges around a black vertex (of degree 2i; one edge is already there).

Hence, the generating function of rooted mobiles that are rooted by a white vertex is given by R/z.
Since we have to discount the mobile that consists just of one (white) vertex, the generating function of
rooted mobiles that are rooted at a white vertex and contain at least two vertices is given by

R/z—t=) <2ii1>Ri. (5)

i>1

R =

We now observe that the right hand side of (5) is precisely the generating function of rooted mobiles that
are rooted at a black vertex (and contain at least two vertices). Summing up, the generating function of
bipartite rooted mobiles (with at least two vertices) is given by

2R/z —1).

Finally, if M denotes the generating function of bipartite rooted maps (with at least two vertices) then %—Af
corresponds to rooted maps, where a non-root vertex is pointed (and discounted). Thus, by Theorem 2 we

obtain (4).
|

Remark 1. It can be easily checked that Formula (4) can be specialized to count M p, for any subset D of
even positive integers: It suffices to set to 0 every zo; such that 2; € D.

2.2 General Mobile Counting

We now proceed to develop a mechanism for general mobile counting that is adapted from [5]. For this,
we will require Motzkin paths.

Definition 2. A Motzkin path is a path starting at 0 and going rightwards for a number of steps; the steps
are either diagonally upwards (41), straight (0) or diagonally downwards (—1). A Motzkin bridge is a
Motzkin path from 0 to 0. A Motzkin excursion is a Motzkin bridge which stays non-negative.

We define generating functions in the variables ¢ and u, which count the number of steps of type 0
and —1, respectively. (Explicitly counting steps of type 1 is then unnecessary, of course.) The ordinary
generating functions of Motzkin bridges, Motzkin excursions, and Motzkin paths from 0 to +1 shall be
denoted by B(t,u), E(t,u) and BV (¢, ), respectively.

Continuing to follow the presentation of [5] and decomposing these three types of paths by their last
passage through 0, we arrive at the equations:

E=1+tE+uE?,
B =1+ (t+2uE)B,
B®Y = EB.
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In what follows we will also make use of bridges where the first step is either of type 0 or —1. Clearly,
their generating function B is given by

B=tB+uB"Y = B(t + uE).

When Motzkin bridges are not constrained to stay non-negative, they can be seen as a random arrange-
ment of a given number of steps 41,0, —1. It is then possible to obtain explicit expressions for

[+2

B = B0 = (721 ©
l,m,m

(+1) 0, myn(+1) [+2m +1
B, t'u™|B t 7
= ) (t,u) = (l,m,m +1 @
— I l+m [l+2m
Bon = [t'u™|B(t,u) = By—1,m + B | = o (z - m). (8)

Using the above, we can now finally compute relations for generating functions of proper classes of
mobiles. We define the following series, where ¢ corresponds to the number of white vertices, z to the
number of edges, and x;, ¢ > 1, to the number of black vertices of degree i:

o L(t,z,21,%2,...) is the series counting rooted mobiles that are rooted at a black vertex and where
an additional edge is attached to the black vertex.

e Q(t,z,x1,x2,...) s the series counting rooted mobiles that are rooted at a univalent white vertex,
which is not counted in the series.

e R(t,z,x1,x2,...) is the series counting rooted mobiles that are rooted at a white vertes and where
an additional edge is attached to the root vertex.

Similarly to the above we obtain the following equations for the generating functions of mobiles and
rooted maps.

Proposition 2. Let L = L(t,z,2z1,%2,...), @ = Q(t,2,21,22,...), and R = R(t,z,x1, %2, ...) be the
solutions of the equation

L=z Z $277'1-"-Z+1B@,ﬂz[/gj{rn7

lm

=2 weroms2 By, L'R™, ©

lm

tz
1-Q’
andletT =T(t,z,21,%2,...) be given by

T=1 + Z $2m+£§£,mL£Rm7 (10)

4m
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where the numbers By ,, B,g':), and E@ﬁm are given by (6)—(8). Then the generating function M =
M(t,z,z1, %2, . ..) of rooted maps satisfies

oM

— =R/z—t+T 11

o [z —t+T, (11)

where the variable t corresponds to the number of vertices, z to the number of edges, and x;, © > 1, to the
number of faces of valency i.

Proof. The system (9) is just a rephrasement of the recursive structure of rooted mobiles. Note that the
numbers By ,,, and Bﬁ,}) are used to count the number of ways to circumscribe a specific black vertex
and considering white vertices, black vertices and “legs” as steps —1, 0 and +1. The generating function
T given in (10) is then the generating function of rooted mobiles where the root vertex is black.

Finally, the equation (11) follows from Theorem 2 since R/z — ¢ corresponds to rooted mobiles with at
least one black vertex where the root vertex is white and 7" corresponds to rooted mobiles where the root

vertex is black. |

Remark 2. Note that Proposition 1 is a special case of Proposition 2. We just have to restrict to the terms
corresponding to ¢ = 0 since bipartite mobiles have no black—black edges. In particular, the series for L
is not needed any more and the second and third equations from (9) can be used to easily eliminate () in
order to recover the equation (3).

3 Asymptotic Enumeration

In this section we prove the asymptotic expansion (1). It turns out that it is much easier to start with
bipartite maps. Actually, the bipartite case has already been treated by Bender and Canfield [2]. However,
we apply a slightly different approach, which will then be extended to cover the general case as well the
central limit theorem.

3.1 Bipartite maps

Let D be a non-empty subset of even positive integers different from {2}. Then by Proposition 1 the
counting problem reduces to the discussion of the solutions Rp = Rp(t, z) of the functional equation

20 —1\ _,
Rp = ;
D tz+zz< . )RD (12)
2ieD
and the generating function Mp (¢, z) that satisfies the relation
oM
WD:Q(RD/z—t). (13)

Let d = ged{i : 2i € D}. Then for combinatorial reasons it follows that there only exist maps with n
edges for n that are divisible by d. This is reflected by the fact that the equation (12) can we rewritten in

the form
~ 26 —1\ ., ~;
R=t+) VdRe
+ 4 < ; >z R, (14)
2ieD

where we have substituted Rp(t, z) = zR(t, 2%). (Recall that we finally work with Rp/z.)
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Lemma 1. There exists an analytic function p(t) with p(1) > 0 and p'(1) # 0 that is defined in a
neighborhood of t = 1, and there exist analytic functions g(t, z), h(t,z) with h(1,p(1)) > 0 that are
defined in a neighborhood of t = 1 and z = p(1) such that the unique solution Rp = Rp(t, z) of the
equation (12) that is analytic at z = 0 and t = 0 can be represented as

z
Rp=g(t,z) — h(t,z), /1 — —. (15)

p(t)
Furthermore, the values z = p(t)e(2mij/d), j € {0,1,...,d — 1}, are the only singularities of the
function z — Rp(t, z) on the disc |z| < p(t), and there exists an analytic continuation of Rp to the

range |z| < |p(t)| +n, arg(z — p(t)e(2nwij/d)) # 0,5 € {0,1,...,d — 1}.

Proof. From general theory (see [8, Theorem 2.21]), we know that an equation of the form R = F(t, z, R),
where F'is a power series with non-negative coefficients, has a square-root singularity if there are positive
solutions (p, Rp) to the following system:

Ro=F(1,p,Ro), 1= Fg(1,p, Ro).

It is important to observe that the solutions are inside the region of convergence of F'. Besides, one has
to check several analytic conditions on the derivatives of F' evaluated at this singular point. For a more
detailed proof, the reader can refer to the work of Bender and Canfield [2].

1
It is now relatively easy to obtain similar properties for Mp (¢, z).

Lemma 2. The function M = Mp(t, z) that is given by (13) has the representation

3/2
z
Mp = go(t, z) + ha(t, 2 (1—) (16)
(1:2) +alt.2) (1= =
in a neighborhood of t = 1 and z = p(1), where the functions g2(t, z), ha(t, z) are analytic in a neighbor-
hood of t = 1 and z = p(1) and we have ha(1, p(1)) > 0. Furthermore, the values z = p(t)e(2mij/d),
Jj€{0,1,...,d— 1}, are the only singularities of the function z — Mp(t, z) on the disc |z| < p(t), and
there exists an analytic continuation of Mp to the range |z| < |p(t)| + n, arg(z — p(t)e(2mij/d)) # 0,
jef0,1,...,d—1}.

Proof. This is a direct application of [8, Lemma 2.27]. |

In particular it follows that Mp (1, z) has the singular representation

3/2
z
MD = gg(l,Z) + hg(l,z) (1 — )
p(1)
around z = p(1). The singular representations are of the same kind around z = p(1)e(27ij/d), j €
{1,...,d — 1} and we have the analytic continuation property. Hence it follows by usual singularity

analysis (see for example [8, Corollary 2.15]) that there exists a constant cp > 0 such that
[2"Mp(1,2) ~ cpn~?%p(1)7", n = 0 mod d,

which completes the proof of the asymptotic expansion in the bipartite case.
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3.2 General Maps

We now suppose that D contains at least one odd number. It is easy to observe that in this case we have
[z"]|Mp(1, z) > 0 for n > ng (for some ng), so we do not have to deals with several singularities.

By Proposition 2 we have to consider the system of equations for Lp = Lp(t, z), Qp = Qp(t,2),
Rp = Rp(t, 2):

i—2m—1
LD =z § § Bi72mfl,leD m R%l7

iceD m
Q=233 Blan 5l " °RE. (17)
€D m
tz
Rp = ,
T 1-Qp

and also the function - _
Tp=Tp(t,2) =1+ > Bicammly " RE.

€D m

Lemma 3. There exists an analytic function p(t) with p(1) > 0 and p'(1) # 0 that is defined in a
neighborhood of t = 1, and there exist analytic functions g(t,z), h(t, z) with h(1,p(1)) > 0 that are
defined in a neighborhood of t = 1 and z = p(1) such that

RD/zftJrTD:g(t,z)—h(t7z)1/lfﬁ. (18)

Furthermore, the value z = p(t) is the only singularity of the function z — Rp/z —t + Tp on the disc
|z| < p(t), and there exists an analytic continuation of R to the range |z| < |p(t)|+n, arg(z—p(t)) # 0.

Proof. Instead of a single equation, we have to deal with the strongly connected system (17), which is
known to have similar analytic properties (see [8, Theorem 2.33]). As in Lemma 1, the main observation
is that the singular point lies within the region of convergence of the equations, which follows directly in
the finite case, but gets more technical in the infinite case. |

Lemma 3 shows that we are precisely in the same situation as in the bipartite case (actually, it is slightly
easier since there is only one singularity on the circle |z| = p(¢)). Hence we immediately get the same
property for Mp as stated in Lemma 2 and consequently the proposed asymptotic expansion (1).

4 Central Limit Theorem for Bipartite Maps

Based on this previous result, we now extend our analysis to obtain a central limit theorem. Actually, this
is immediate if the set D is finite, whereas the infinite case needs much more care.

Let D be a non-empty subset of even positive integers different from {2}. Then by Proposition 1 the
generating functions Rp = Rp (¢, 2, (z2i)2iep) and Mp = Mp(t, z, (x2;)2:ep) satisfy the equations

26 -1\
Rp=t i ) R; 19
D z+zzx2< ; > D (19)

2i€ D
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and oM
WD =2(Rp/z—1t). (20)

If D is finite, then the number of variables is finite, too, and we can apply [8, Theorem 2.33] to obtain
a representation of Rp of the form

z

_— 21
p(t, (z2i)2iep)’ @1

Rp = g(t, 2z, (v2i)2iep) — h(t, 2, (9621:)2ieD)\/1 —

a proper extension of the transfer lemma [8, Lemma 2.27] (where the variables xo; are considered as
additional parameters) leads to

; 3/2
Mp = t7 ) i)21 h tv ) 1 )24 l-—F 3 22
p = ga(t, 2, (¥2:)2iep) + ha(l, 2, (T2i)2ieD) ( o, (l’zi)zieD)> (22)

and finally [8, Theorem 2.25] implies a multivariate central limit theorem for the random vector X,, =
(XT(L%))%E p of the proposed form.

Thus, we just have to concentrate on the infinite case. Actually, we proceed there in a similar way;
however, we have to take care of infinitely many variables. There is no real problem to derive the same
kind of representation (21) and (22) if D is infinite. Everything works in the same way as in the finite
case, we just have to assume that the variables z; are uniformly bounded. And of course we have to use
a proper notion of analyticity in infinitely many variables. We only have to apply the functional analytic
extension of the above cited theorems that are given in [9]. Moreover, in order to obtain a proper central
limit theorem we need a proper adaption of [9, Theorem 3]. In this theorem we have also a single equation
y = F(z, (x;)ier,y) for a generating function y = y(z, (x;);cr) that encodes the distribution of a random

iel

vector (X”);¢; in the form

where X,(f) = 0 for % > cn (for some constant ¢ > 0) which also implies that all appearing potentially
infinite products are in fact finite. (In our case this is satisfied since there is no vertex of degree larger
than n if we have n edges.) As we can see from the proof of [9, Theorem 3], the essential part is to
provide tightness of the involved normalized random vector, and tightness can be checked with the help
of moment conditions. It is clear that asymptotics of moments for X 7(1” can be calculated with the help of
derivatives of F', for example EX W= F,./(pFy;) - n+ O(1). This follows from the fact all information
on the asymptotic behavior of the moments is encoded in the derivatives of the singularity p(z, (z;)icr)
and by implicit differentiation these derivatives relate to derivatives of F'. More precisely, [9, Theorem 3]
says that the following conditions are sufficient to deduce tightness of the normalized random vector:

ZFM < 0, Zsz, < 00, ZFLI% < 00,

el i€l el
Fopp = o(1), Fopw; = 0(1), Fyye, = o(1), Fyyoiw, = o(1),
FZZ?H = O(Dv Fzymi = 0(1)7 , {Zyyxz = 0(1)7 Fyyywi = 0(1)7

(i — 00),
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where all derivatives are evaluated at (p, (1);cr, y(p))-

The situation is slightly different in our case since we have to work with Mp, instead of Rp. However,
the only real difference between Rp and Mp is that the critical exponents in the singular representations
(21) and (22) are different, but the behavior of the singularity p(t, z, (z;);cr) is precisely the same. Note
that after the integration step we can set ¢ = 1. Now tightness for the normalized random vector that is
encoded in the function Mp follows in the same way as for Rp. And since the singularity p(1, z, (2;)icr)
is the same, we get precisely the same conditions as in the case of [9, Theorem 3].

This means that we just have to check the above conditions hold for

20 —1Y\ ;
F=F(1 094 )24 = § ) i
(725(-7'27.)216D7y) zZ+z i .Z’21< i )y,

2i€D

where all derivatives are evaluated at z = p, z2; = 1, and y = Rp(p) < 1/4. However, they are trivially

satisfied since
2i —1 )
> ( " )iKy’ < o0
)

i>1
for all K > 0 and for positive real y < 1/4.

Remark 3. As stated in Theorem 1, the results and methods extend to the general case as well. The main
idea is to reduce the (positive strongly connected) system of two equations (17) to a single functional
equation, by applying [8, Theorem 3].

5 Maps of Higher Genus

The bijection used in Section 2 relies solely on the orientability of the surface on which the maps are
embedded. Therefore it can easily be extended to maps of higher genus, i.e., embedded on an orientable
surface of genus g € Z~ (while planar maps correspond to maps of genus (). The main difference lies
in the fact that the corresponding mobiles are no longer trees but rather one-faced maps of higher genus,
while the other properties still hold.

However, due to the apparition of cycles in the underlying structure of mobiles, another difficulty arises.
Indeed, in the original bijection, vertices and edges in mobiles could carry labels (related to the geodesic
distance in the original map), subject to local constraints. In our setting, the legs actually encode the local
variations of these labels, which are thus implicit. Local constraints on labels are naturally translated into
local constraints on the number of legs. But the labels have to remain consistent along each cycle of the
mobiles, which gives rise to non-local constraints on the repartition of legs.

In order to deal with these additional constraints, and to be able to control the degrees of the vertices at
the same time, we will now use a hybrid formulation of mobiles, carrying both labels and legs. As before,
we will focus on the simpler case of mobiles coming from bipartite maps.

5.1 g-Mobiles

Definition 3. Given g € Z>(, a g-mobile is a one-faced map of genus g — embedded on the g-torus —
such that there are two kinds of vertices (black and white), edges only occur as black—black edges or
black—white edges, and black vertices additionally have so-called “legs” attached to them (which are not
considered edges), whose number equals the number of white neighbor vertices.
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n, =1 Fig. 1: An oriented cycle in a g-mobile and
no =4 the constraint on its left (colored area). Notice
no=3 that a similar constraint holds on its right, but

is necessarily satisfied thanks to the properties
of a g-mobile.

Furthermore, for each cycle c of the g-mobile, let n,, n_, and n—o respectively be the numbers of white
vertices on ¢, of legs dangling to the left of ¢ and of white neighbours to the left of c. One has the following
constraint (see Figure 5.1):

Ny =No +N-o 23)

The degree of a black vertex is the number of half-edges plus the number of legs that are attached to it.
A bipartite g-mobile is a g-mobile without black—black edges. A g-mobile is called rooted if an edge is
distinguished and oriented.

Notice that a 0-mobile is simply a mobile as described in Definition 1.

Theorem 3. Given g > 0, there is a bijection between g-mobiles that contain at least one black vertex
and pointed maps of genus g, where white vertices in the mobile correspond to non-pointed vertices in
the equivalent map, black vertices correspond to faces of the map, and the degrees of the black vertices
correspond to the face valencies. This bijection induces a bijection on the edge sets so that the number of
edges is the same. (Only the pointed vertex of the map has no counterpart.)

Similarly, rooted g-mobiles that contain at least one black vertex are in bijection to rooted and vertex-
pointed maps of genus g.

Proof. This generalization of the bijection to higher genus was first given in [6] for quadrangulations
and [4] for Eulerian maps, from which we will exploit many ideas in the present section.

5.2 Schemes of g-Mobiles

g-mobiles are not as easily decomposed as planar mobiles, due to the existence of cycles. However, they
still exhibit a rather simple structure, based on scheme extraction.
The g-scheme (or simply the scheme) of a g-mobile is what remains when we apply the following op-
erations (see Figure 2): first remove all legs, then remove iteratively all vertices of degree 1 and finally
replace any maximal path of degree-2-vertices by a single edge.
Once these operations are performed, the remaining object is still a one-faced map of genus g, with
black and white vertices (white—white edges can now occur), where the vertices have minimum degree 3.
To count g-mobiles, one key ingredient is the fact that there is only a finite number of schemes of a
given genus. Indeed, let d; be the number of degree ¢ vertices of a g-scheme:

Z(z —-2)d; = Z id; — 2 Z d; = 2(#edges — #vertices) = 4g — 2.

k>3 k>3 k>3

The number of vertices (respectively edges) is then bounded by 49 — 2 (respectively 6g — 3), where this
bound is reached for cubic schemes (see an example in Figure 2).
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Fig. 3: The variations of labels around a black vertex and along an oriented cycle.

To recover a proper g-mobile from a given g-scheme, one would have to insert a suitable planar mobile
into each corner of the scheme and to substitute each edge with some kind of path of planar mobiles.
Unfortunately, this cannot be done independently: Around each black vertex, the total number of legs in
every corner must equal the number of white neighbors, and around each cycle, (23) must hold.

In order to make these constraints more transparent, we will equip schemes with labels on white vertices
and black corners. Now, when trying to reconstruct a g-mobile from a scheme, one has to ensure that the
local variations are consistent with the global labelling. To be precise, the label variations are encoded as
follows (see Figure 3):

e Around a black vertex of degree d, let (I1,...,lq) be the labels of its corners read in clockwise
order:

+1 if there is a leg between the two corresponding corners,
Vi, liv1 —1; = 0 if there is a black neighbor,
—1 if there is a white neighbor.

e Along the left side of an oriented cycle, the label decreases by 1 after a white vertex or when
encountering a white neighbor and increases by 1 when encountering a leg.

The above statements hold for general — as well as bipartite — mobiles. In the following, we will only
consider bipartite mobiles, as they are much easier to decompose.
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5.3 Reconstruction of Bipartite Maps of Genus g

In the following, it will be convenient to work with rooted schemes. One can then define a canonical la-
belling and orientation for each edge of a rooted scheme. An edge e now has an origin e_ and an endpoint
e+. The k corners around a vertex of degree k are clockwisely ordered and denoted by ¢, .. ., c.

Given a scheme S, let V;,, V,, C,, C be respectively the sets of white and black vertices and of white
and black corners. A labelled scheme (S, (I.)ccv,uc, ) 1S a pair consisting of a scheme S and a labelling
on white vertices and black corners, with [ > 0 for all c. Labellings are considered up to translation, as
they will not affect local variations. For e € FEg, an edge of S, we associate a label to each extremity
le_,le, . If an extremity is a white vertex of label [, its label is [. If the extremity is a black vertex, its label
is the same as the next clockwise corner of the black vertex.

Let a doubly-rooted planar mobile be a rooted (on a black or white vertex) planar mobile with a sec-

ondary root (also black or white). These two roots are the extremities of a path (v1, . . ., vx ). The increment
of the doubly-rooted mobile is then defined as n_, — n, — n—o, which is not necessarily 0, as the path is
not a cycle.

Similarly as in [4], we present a non-deterministic algorithm to reconstruct a g-mobile:

Algorithm.

(1) Choose a labelled g-scheme (S, (I.)cev,uc, )-

(2) Yv € Vi, choose a sequence of non-negative integers (iy)1<k<deg(v), then attach iy, planar mobiles
and iy + Lo, — lo, + 1 legs to ¢, (the k*" corner of v).

(3) Ve € S, replace e by a doubly-rooted mobile of increment incr(e) = lo, —lo_ +{ i_} ZZE: ?; ZZZZ/?
(4) On each white corner of S, insert a planar mobile.

(5) Distinguish and orient an edge as the root.

Fig. 4: Steps (1)—(3) of the algorithm.
Proposition 3. Given g > 0, the algorithm generates each rooted bipartite g-mobile whose scheme has

k edges in exactly 2k ways.

Proof. One can easily see that the obtained object is indeed bipartite. Attaching planar mobiles and legs
added at step (2) in a corner ¢y, creates new corners, such that:

o The first carries the same label [, as ci, and
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o the last carries the label I., + (ix + e, —le, +1) —ix = ley,, + 1.

The next corner should then be labelled (I., ., + 1) — 1 = [, ,, due to the next white neighbor, which is
precisely what we want.

In the same fashion, at step (3), a simple counting shows that each edge is replaced by a path such that
the labels along it evolve according to the scheme labelling.

We thus obtain a well-formed rooted bipartite g-mobile, with a secondary root on its scheme. Since the
first root destroys all symmetries, there are exactly 2k choices for the secondary root, which would give
the same rooted g-mobile. |

5.4 g-Mobile Counting
A doubly-rooted bipartite planar mobile can be decomposed along a sequence of elementary cells forming
the path between its two roots. Its increment is simply the sum of the increments of its cells.

Definition 4. An elementary cell is a half-edge connected to a black vertex itself connected to a white
vertex with a dangling half-edge. The white vertex has a sequence of black-rooted mobiles attached on
each side. The black vertex has j > 0 legs and £ > 0 white-rooted mobiles on its left, [ > 0 white-rooted
mobiles and k + [ — j + 2 legs on its right, and its degree is 2(k + [ + 2). The increment of the cell is then
j—k—1.

The generating series P := P(t, z, (x2;), s) of a cell, where s marks the increment, is:
22 R? JHE\ (k+20—5+2\ . ., wel | 2R S
P(t, z, (x;),8) = Tj lczl>0 ( J > < l >SJ Tartr) BT = 7P'

The generating series S := S(t, z, (x2;), s) of a doubly-rooted mobile depends on the color of its roots

(u,v):

i (w,0) = (o,0) or (e,0).
Stuw) (b, 2, (22:), 8) = 1iP12> if (u,v) = (0,0),
st(zl P) if (u,v) = (o, ).
We can now express the generating series Rg := Rg(t, 2, (x2;)) of rooted bipartite g-mobiles with
scheme S
|Col
Rs(t, 2, (v2)) = 282‘1E| [E1¢IVol <i> .
er(e S it Loy, — Loy + 1
o > (I NSe e IT D I1 ( * e ) T3(deg(v)+ X in)
(I.) labelling | e€ E VEVa i1, mrideg() 20 \ k=1 k

(24)

Proposition 4. The generating series M,gg) =M l()g ) (t, z, (x2;)) for the family of rooted bipartite maps
of genus g, where the vertex degrees belong to D, satisfies the relation:
oMy 2

D == Z Rs(t, z, (w21 {2,ep}))- 25)

S scheme
of genus g
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Proof. This follows directly from Theorem 3 and Equation (24). |

6 Conclusion

Theorem 1 confirms the existence of a universal behaviour of planar maps. The asymptotics (with ex-
ponent —5/2) and this central limit theorem for the expected number of vertices of a given degree are
believed to hold for any “reasonable” family of maps. It has also been shown in [6, 4] that a similar phe-
nomenom occurs for maps of higher genus: The generating series of several families (quadrangulations,
general and Eulerian maps) of genus ¢ exhibit the same asymptotic exponent 5g/2 — 5/2.

The expression obtained in Section 5 needs to be properly studied in order to obtain an asymptotic
expansion. It refines previous results by controlling the degree of each vertex in the corresponding map.
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Additive tree functionals allow to represent the cost of yndivide-and-conquer algorithms. We give an invariance
principle for such tree functionals for the Catalan modah@om tree uniformly distributed among the full binary
ordered tree with given number of internal nodes). Thisesetin the natural embedding of binary trees into the
Brownian excursion and then on elementafycomputations. We recover results first given by Fill and Kg8004)
and then by Fill and Janson (2009).
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1 Introduction

1.1 Additive functionals and toll functions

Additive functionals on binary trees allow to representdbst of algorithms such as “divide and conquer”,
see Kapur’s PhD thesis [24] and Fill and Kapur [16]. Hba rooted full binary ordered tree, we &1

its cardinal,) its root, L(T) and R(T") the left-sub-tree and right-sub-tree of the rooffofA functional

F on binary trees is called an additive functional if it saéisfthe following recurrence relation:

F(T) = F(L(T)) + F(R(T)) + by, 1)
for all treesT" such tha{T’| > 1 and with F(#) = 0. The given sequendg,,,n > 1) is called the toll

function. Notice that:
F(T)= b, 2
veT

whereT, is the sub-tree abovwewhose root i.

We give some examples of commonly used toll functions orxrfdactions related to additive func-
tional. Forv,w € T, we say thatv is an ancestor of and writew < v if v € T,,. Foru,v € T, we
denote byu A v, the most recent common ancestoucdndv: u A v is the only element of” such that:
w < v andw < vimpliesw < u A v. We shall denote by the graph distance if.

e The total size of the tre€, |T'|, corresponds to the additive functional with toll functign= 1.

This work is partially supported by DIM RDMath IdF
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e The total path length of" is defined byP(T) = }_ ., d(0,v). We have that’(T) + |T| is the
additive functional with toll functio,, = n as

YTl =0 > <y = > (L+d(B,v)) = |T|+ P(T).

weT weT veT veT

e The shape functional of a tré@ is the additive functional with toll functioh,, = log(n). (This
functional will not be covered by the main results of this @)

e The Wiener index of the tre€ is defined byW (7') = >_, <7 d(u,v). Notice thatd(u,v) =
d(0,u) + d(0,v) — 2d(0,u A v). This implies that¥ (T') = 2|T| Y o7 |Tw| — 2> er [Tw]? @s

Z Tw|? = Z Z liw<unvy = Z (L+d@,unv) =|T|” + Z (@, u Av).

weT weT u,veT u,veT u,veT

According to (2), the functional",, ., |T.|? is an additive functional with toll functioh,, = n?.
And thus the Wiener index of a full binary tree is a combinatid two additive functionals.

e The Sackin index (or external path length) of the t¥igeused to study the balance of the tree, is
similar to the total path length @ when one considers only the leavé§T') = Zveﬁm d,v),
where the set of leaves 8(T) = {v € T, |T,| = 1}. Using that for a full binary tree we
have|T| = 2|£(T)| — 1, we deduce tha2S(T) = >, . |Tw| — 1. The Colless index of the
treeT is defined as(T) = 3, o1 ||£(Ly)| — [£(Ry)||. SinceT is a full binary tree, we get
2|L(Ly)| — 2|L(Ry)| = |Lo| — |Ro| and|Ly| + |Ry| = |T| — 1. We obtain thaC(T') =
Y wer [ Twl = |T| =232, cpmin(|Ly|, |R,|). The cophenetic index of the trég which is used in
[27] to study the balance of the tree, is definedlyT') = 3°, (1) w0 A0, uAv). Using again
thatT is a full binary tree, we getCo = 45" |L(T)|(|L(Tw)| — 1) —4|L(T)|(1L(T)] - 1) =
Ywer | Twl* = 1T = T| + 1.

1.2 Asymptotics for additive functionals in the Catalan model

We consider the Catalan model: &t be a random tree uniformly distributed among the set of finlaby
ordered trees with internal nodes (and thus+ 1 leaves), which has cardin@}, = (2n)!/[(n!?)(n+1)].
In particular, we have:

[T = 2n + 1.

Recall thatT, is a (full binary) Galton-Watson tree (also known as simpénerated tree) conditioned
on havingn internal nodes. It is well known, see Takacs [34], Aldous4Band Janson [21], that
‘Tn|_3/2P(Tn) converges in distribution, asgoes to infinity, towardg fol B ds, whereB = (B,,0 <

s < 1) is the normalized Brownian excursion. This result can be seea consequence of the conver-
gence in distribution of, (in fact the contour process) properly scaled towards tlogvBran continuum
tree whose contour processhs see [3] and Duquesne [9], or Duquesne and Le Gall [10] in ¢ltEng

of Brownian excursion. For a combinatorial approach, whiah be extended to other families of trees,
see also Fill and Kapur [15, 17] or Fill, Flajolet and KapuB]1
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In [16], the authors considered the toll functiodns = »” with 3 > 0 and they proved that with a
suitable scaling the corresponding additive functiafia(Z},) converge in distribution to a limit, sayj.
The distribution ofts is characterized by its moments. (In [16], the authors @ersalso the toll function
b, = log(n).) See also Janson and Chassaing [23] for asymptotics of taeenindex, which is a con-
sequence of the joint convergence in distributio Bf(T:,), F»(T},)) with a suitable scaling and Blum,
Francois and Janson [6] for the convergence of the SackirCatiess indexes. It is announced in Fill
and Janson [14] that fg# > 1/2, Y can be represented as a functional of the normalized Brovexa
cursion. More precisely, fof > 1/2, Y3 is distributed ags(B), where for any non-negative continuous
function’ defined ono, 1]

h) = 1t5—1 1= )P Yh() dt — ) [ = sPPR) + h(s) — 2m s,t)] dsdt,
a0 =5 [ 177 (=P e8P0 + his) —2ma(5,0)
with

mp(s,t) = inf  h(u). 3)

u€[sAt,sVt]

Furthermore, fop3 = 1, this reduces t@ (h) = fol h and forg > 1 we also have:
¢p(h) = B(B — 1)/ [t — s[P~2my,(s,t) dsdt. (4)
[0,1)2

We use the natural embedding’Bf into the Brownian excursion, see [4], so that the convergémc
distribution of the additive functional is then an a.s. ocemgence (which holds simultaneously for all
B8 > 1/2) and also give the fluctuations for this a.s. convergenaamRhis convergence, we also provide
another representation ¢ (k) which is a natural by-product of the a.s. convergence.

Remark 1.1 The method presented in this paper based on the embeddihgrtb a Brownian excursion
can not be extended directly to other models of trees sucmasytsearch trees, recursive trees or simply
generated trees.

Concerning binary search trees (or random permutation rhod¥ule trees), see [31] and [32] for the
convergence of the external path length (which correspimdsir setting to the Sackin index), [28] for
toll functionb,, = n?, [29] for the Wiener index (and [21] for simply generatedesy, [6] (and [18] for
other trees) for the Sacking and Colless indexes.

Concerning recursive trees, see [26], [8] for the convergeof the total path length and [29] for the
Wiener index. In the setting of recursive tree, then (1) isoatsastic fixed point equation, which can be
analyzed using the approach of [33].

Remark 1.2 One can replace the toll functidny, in (1) by a function of the tree, s&y7"). For example,

if one consideb(T") = 1{7|=1}, then the corresponding additive functiond(T") = |L(T')| gives the
number of leaves. The case of “local” toll functitr{with finite support or fast decreasing rate) has been
considered in the study of fringe trees, see [2], [7] for hipaearch trees, and [22] for simply generated
trees and [19] for binary search trees and recursive trees.

See [20] for the study of the phase transition on asymptatiesiditive functionals with toll functions
b, = n® on binary search trees between the “local” regime (corresgimg to3 < 1/2) and the “global”
regime (3 > 1/2). The same phase transition is observed for the Catalan mede [16]. Our main
result, see Theorem 3.1, concerns specifically the “globedjime.
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2 Binary trees in the Brownian excursion

We begin by recalling the definition of a real tree, see [18f some elementary properties of the Brow-
nian continuum random tree, see [25]. A real tree is a mepéee(T, d) which satisfies the following
two properties for every,y € T

(i) There exists a unique isometric mgp,, from [0, d(x,y)] into 7 such thatf, ,(0) = z and
Jay(d(z,y)) = y.
(i) If ¢ is acontinuous injective map frof@, 1] into 7 such that)(0) = x and¢(1) = y, then we have
¢([0,1]) = fa.y([0,d(z, y)]).
Equivalently, a metric spadd’, d) is a real tree if and only if” is connected and satisfies the four point
condition:

d(s,t) +d(z,y) <max(d(s,z) +d(t,y),d(s,y) +d(t,z)) forall s,t,z,yeT.

A rooted real tree is a real tred, d) with a distinguished vertefl called the root. In the following
paragraphs, we will only consider compact rooted real trees

One can use continuous functions to encode compact roo&drees as follows. Lek be a non-
negative continuous function defined pn1] such that:(0) = k(1) = 0. For everyz, y € [0, 1], we set
dp(z,y) = h(z) + h(y) — 2mp(z,y), wheremy, is defined in (3). Itis easy to check that is symmetric
and satisfies the triangle inequality. The relation defined on0, 1]? by x ~j, y < d(z,y) = 0O is an
equivalence relation. Léf, = [0, 1]/ ~, be the corresponding quotient space. The funatipan [0, 1]?
induces a function off;2, which we still denoted byi;,, and which is a distance df,. It is not difficult
to check that 7y, d,) is then a compact real tree. We denotepltjre canonical projection frofd, 1] into
Tr. Thus, the metric spaddy, d,) is a compact real tree which can be viewed as a rooted reabyree
setting) = p(0).

Let B = (B:,0 <t < 1) be a normalized Brownian excursion. Informally,is just a linear standard
Brownian path started from the origin and conditioned ty §asitive on(0, 1) and to come back t0
attimel. Fora > 0, lete = /2/a B and let7. denote the Brownian tree. The continuum random
tree introduced by Aldous correspondsato= 1/2 and the Brownian tree associated to the normalized
Brownian excursion correspondsdo= 2. We shall keep the parameterso that the two previous cases
are easy to read on the results.

Let (U,,n € N*) be a sequence of independent random variables uniforff, ¢h independent of.
We denote byr,, the random tree spanned by ther 1 pointsp(Us), ..., p(Un+1) that is the smallest
connected subset G¢ that containg(Us), ..., p(U,+1) and the root. The tre§, has exacth2n + 1
nodes. There is a natural orderdngiven by the order of its external nodefl, ), . .., p(Upn+1)- LetT,
be the corresponding trees when one forget about the brangthis. It is well known thdr, is uniform
among the full binary ordered trees withinternal nodes. See Figure (1) for an example with 4.

Let (h1,...,hanyt1) be the branch lengths of the tr@g given in the lexicographical order. We recall,
see [4], [30] (Theorem 7.9) or [11], that the density(bf, ..., han+1) IS given by:

(2n)! antl 12
f’rb(hlv ) h‘2n+1) = 2—77,’ —L e~ “n 1{h1>07~..7h2n+1>0}7
. n
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Fig. 1: The Brownian excursior,, (for n = 4) andT,.

B_exit)

whereL,, = if{l hi denotes the total length &f,. Notice that the edge-lengths are independent of

the shape of the treE,. It is then easy to deduce that the density.gfis given by:

an+1 2n+1 —ax?
fr.(z) = 2—T e 1z>03-
And we have, see [1] thdt,,//n converges a.s. towardg/«. Furthermore, elementary computations
give that(hq, ..., hant+1) has the same distribution &8, A4, ..., LyAgpt1), WhereAy ... Aoy
represents the lengths of tBe + 1 intervals obtained by cuttinfj), 1] at 2n pointsV, ..., Va,, where
Vi,..., Vo, are2n independent uniform random variables [n1] and independent of,,. We thus
deduce the following elementary Lemma.

Lemma 2.1 The random vectofh, . .., ha,+1) has the same distribution as:

<Ln B EQ"“) :
2n+1 Sont1
whereFEy, ..., Ea,4+1 are 2n + 1 independent exponential random variables, independeiit,ofand
1

52n+1 == Ziiﬁ Ek-
We end this section with a result on the Brownian excursiore 3é&tm for m. defined in (3). For
s € [0,1] andr € [0, e,), the length of the excursion efabover straddlings is given by:

1
Or s = / l{m(s,t)zr}dt~
0

1 es
ZB:/ ds/ dr o? 1. (5)
0 0 '

The next result is proved using the representation of Braweixcursion from Biane [5].

Forp > 0, we set:
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Lemma22 Lets > 0. We have:
P(Zs < +o0)={0 ifp<1/21 ifB>1/2.

The following result based on elementary computationsalim recover the formulation of our Corol-
lary 3.2 given in [16] and [14], see (4).

Lemma 2.3 We haveZ; = fol es ds and forg > 1:

Zs =586 -1) /[o = sl ms, 1) ds .

)

3 Results

Inspired by (2), we consider the following random meastife@ssociated to the trég, defined as follows.
For any non-negative function defined n1], we set:

3 T,
An(f) = 1T 4 S T (:Tn') ,

veTy,

where we recall thal’, is the sub-tree abovewith rootv and|T,,| = 2n + 1. The casef(z) = 277!
corresponds to the additive functional @ given by (2) with toll functionb,, = n” up to the scaling
factor|T),|~(z +5),

We define the following random measure associated to thasrcws:

w(f) = Vo [ as [ ar st

We now state our main result on the invariance principle.

Theorem 3.1 Almost surely, for allf € C°((0, 1]) such thafiim, o 22 < f(z) = 0 for some0 < ¢ < T
we have:

lim A, (f) = ®(f).

n—-+00

Proof: We only present the main ideas of the proof, as the detailedfpmill be given in a forthcoming
paper. Letf be a smooth enough function defined[onl]. We first notice thatd,,(f) is well approxi-
mated by:

vET),

mt 3 2 (m)

w€L(Ty) vET,, vSu

where we recall that (T") denotes the leaves of the tréeand |T'| = 2|£(T)| — 1 in a full binary tree.
The precise distribution of the height, ..., ha,+1) given in Lemma 2.1 and the fact that,//n
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converges a.s. towardg/« gives thath, is close toL,,/(2n + 1) that is of1/(2/an). In the spirit of
the law of the large number, usidg computations, we obtain that, ; (f) is well approximated by:

_3 75|
Auaf) = WanlTF Y Zf@)
w€EL(Ty) VE€ETn, vu
s, 2X,+ 1
= 4van|T,|"2 Z/ dr f( |T]'€| ),
where X, ;, + 1 denotes the number of integerss {1,...,n + 1} such that the random variablg

belongs to the same excursion intervakaibove levelr asUy, that ism(ey,, ey, ) > r. Conditionally
one, the random variabl&’, ;, is binomial with parametein, o, 7, ). In particular, for larger, 2X, 5, + 1

is close t®2no, v, and thug2.X, , + 1)/|T,| is close tas, y, . Using|T,| = 2n + 1, the smoothness of
f andL? computations, we get that,, »(f) is well approximated by:

dr f (oru,) -
n + ]. —1 0

Then use the law of large number (conditionallye)rto get that a.s.

1 €es
lim A,3(f) =v2«x / ds/ dr f (ors) -
0 0

n——+oo

We deduce that for all (smooth enough) functions, we havelas,_, ;- 4,(f) = ®(f). Since the
considered family of smooth functions is convergence deteng, this implies that a.s(A,,,n € N*)
converges toward® (for the weak convergence or vague convergence of finite uneam|0, 1]). This
in turns gives that a.s. for all continuous functiohisy,—, 1 o, A, (f) = ®(f). More work is required to
extend this result to the class of functions considerederitheorem. |

According to Lemma 2.2, the random varialdlg defined by (5) is a.s. finite (resp. infinite)df> 1/2
(resp.0 < B < 1/2). Considering the functiofi(x) = z°~! for 8 > 0, we easily deduce from Theorem
3.1 the following convergence. Fare N*, we set:

Zé”) |T |~ (B+3) Z T, |7

veTy
Corollary 3.2 We have almost surely, for afl > 0,
lim Z{" = Zs.
n—-+oo
Remark 3.3 Corollary 3.2 gives directly thai T, | =*/2 " . |To|, [Tn]| /% Y, cp, [T0|?) is asymptot-

ically distributed asy/2a (Z1, Z»). Since, according to [6] or [18], the quantity”, ., min(|L,|, |R.|)

is of smaller magnitude thalff,,|?/2, we can directly recover the joint asymptotic distributifrthe total
length path, the Wiener, Sackin, Colless and cophenetiexiesl defined in Section 1.1 for the Catalan
model. More precisely, we have the following a.s. converg@sn goes to infinity:

P(T,) W(T,) S(T,) C(T,) Cof % 2y 2
(T e s e mpe) - Ve (e -2.5.2.2).
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The next proposition gives the fluctuations correspondirti¢ invariance principles of Corollary 3.2
whenj > 1. Notice the speed of convergence in the invariance priedipbf order|T,,|~'/* and the
limiting variance is (up to a multiplicative constant) givey Zz with 5’ = 2.

Proposition 3.4 For all 5 > 1, we have the following convergence in distributiomagoes to infinity:

(T 14(28" = Z), 267) = ((20)7V/*V/Zo5 G, 25)
whereG is a centered reduced Gaussian random variable indeperafeéhée excursior.

The contribution to the fluctuations is given by the errorpboximation ofA,, 1 (f) by A, 2(f) with
f(z) = 28—, see notations from the proof of Theorem 3.1. This corredpom the fluctuations coming
from the approximation of the branch lengttis,, v € T,,) by their mean, which relies on the explicit
representation on their joint distribution given in Lemméa.2n particular, there is no other contribution
to the fluctuations from the approximation of the continuvee ¥, by the sub-tred,,.
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1 Introduction

In his lectures in the summer of 1960 at Michigan State UsitgrAlfred Rényi discussed several prob-
lems related to random sets [21]. Among them there was agmobtgarding recovering a labeling of
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a setX of n distinct objects by asking random subset questions of tima favhich objects correspond
to the labels in the (random) sBt?” For a given method of randomly selecting queries, Rérgiiginal
problem asks for the typical behavior of the number of qemiecessary to recover the hidden labeling.

Formally, the unknown labeling of the s&t is a bijectiong from X to a setA of labels (necessarily
with equal cardinalityn), and a query takes the form of a subsetC A. The response to a quey is
¢~ (B) C X.

Our contribution in this paper is a precise analysis of sdvparameters of Rényi's problem for a
particular natural probabilistic model on the query seggenn order to formulate this model precisely,
it is convenient to first state a view of the process that dhiteis its tree-like structure. In particular, a
sequence of queries corresponds to a refinement of pastitidthe set of objects, where two objects are in
different partition elements if they have been distingatshy some sequence of queries. More precisely,
the refinement works as follows: before any questions aredaske have a trivial partitiof3y = X
consisting of a single class (all objects). Inductivelyif_, corresponds to the partition induced by the
first j — 1 queries, thef3; is constructed fror3;_, by splitting each element 88;_; into at most two
disjoint subsets: those objects that are contained in thienpige of thejth query setB; and those that
are not. The hidden labeling is recovered precisely wherp#rétion of X consists only of singleton
elements. An instance of this process may be viewed as adrbotary tree (which we call theartition
refinement treein which thejth level, forj > 0, corresponds to the partition resulting frgngueries;

a node in a level corresponds to an element of that partitforight child corresponds to a subset of a
parent partition element that is included in the subseqgeety, and a left child corresponds to a subset
that is not included. See Example 1 for an illustration.

Example 1 (Demonstration of partition refinementConsider an instance of the problem whefe=
5] = {1,...,5}, with labels(d, e, a, ¢, b) respectively (sod = {a,b,c,d,e}). Consider the following
sequence of queries:

{1,2,3,4,5
1. By = {b,d} — {1,5} {2,3,4}/ {1,5}
2. By = {a,b,d} — {1,3,5}, / \
{2,4 {1,5

3. By ={a,c,d} — {1,3,4},

Each levelj > 0 of the tree depicts the partitiof$;, where a right child node corresponds to the subset
of objects in the parent set which are contained in the respdp thejth query. Singletons are only
explicitly depicted in the first level in which they appear. |

In this work we consider a version of the problem in which, wery query, each label is included
independently with probability > 1/2 (the asymmetric cageand weignore inconclusive queriesin
particular, if a candidate query fails to nontrivially gome element of the previous partition, we modify
the query by deciding again independently whether or natdtutle each label of that partition element
with probability p. We perform this modification until the resulting query splkvery element of the
previous partition nontrivially. See Example 2.
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Example 2 (Ignoring inconclusive queries)Continuing Example 1, the querys fails to split the par-
tition element{1, 5}, so it is an example of an inconclusive query and would be fieadin our model
to, say,B), = ¢({1,3}). The resulting refinement of partitions is depicted as a treee. Note that
the tree now does not contain non-branching paths and Byais ignored in the final query sequence.

{1,2,3,4,5
1. By = {b.d} — {1,5} (2 34}/ \{1 5}

2. By ={a,d} — {1,3} / \. { \.
3. By = {a,c,d} > {1,3,4}. {24
([l

We study three parameters of this random procéks:the number of such queries needed to recover
the entire labelingF,,, the number needed before at least one element is recoesr@d),,, the number
needed to recover an element selected uniformly at randamol@ective is to present precise probabilis-
tic estimates of these parameters and to study the distitaltbehavior ofD,,.

The symmetric version (i.ep = 1/2) of the problem (with a variation) was discussed by Pittel an
Rubin in [19], where they analyzed the typical valuefdf. In their model, a query is constructed by
deciding whether or not to include each label frenindependently with probability = 1/2. To make
the problem interesting, they added a constraint similasurs: namely, a query is, as in our model,
admissible if and only if it splits every nontrivial elemesttthe current partition. In contrast with our
model, however, Pittel and Rubin completely discard intwsiee queries (rather than modifying their
inconclusive subsets as we do). Despite this differeneentbdel considered in [19] is probabilistically
equivalent to ours for the symmetric case. Our primary doution is the analysis of the problem in the
asymmetric casep(> 1/2), but our methods of proof allow us to recover the resultsittéPand Rubin.

The question asked by Rényi brings some surprises. Forythenstric model § = 1/2) Pittel and
Rubin [19] were able to prove that the number of necessaryi@pies with high probability (whp) (see
Theorem 1)

H, =logy,n+ /2logyn + o(+y/logn). Q)
In this paper, we re-establish this result using a diffeegaptroackand prove that fopp > 1/2 the number
of queries grows whp as

1
H,, =log,,n+ 3 log,,/4logn + o(loglogn), (2

whereq := 1 — p. Note a phase transition in the second term. We show thatitasipmase transition
occurs in the asymptotics fdr,, (see Theorem 1):

log; /4 n — logy . loglogn + o(logloglogn) p > ¢

F, = ©))
logy, n — log, log n + o(log log n) p=q=1/2.
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We then prove in Theorem 2 some interesting probabilistitab®rs of D,,. We haveD,,/logn —
1/h(p) (in probability) whereh(p) := —plogp — glog g, but we do not have almost sure convergence.
Moreover,D,, appropriately normalized satisfies a central limit redulit, not a local limit theorem due
to some oscillations discussed below.

We establish these results in a novel way by consideringtfiestxternal profileB,, , whose analysis
was, until recently, an open problem of its own (the secomtthind authors gave a precise analysis of the
external profile in an important range of parameters in [B3, ut the present paper requires nontrivial
extensions). The external profile at levelk the number of bijection elements revealed by#itiequery
(one may also define thieternalprofile at levelt as the number of non-singleton elements of the partition
immediately after théth query). Its study is motivated by the fact that many otteameters, including
all of those that we mention here, can be written in terms.ofiiideed,Pr[D,, = k] = E[B, x]/n,

H, = max{k: B, >0}, andF, = min{k: B, >0} — L.

We now discuss our new results concerning the probabilisitavior of the external profile. We
establish in [15, 13] precise asymptotic expressions feretkpected value and varianceBf ; in the
central rangethat is, withk ~ alogn, where, for any fixed > 0, a € (1/log(1/q)+€,1/log(1/p)—¢)

(the left and right endpoints of this interval are assodatéh F,, and H,,, respectively). Specifically,
we show that both the mean and the variance are of the sami&{@xymwlynomial order of growth (with
respect tan) (see Theorem 3). More precisely, we show that both expegtle and variance grow for
k ~ alogn as

nB(e)

H(p(a),log,,,(p"n)) N

where8(a)) < 1 andp(«) are complicated functions aef, C is an explicit constant, ané (p, x) is
a function that is periodic irc. The oscillations come from infinitely many regularly spaaddle
points that we observe when inverting the Mellin transfofftthe Poisson generating functionBfB,, x].
Finally, we prove a central limit theorem; that i&3,, . — E[B, ])//Var[B, ] — N(0,1) where
N(0,1) represents the standard normal distribution.

In the present paper, we exploit the expected value anajg?s ; in the central range to give precise
distributional information aboub,, via the identityPr[D,, = k] = E[B,, x]/n. Note that the oscillations
in E[B,, x| are the source of the peculiar behavioddf.

In order to establish the most interesting results claimekleé present paper féf,, andF;,, the analysis
sketched above does not suffice: we need to estimate the mdahevariance of the external profile
beyondhe rangex € (1/1og(1/q)+¢,1/log(1/p) —e); in particular, forF,, andH,, we need expansions
at the left and right side, respectively, of this range. THisurns out, requires a novel approach and
analysis, as discussed in detail in our forthcoming joupager [5], leading to the announced results on
the Rényi problem in (2) and (3).

Having described most of our main results, we mention an apbequivalence pointed out by Pittel
and Rubin [19]. They observed that their version of the R@ngcess resembles the construction of a
digital tree known as a PATRICIA trig12, 23]. In fact, the authors of [19] show th&t, is probabilisti-
cally equivalent to the height (longest path) of a PATRICIi& built from n binary sequences generated
independently by a memoryless source with ias 1/2 (that is, with a “1” generated with probabiliy
this is often called th&ernoulli model with biap); the equivalence is true more generally, for 1/2.

It is easy to see thdf, is equivalent to the fillup level (depth of the deepest fulElg, D,, to the typical

1 We recall that a PATRICIA trie is a trie in which non-branahipaths areompresseghat is, there are no unary paths.
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depth (depth of a randomly chosen leaf), dd;, to the external profile of the tree (the number of leaves
at levelk; the internal profile at levet is similarly defined as the number of non-leaf nodes at tivat)e
We spell out this equivalence in the following simple claim.

Lemma 1 (Equivalence of parameters of the Rényi problem with tred$BATRICIA tries). Any parame-
ter (in particular, H,,, F,, D,,, andB,, ;) of the Renyi process with bigsthat is a function of the partition
refinement tree is equal in distribution to the same functiba random PATRICIA trie generated by
independent infinite binary strings from a memoryless sowith biasp > 1/2.

Proof. In a nutshell, we couple a random PATRICIA trie and the seqaef queries from the Rényi
process by constructing both from the same sequence ofysirangs from a memoryless source. We do
this in such a way that the resulting PATRICIA trie and thetiian refinement tree are isomorphic with
probability1, so that parameters defined in terms of either tree struaterequal in distribution.

More precisely, we start with independent infinite binary strings, ..., .S,, generated according to a
memoryless source with biaswhere each string corresponds to a unique element of thué ksdtels (for
simplicity, we assume that = [n], andS; corresponds tg, for j € [n]). These induce a PATRICIA
trie T, and our goal is to show that we can simulate a Rényi procsisg these strings, such that the
corresponding tre€ is isomorphic tdl" as a rooted plane— oriented tree (see Example 2). The basic id
is as follows: we maintain for each strirffy an indexk;, initially set tol. Whenever the Rényi process
demands that we make a decision about whether or not to iaddinl; in a query, we include it if and
onlyif S; ., = 1, and then incremerit; by 1.

Clearly, this scheme induces the correct distribution oerigs. Furthermore, the resulting partition
refinement tree (ignoring inconclusive queries) is easlgnsto be isomorphic t@. Since the trees are
isomorphic, the parameters of interest are equal in eaeh cas O

Thus, our results on these parameters for the Rényi protiiestitly lead to novel results on PATRICIA
tries, and vice versa. In addition to their use as data strestf PATRICIA tries also arise as combinatorial
structures which capture the behavior of various procesfsaterest in computer science and information
theory (e.g., in leader election processes without trisgits [9] and in the solution to Rényi’'s problem
which we study here [19, 2]).

Similarly, the version of the Rényi problem that allowsanclusive queries corresponds to results on
tries built onn binary strings from a memoryless source. We thus discuss thehe literature survey
below.

Now we briefly review known facts about PATRICIA tries and ettdigital trees when built over
independent strings generated by a memoryless source.leBrofitries in both the asymmetric and
symmetric cases were studied extensively in [16]. The eeplegprofiles of digital search trees in both
cases were analyzed in [6], and the variance for the asyrnowaise was treated in [10]. Some aspects
of trie and PATRICIA trie profiles (in particular, the conc¢eation of their distributions) were studied
using probabilistic methods in [4, 3]. The depth in PATRICIg the symmetric model was analyzed
in [2, 12] while for the asymmetric model in [22]. The leadiagymptotics for the PATRICIA height
for the symmetric Bernoulli model was first analyzed by P{tg] (see also [23] for suffix trees). The
two-term expression for the height of PATRICIA for the synmtriemodel was first presented in [19] as
discussed above (see also [2]). Finally, in [13, 15], th@sddwo authors of the present paper presented
a precise analysis of the external profile (including its maeriance, and limiting distribution) in the
asymmetric case, for the range in which the profile growspattyially. The present work relies on this
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previous analysis, but the analyses 8y, and F,, involve a significant extension, since they rely on
precise asymptotics for the external profile outside thigre¢range.

Regarding methodology, the basic framework (which we use)Her analysis of digital tree recur-
rences by applying the Poisson transform to derive a funatiequation, converting this to an algebraic
equation using the Mellin transform, and then invertingigghe saddle point method/singularity analy-
sis followed by depoissonization, was worked out in [6] aolbfved in [16]. While this basic chain is
common, the challenges of applying it vary dramaticallyssin the different digital trees, and this is
the case here. As we discuss later (see (7) and the surrgutedi), this variation starts with the quite
different forms of the Poisson functional equations, whéadd to unique analytic challenges.

The plan for the paper is as follows. In the next section wenfdate more precisely our problem and
present our main results regarding the external profileyhigfillup level, and depth. Sketches of proofs
are provided in the last section (the full proofs are prodigethe journal version of this paper).

2 Main Results

In this section, we formulate precisely Rényi’s problend gamesent our main results. Our goal is to
provide precise asymptotics for three natural parametetiseoRényi problem om objects with each
label in a given query being included with probabiljfy> 1/2: the numberF,, of queries needed to
identify at least one single element of the bijection, thenbar H,, needed to recover the bijection in its
entirety, and the numbdp,, needed to recover an element of the bijection chosen unlioabrandom
from then objects. If one wishes to determine the label for a particoiigect, these quantities correspond
to the best, worst, and average case performance, regggotif/the random subset strategy proposed by
Rényi. We call these parameters, the fillup lekg| the heightH,,, and the depttD,,, respectively (these
names come from the corresponding quantities in randortatligtes). One more parameter is relevant:
we can present a unified analysis of our main three paramgte,,, and D,, via theexternal profile
By, 1, Which is the number of elements of the bijectionsoitems identified by théth query.

Our analysis reveals several remarkable behaviors: thé dgpconvergesin probability but not almost
surely and while it satisfies the central limit theorem itsablimit theorem doesn’t hold. Perhaps most
interestingly, the heighZ,, and the fillup levelF;, exhibit phase transitions with respecton the second
term.

To begin, we recall the relations &f,, H,,, andD,, to B,, :

F,=min{k: B, >0} —1 H, = max{k: By, > 0} Pr[D,, = k] = E[B,, x]/n.

Using the first and second moment methods, we can then olygpir and lower bounds oH,, and F},
in terms of the moments a@8,, ;:

Var[Bnk]

Pr|H < E|B,, ; Pr|H, < —

r[H, > k] < E [Bn,ls r[H, <k] < E[B, 4)?

>k
and
Var[Bn kz]

Pr|lF, > k| < ——==, Pr|F, < k| <E|[B, k]|

([ > K < g PrlFy < K < ElBu]

The analysis of the distribution dp,, reduces simply to that &[B,, j].
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In the next section, we show that the fillup levgé] and the height,, have the following precise
asymptotic expansions. Both exhibit a phase transitioh véspect t in the second term. A complete
proof can be found in our journal version of this paper [5].

Theorem 1 (Asymptotics forF,, and H,,). With high probability,

o logl/pn + %logp/q logn + o(loglogn) p>gq )
" log, n + v/21ogy n + o(y/logn) p=gq
and
P, = log; /, n — log, /4 loglogn + o(logloglogn) p>gq (5)
logy n — log, log n 4 o(log log n) p=q
for large n.

While the behavior of the fillup levef,, could be anticipated [18] (by comparing it to the correspogd
result in the version of Rényi's problem allowing incorsile queries), the behavior of the heighy, is
rather more unusual. It is difficult to compare the heightitet the analogous quantity for tries or
digital search trees, because only the first term is giverpfor 1/2 in the literature: for tries, it is
m log n, while for digital search trees it isg, ,,, n, as in PATRICIA tries.

Focusing on the second term of each expression given in doed, this result says that the deviation
of the typical height fromog, ,,, n is asymptotically larger whep = 1/2 than wherp > 1/2. That s,
the height of the tallest fringe subtree (i.e., a subtre¢éebaeatog, ,, n) is asymptotically larger in the
symmetric case. A complete explanation of this phenomermidMikely require consideration of the
number of such subtrees (i.e., the internal profile at lexgl,,, n) and the number of strings participating
in each of them. In the language of the Rényi problem, thtelgarameter is the number of objects that
remain unidentified after approximateby, ,,, n queries.

Moving to the number of questior3,, needed to identify a random element of the bijection, we have
the following theorem (note that due to the evolution preagfsthe random PATRICIA trie, all random
variables can be defined on the same probability space).

Theorem 2 (Asymptotics and distributional behavior b%,). Forp > 1/2, the normalized deptB,,/ logn
converges in probability td /h(p), whereh(p) := —plogp — qlogq is the Bernoulli entropy function,
but not almost surely. In fact,

lirginf D, /logn=1/log(1/q) (a.s) limsupD,/logn =1/log(1/p).

n—0o0 n— 00

Furthermore,D,, satisfies a central limit theorem; that i&},, — E[D,,])/+/ Var[D,,] — N(0, 1), where

E[Dy] ~ ﬁ log n and Var[D,,] ~ clogn wherec is an explicit constant. Aocal limit theorem does

not hold: forz = O(1) andk = (log n+ z+/k.(—1) logn/h), wherer, (—1) is some explicit constant
andh = h(p), we obtain

e—m2/2
V2mClogn

for an oscillating functiond (—1; log, /4 p¥n) (see Figure 1) defined in Theorem 3 below and an explicitly
known constant’.

Pr[D, =kl ~H (71; log, /4 pkn)
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1.5le=8+1.307844 3,0 1e=8+1.40415754 1e-8+1.66967467

Fig. 1: Plots ofH (p, z) for p = —0.5,0,0.5.

Again, the depth exhibits a phase transition: gor 1/2 we haveD,,/logn — 1/log2 almost surely,
which doesn't hold fop > 1/2. We note that some of the results on the depth (namely, theecgence
in probability and the central limit theorem) are alreadpwn (see [20]), but our contribution is a novel
derivation of these facts via the profile analysis. Qualitdy, the oscillatory behavior of the external
profile that is responsible for the lack of local limit theoréor the depth occurs also in both tries and
digital search trees.

We now explain our approach to the analysis of the momeni,gf in appropriate ranges (we follow
[13, 15]). For this, we take an analytic approach [8, 23]. W&t #xplain it for the analysis relevant to
D,,, and then show how to extend it féf,, and F,,. More details can be found in the next section.

We start by deriving a recurrence for the average profileclviwie denote by,  := E[B,, x]. It
satisfies

n—1
n S
finge = (" + ¢ Vnk + Y (j)p’q” Mg g1 + pn—j k1) (6)
j=1

for n > 2 andk > 1, with some initial/boundary conditions; most importanfly, , = 0 for k > n
and anyn. Moreover,u,, ,, < n for all n andk owing to the elimination of inconclusive queries. This
recurrence arises from conditioning on the numpef objects that are included in the first query. If
1 < j < n — 1 objects are included, then the conditional expectationssira of contributions from
those objects that are included and those that aren’t. ifhemther hand, all objects are included or all
are excluded from the first potential query (which happerib wiobabilityp™ + ¢™), then the partition
element splitting constraint on the queries applies, therg@l query is ignored as inconclusive, and the
contribution isg,, .

The tools that we use to solve this recurrence (for detadl$E® 15]) are similar to those of the analyses
for digital trees [23] such as tries and digital search t(desugh the analytical details differ significantly).
We first derive a functional equation for the Poisson tramsfG'(z) = 32, <o tmkZre™* Of fyk,
which gives -

Gr(2) = Gro1(p2) + Gr_1(g2) + e P*(Gr — Gr_1)(q2) + e ¥ (G — Gr_1)(p2).
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This we write as
Gi(2) = Gr-1(p2) + Gr-1(qz) + Wi (2), )

We contrast this functional equation with those for trieS][dnd for digital search trees [6]: in tries, the
expressioer,G(z) does not appear, which significantly simplifies the analyrsithat case. In digital
search trees, the functional equation is a differentialaéiqn, and the analysis is consequently quite
different.

At this point the goal is to determine asymptoticscfnr(z) asz — oo in a cone around the positive real
axis. When solving (7)iV () complicates the analysis because it has no closed-fornirMighsform
(see below); we handle it via its Taylor series. Finally, @isponization [23] will allow us to transfer the
asymptotic expansion faF (=) back to one (o] TR

finse = Gr(n) — gég(n) +On).

To convert (7) to an algebraic equation, we useNtadlin transform[7], which, for a functionf : R —
R is given by

e = [

Using the Mellin transform identities and definiis) = p~ + ¢~*, we end up with an expression for
the Mellin transformG; (s) of Gy (z) of the form

Gi(s) =T(s 4+ DAp(s)(p~* + ¢ 5)F =T(s + 1) Ap(s)T(s)",

whereA,(s) (see (14) below) is an infinite series arising from the ctwtions coming from the function
Whg(z)Z

T(m+s)
(m+1)I(s+1)

k o]
Ap(s) = Z T(s)™ Y T(=m)(pm,; Hm.j=1) (8)

m=j

where we defing:,,, _; = 0 for all m. Note that it involves,, ; — ., ;—1 for variousm andj (see
[13, 14]). Locating and characterizing the singularitie&(s) then becomes important. We find that, for
anyk, Ax(s) is entire, with zeros at € ZN[—k, —1], so thai7; (s) is meromorphic, with possible simple
poles at the negative integers less thdn The fundamental strip af;,(z) then containg—k — 1, o). It
turns out that the main asymptotic contribution comes fronméinite number of saddle points (see (10)
below) defined by the kern&l(s) = p=* + ¢~ *.

We then must asymptotically invert the Mellin transform ézoverGy,(z). The Mellin inversion for-
mula forGy (s) is given by

~ 1 p+ico e 1 p+ioco . A .

i) = 5 / G s o / STEEDAET s @)
wherep is any real number inside the fundamental strip associatéd @, (z). Fork in the range in
which the profile grows polynomially (that coincides witletrange of interest in our analysis Bf,), we
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evaluate this integral via the saddle point method [8]. Exémy z—*7(s)* and solving the associated
saddle point equation

%[kj logT'(s) — slogz] =0,

we find an explicit formula (12) below fop(«), the real-valued saddle point of our integrand. The
multivaluedness of the complex logarithm then implies tihatre areinfinitely manyregularly spaced
saddle points;, j € Z, on this vertical line:

2mj

sj = pla) +1i (10)

log(p/q)
These lead directly to oscillations in t1) factor in the final asymptotics fqr,, ;). The main challenge
in completing the saddle point analysis is then to elucidagebehavior of'(s + 1) Ax(s) for s — oo
along vertical lines: it turns out that this function inHetthe exponential decay b{ s + 1) along vertical
lines, and we prove it by splitting the sum definiAg(s) into two pieces, which decay exponentially for
different reasons (the first sum decays as a result of theaxpenential decay qi,,, ; for m = 0(j),
which is outside the main range of interest). We end up wittasymptotic expansion fof/;(z) as

z — oo in terms of Ax(s).

Finally, we must analyze the convergence propertied,dfs) ask — oco. We find that it converges
uniformly on compact sets to a functiof(s) (see (14)) which is, because of the uniformity, entire. We
then apply Lebesgue’s dominated convergence theorem thumtenthat we can replacéy (s) with A(s)
in the final asymptotic expansion 6f,(z). All of this yields the following theorem which is proved in
[13, 15].

Theorem 3 (Moments and limiting distribution fo3,, ;, for k in the central region)Lete > 0 be
independent of. andk, and fixa € (log(ll/q) + € e). Then fork = ko, ~ alogn:
(i) The expected external profile becomes

1 —
> log(1/p)

B

E[By k] = H(p(a), log,,,(p"n)

(1+0(VIogn)), (11)

\/27m*(p Jalogn

where

pla) = —

L (alog(l/q)—1)7 Bla) = alog(T(p(a))) — p(a),  (12)

log(p/q) 1 — alog(1/p)

andx.(p) is an explicitly known function ¢f. Furthermore H (p, =) (see Figure 1) is a non-zero periodic

function with periodl in z given by

H(p,x) =Y Alp+it;)T(p+ 1 + it;)e ™", (13)
JEL

wheret; = 27/ log(p/q), and

A9 =3 T(s) fZT( M)ty — pngr) 2,

Jj=0 =Jj

(14)
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whereg,, (s) = H?;f(s +j)forn > 1andg¢,(s) = 1 forn < 1. We recall thatl'(s) = p~* + ¢~*.
Here, A(s) is an entire function which is zero at the negative integers.
(i) The variance of the profile Bar[B,, ;]| = O(E[B, x]).

(iii) The limiting distribution of the normalized profile is Gaisss that is,

Bn - Mn
Znk — Bk Dy w0, 1)

\/ Var[BnTk]

whereA/ (0, 1) is the standard normal distribution.

We should point out that the unusual behaviof®f in Rényi’s problem is a direct consequence of the
oscillatory behavior of the profile, which disappears fa fymmetric case. Furthermore, for the height
and fillup level analyses we need to extend Theorem 3 beyswdiginal central range far, as discussed
in the next section.

3 Proof sketches

Now we give sketches of the proofs of Theorems 1 and 2 with rdetails regarding the proof of The-
orem 1 in the forthcoming journal version [5]. In particylar this conference version, we only sketch
derivations forH,, and for F,, by upper and lower bounding, respectively. As stated eathie proof of
Theorem 3 can be found in [13, 15].

3.1 Sketch of the proof of Theorem 1

To prove our results foH,, andF,,, we extend the analysis &, ; to the boundaries of the central region
(i.e.,k ~ log, ,, n andk ~ log; ;, n).

Derivation of H,,. Fixing anye > 0, we write, for the lower bound on the height,
ki =log;,,n+ (1 —€)y(n)

and, for the upper bound,

ku =logy/pn+ (1 +€)y(n),
for a functiony(n) = o(logn) which we are to determine. In order for the first and second mo-
ment methods to work, we requiye, 1, 7% > and ko 2% 0. (We additionally need that
Var(By, ] = o(u ;, ), but this is not too hard to show by induction using the reguce forVi(z),
the Poisson variance d#, ;.) In order to identify the)(n) at which this transition occurs, we define
k =log; ,, n+1(n), and the plan is to estimal¥ B,, x| via the integral representation (9) for its Poisson
transform. Specifically, we consider the inverse Melliregraind for some = p € Z~ + 1/2 to be set
later. This is sufficient for the upper bound, since, by theamential decay of th& function, the entire
integral is at most of the same order of growth as the inteboarthe real axis. We expand the integrand
in (9), that s,

T(m+ s)

I'(m+1)’ (15)

k
Ji(n, 5) := Z n = T(s)* 7 Y T(=m)(pimj = b, j—1)

m2j

and apply a simple extension of Theorem 2.2, part (iii) of] [l approximateu,, ; — tm, ;-1 When
j — oo and is close enough ta:
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Lemma 2 (Precise asymptotics for,, ;, kK — oo andn neark). Letp > ¢q. Forn — cowith1 <k <n
andlog®(n — k) = o(k),

ogq ! 2 Ing(n — k)
n,k ™ —k3/2+%ogpn7 k5/24k/2 0k T o171 /N L). 16
Pk ~ (0 — k) n— k)’ TP T 2 l0g(1/p) o) (o)

Moreover, forn — oo andk < n, for some constar® > 0,

n! 2 AY
finge < C(n — 1)'pk /2+k/2+0(log(n—k) )qk.

Now, we continue with the evaluation of (15). Tl term of (15) is then of orders ("), where we
set

vi(n,s) = (j = ¥(n))?/2 + (j — $(n))(s +logy (1 + (p/q)°) + (1) + 1)
—logy ,, nlogy ,,(1+ (p/q)*) + ¥(n)? /2 + o(h(n)?).

The factorT'(s)*~7 ensures that the boundgderms are negligible.

Our next goal is to find thg which gives the dominant contribution to the sum in (15);ttisathe
j for which the contributiong”i(™*) dominate. By elementary calculus, we can find fterm which
minimizesv;(n, s):

j=—(s+logy,,(1+ (p/q)*) + 1).
Thenv;(n, s) for this value ofj becomes

(s +1logy,,(1+ (p/q)*) +¢(n) +1)°
2
—log, s, nlog ,(1+ (p/q)*) + 1(n)?/2 + o(¥(n)?). (17)

We then minimize over al#, which requires us to split into the symmetric and asymroetises.

vi(n,s) = —

Symmetriccase:  Whenp = ¢ = 1/2, we havdog, ,,,(1+(p/q)*) = log,(2) = 1, so that the expression
for v;(n, s) simplifies, and we get = —(n) + O(1). The optimal value for;(n, s) then becomes

vj(n,s) = —logyn +¥(n)* /2 + o(¥(n)?). (18)

We have thus succeeded in finding a likely candidate for thgeaf; terms that contribute maximally,
as well as an upper bound on their contribution. This givegte ipper bound owy(n, s) and, hence,
onGj(n), of ©(27¥i(m9),

Now, to findvy (n) for which there is a phase transition in this bound from tagdo oo to tending ta0,
we set the exponent in the above expression equal to zerméamdfer ) (n). This gives

—logy n 4+ 1(n)?/2(1 +0(1)) =0 = 1(n) ~ /2logyn,

as expected.
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Asymmetric case.  On the other hand, whem > 1/2, the equation that we need to solve to find the
minimizing value ofs for (17) is a bit more complicated, owing to the fact that, ,,(1 + (p/q)*) now
depends on: taking a derivative with respect toin (17) and setting this equal t) after some algebra,
we must solve

DT O8WI0) g, (14 O((pf0)")) — s(1+ O((p/a)) + Ollp/)) =0 (19)

log(1/p)
for s. Here, we note that we used the approximation
(p/a)® 2
log,, (1+ %) = +0 ,
g1/p(1+ (p/0)°) Tog(1/) ((p/a)7)

which is valid since we are looking fer— —oo.
To find a solution to (19), we first note that it implies thak —(n) (since the first term involving
log n is negative), and, if)(n) > 0, this implies that

—1(n) —s = —0(s). (20)

The plan, then, is to use this to guess a solutidar (19), which we can then verify. The equality (20)
suggests that we replaea)(n) — s+ O((p/q)*) with —C'- s in (19), for some constart > 0. Then the
equation becomes

s P/0)*log(p/q) logy /,n = 0.

log(1/p)

After some trivial rearrangement and multiplication oftbstdes bylog(p/q), we get
—slog(p/q) - e~*'8"/) = O(logn).

SettingiV = —slog(p/q) brings us to an expression of the form that defines the Lani3dtinction [1]
(i.e., a functioniV (z) satisfyingiV (2)e"V *) = 2).
Using the asymptotics of thé” function for largez [1], we thus find that

s = —log, /,logn + O(log loglogn).

Note thats — —oo, as required. This may be plugged into (17) to see that itdeéd a solution to the
equation.

Now, to find the correct choice af(n) for which there is a phase transition, we plug this choice of
into (17), set it equal t0, and solve for)(n). This gives

1
Y(n) = 7% =3 log, /,logn + O(log loglog n), (21)

as desired.
Note that replacing (n) in (17) with (1 + €)1 (n) yields a maximum contribution to the inverse Mellin
integral of

Ty (11, 8) = O(p&108n/qlogn)* +o((loglogn)®)y _, (22)
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When we replace (n) with (1 — €)1(n), we get
Ji, (n, ) = O(p~ 5008y 108 m)* +o((loglogn)*) ) (23)

so that the upper bound tends to infinity (in [5], we prove aahiaig lower bound).
The above analysis gives asymptotic estimatesipfn). We then apply analytic depoissonization
[23] to get

~ n ~
pinse = Gr(n) = SG{(n) + O™,
(where the second term can be handled in the same way as theTfinis gives the claimed result.
Derivation of F;,. We now set = log; ,, n + ¢(n) and
ki =logy ,n+ (1 +€)y(n), ku =logy/gn+ (1 —€)p(n). (24)

Here,)(n) = o(logn) is to be determined so as to satigfy ,, — 0 andy, x, — co. We use a tech-
nigue similar to that used in the height proof to determirie), except now thé" function asymptotics
play a role, since we will choose € R tending toco. Our first task is to upper bound (as tightly as
possible), for each, the magnitude of thgth term of (15). First, we upper bound

T(=m)(pm,j — tm,j—1) < 2" i, j < 2p™'m, (25)

using the boundary conditions @, ;. Next, we apply Stirling’s formula to get

T(m + p) N m<m7+p>m+p <m+1>—(m+1) (26)

F(m+1) e

— (m+p) log(m+p)—(m+p)+m+1—(m+1) log(m+1)+O0(log p) (27)
= exp((m + p)log(m + p) — (m + 1) log(m + 1) + O(p)) (28)
= exp(mlog(m(1 + p/m)) + plog(p(1 +m/p)) — mlogm —logm + O(p))  (29)
= exp(mlog(1 + p/m) + plog(p) + plog(1 + m/p) —logm + O(p)). (30)

Multiplying (25) and (30), then optimizing over alt > j, we find that the maximum term of the sum
occurs atn = pp/q and has a value of

exp(plog p + O(p))- (31)

Now, observe that whelog m > log p, the contribution of thenth term isp™+e(m) = ¢=©(m)  Thys,
settingj’ = p'°¢” (note thatlog j' = (log p)? > log p), we split therm sum into two parts:

I‘(m+p & m+p)

2p™m 2™ 2
D e RS s S R MG
m2j =Jj m=j3'+1

The terms of the initial part can be upper bounded by (31)leithbse of the final part are upper bounded
by e~©(") (so that the final part is the tail of a geometric series). Bhies an upper bound of

j/eplogp+0(p) + e—0U") — e(logp)2+plogp+0(p) — eplogp+0(p)7
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which holds for any;.
Multiplying this by n="T'(p)*~7 = qp‘(j*w(n))ﬂL(j*"/’(")*lOgl/q n) logy /4 (14+(a/p)”) gives

qp(jfw(n))+(jfw(n)*10g1/q n)log /4(1+(a/p)?)—plogi/q p+0(p) (32)

Maximizing over thej terms, we find that the largest contribution comes from 0. Then, just as in the
height upper bound, the behavior with respegt ttepends on whether or npt= g, becausdaogl/q(l +
(¢/p)?) = 1 whenp = ¢ and is dependent gnotherwise. Taking this into account and minimizing over
p gives that the maximum contribution to theum is minimized by setting = 9=~ gz whenp = ¢
andp ~ log,,,, logn otherwise. Plugging these choices fonto the exponent of (32), setting it equal to
0, and solving for(n) givesi(n) = —log, logn + O(1) whenp = g and+(n) ~ —log, ,,loglogn
whenp > ¢. The evaluation of the inverse Mellin integral with= k; as defined in (24) and the
integration contour given bf(s) = p proceeds along lines similar to the height proof, and trétdg the
desired result.

We remark that the lower bound fét, may also be derived by relating it to the analogous quartity i
regular tries: by definition of the fillup level, there are nwawy paths above the fillup level in a standard
trie. Thus, when converting the corresponding PATRICIA&,to path compression occurs above this
level, which implies that,, for PATRICIA is lower bounded by that of tries (and the typigalue for
tries is the same as in our theorem for PATRICIA). We includzlower bound for, via the bounding
of the inverse Mellin integral because it is similar in flatothe corresponding proof of the upper bound
(for which no short proof seems to exist).

The upper bound foF,, can similarly be handled by an exact evaluation of the irestsllin transform.

3.2 Proof of Theorem 2
Using Theorem 3, we can prove Theorem 2.

Convergencein probability: For the typical value oD,,, we show that

Pi{D, < (1 - €)= logn] 50, Pr{D, > (1+ s logn] S5 0. (39)

For the lower bound, we have

1 L(l—e)ﬁ logn| L(l—e)h(l—p) logn|
Hon,k
Pr[D, < (1— e)@ logn] = > Pr[D,, = k] = > =,
k=0 k=0

We know from Theorem 3 and the analysigofthat, in the range of this sum,, , = O(n'~¢). Plugging
this in, we get

L(1*€>ﬁ logn|

Pr[D,, < (1 — e)@ logn] = Z O(n=¢) =0(n"“logn) = o(1).
k=0

The proof for the upper bound is very similar, except that ywpeal to the analysis dff,, instead of
F,.
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No almost sure convergence: To show thatD,,/ logn does not converge almost surely, we show that

lini)inf D,,/logn = 1/log(1/q), limsup D,,/logn = 1/log(1/p). (34)

n—oo

n—oo n—oo

For this, we first show that, almost surey, / logn —— 1/log(1/q) andH,,/logn —— 1/log(1/p).
Knowing this, we consider the following sequences of everts is the event thatD,, = F, + 1,
and A/, is the event thaD,, = H,,. We note that all elements of the sequences are indeperateht,
Pr[A,],Pr[A}] > 1/n. Thisimplies thad "~ , Pr[4,] = >, Pr[A]] = c, so that the Borel-Cantelli
lemma tells us that botd,, and A/, occur infinitely often almost surely (moreovét, < D,, < H,, by
definition of the relevant quantities). This proves (34).

To show the claimed almost sure convergencg,pflogn andH,,/ logn, we cannot apply the Borel-
Cantelli lemmas directly, because the relevant sums doomezge. Instead, we apply a trick which was
used in [17]. We observe that both;,) and(H,,) are non-decreasing sequences. Next, we show that, on
some appropriately chosen subsequence, both of theseweguehen divided big n, converge almost
surely to their respective limits. Combining this with tHeserved monotonicity yields the claimed almost
sure convergence, and, hence, the equalities in (34).

We illustrate this idea more precisely féf,. By our analysis above, we know that

Pr[|H,/logn — 1/log(1/p)| > €] = O(e_e(loglog”)2).

Then we fixt, and we definer,.; = 2t°2"" On this subsequence, by the probability bound just stated,
we can apply the Borel-Cantelli lemma to conclude tHat , / log(n,,:) —— 1/log(1/p) - (t +1)?/t?
almost surely. Moreover, for every, we can choose such that:, ; <n < n, ;1. Then

H,/logn < Hy, ., /logn,:,
which implies

H, H 1 1 t+1)2
lim sup —= < lim sup — =+t 08 Mryt41 _ . ( +2 )
n—oo 108N r—00 10g N t4+1 log Nyt log(l/p) t

Takingt — oo, this becomes/log(1/p), as desired. The argument for ther inf is similar, and this
establishes the almost sure convergencH of The derivation is entirely similar faf,.

Asymptoticsfor probability mass function of D,,: The asymptotic formula foPr[D,, = k] with k as
in the theorem follows directly from the fact thBt[D,, = k] = E[B, i]/n, plugging in the expression
of Theorem 3 foi[B,, 1.

References

[1] Milton Abramowitz and Irene A. StegunHandbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tablesolume 55 oNational Bureau of Standards Applied Mathematics
Series For sale by the Superintendent of Documents, U.S. GovarhRrenting Office, Washington,
D.C., 1964.

[2] Luc Devroye. A note on the probabilistic analysis of jeE# trees. Random Struct. Algorithms
3(2):203-214, March 1992.



Asymmetric Bnyi Problem 17

[3] Luc Devroye. Laws of large numbers and tail inequalif@sandom tries and patricia treekurnal
of Computational and Applied Mathematidgl2:27—-37, 2002.

[4] Luc Devroye. Universal asymptotics for random tries gatricia treesAlgorithmica 42(1):11-29,
2005.

[5] Michael Drmota, Abram Magner, and Wojciech Szpankowskisymmetric Rényi problem and
PATRICIA tries. In preparation.

[6] Michael Drmota and Wojciech Szpankowski. The expectedile of digital search treesl. Comb.
Theory Ser. A118(7):1939-1965, October 2011.

[7] Philippe Flajolet, Xavier Gourdon, and Philippe Dumddellin transforms and asymptotics: Har-
monic sums.Theoretical Computer Scienci44:3-58, 1995.

[8] Philippe Flajolet and Robert SedgewickAnalytic Combinatorics Cambridge University Press,
Cambridge, UK, 2009.

[9] Svante Janson and Wojciech Szpankowski. Analysis ofsgmanetric leader election algorithm.
Electronic J. Combin4:1-6, 1996.

[10] Ramin Kazemi and Mohammad Vahidi-Asl. The variancetdd profile in digital search trees.
Discrete Mathematics and Theoretical Computer Scieh863):21-38, 2011.

[11] Philippe Jacquet, Charles Knessl, and Wojciech Szpaski. A note on a problem posed by D.
E. Knuth on a satisfiability recurrenc€ombinatorics, Probability, and Computing3, 839-841,
2014.

[12] Donald E. Knuth.The Art of Computer Programming, Volume 3: (2nd ed.) Sorind Searching
Addison Wesley Longman Publishing Co., Inc., Redwood @, USA, 1998.

[13] Abram Magner.Profiles of PATRICIA TriesPhD thesis, Purdue University, December 2015.

[14] Abram Magner, Charles Knessl, and Wojciech SzpankawEkpected external profile of patricia
tries. Proceedings of the Eleventh Workshop on Analytic Algotiterand Combinatoricspages
16-24, 2014.

[15] Abram Magner and Wojciech Szpankowski. Profile of PATH tries. submittedhttp://www.
cs.purdue.edu/ -~ spa/papers/patricia2015.pdf

[16] G. Park, H. Hwang, P. Nicodéme, and W. Szpankowskifilesoof tries. SIAM Journal on Comput-
ing, 38(5):1821-1880, 2009.

[17] B. Pittel. Asymptotic growth of a class of random treAsin. Probah.18:414—-427,1985.

[18] B. Pittel, Paths in a random digital tree: limiting dibutions,Adv. in Applied Probability18, 139—
155, 1986.

[19] Boris Pittel and Herman Rubin. How many random questiare needed to identify distinct
objects?Journal of Combinatorial Theory, Series 55(2):292-312, 1990.



18 M. Drmota, A. Magner, and W. Szpankowski

[20] B. Rais, P. Jacquet, and W. Szpankowski. Limiting disiion for the depth in PATRICIA tries.
SIAM Journal on Discrete Mathematid¥(2):197-213, 1993.

[21] A. Rényi, On Random Subsets of a Finite 3éathematica3, 355-362, 1961.
[22] Wojciech Szpankowski. Patricia tries again revisit¢dACM, 37(4):691-711, October 1990.

[23] Wojciech SzpankowskiAverage Case Analysis of Algorithms on Sequengebn Wiley & Sons,
Inc., New York, NY, USA, 2001.



arxiv:1605.04561v1l [math.CO] 15 May 2016

Proceedings of the 27th International Conference on Prdlistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms
Krakbéw, Poland, 4-8 July 2016

Solutions of First Order Linear Partial
Differential Equations Related to Urn Models
and Central Limit Theorems

Michael Drmotal Mehri Javanian

1TU Wien, Institute of Discrete Mathematics and GeometrgdWer Hauptstrasse 8-10, A-1040 Wien, Austria
ZUniversity of Zanjan, Department of Statistics, Univer®tvd., 45371-38791, Zanjan, Iran

Abstract. We study first order linear partial differential equatiohattappear, for example, in the analysis of dimish-
ing urn models with the help of the method of characteristiod formulate sufficient conditions for a central limit
theorem.

Keywords: urn models, first order partial differential equations,tcaidimit theorem, singularity analysis

1 Introduction and Main result

The purpose of this paper is to study solutidii§z, w) of special first order linear partial differential
equations that appear in the analysis of dimishing urn nsodelparticular we follow the work of Kuba
and Panholzer (2007).
More precisely, we consider a Polya-Eggenberger urn matithl two kinds of balls and transition
a b
d
kind andn balls of the second kind - we can interprete this state asdfre pn, n) on the integer lattice.
Then with probabilitym /(n 4+ m) we adda balls of the first kind and balls of the second kind, whereas
with probabilityn/(n + m) we addc balls of the first kind and balls of the second kind. (Of course,
adding a negative number of balls means taking away this eumibballs.) An absorbing statg is a
subsetS C N x N, where the process stops when we arrivéinn what follows we will only consider
(special) dimishing urn-models, where the number of bdilthe first kind eventually reaches zero, so
that they-axisS = {(0,n) : n > 0} is a natural absorbing state.
Suppose now that the process start@atn) € N x Nwith m > 1 and leth,, ,, (v) = E[v*~] denote
the probability generating function of the random variakile,,, that describes the positidf, ng) of the
absorbing state i§ when the process starts(at, n).

matrix M = . The process runs as follows. Suppose that the urn containalls of the first

TPartially supported by the Austrian Science Fund FWF, Rt&EB F50-02
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By definition the probability generating functiohs .., (v) satisfy the recurrence

n

m
— mhn+a,m+c(v) + H—mhn+c,m+d(v)- (1)

for (m,n) ¢ S. The boundary values at an absorbing staien) € S is h,, . (v) = V™.

By setting
H(z,w;v) = Z B (V) 2" W™

n>0,m>1

h/n,m(v) -

it follows that this generating functioH (z, w; v) satisfies the partial differential equation
2(1— 27w YH, + w(l — 2w ) Hy + (a2 % + dz"“w™ ) H = F(z,w) (2

with some inhomogeneous pdr{z, w) that is given by the boundary values which are partly unknown
(for exampleH (0, w, v), see Kuba and Panholzer (2007).

We want to mention that first order linear partial differahtequations related to urn models were
first systematically discussed by Flajolet et al. (20053, also Morcrette (2012), where a special case is
detailly treated. On the other hand, it is possible to dbsdtie probabilistic behavior of the development
of urn models very precisely, sse Janson (2004, 2006), ewnalisorbing states. Nevertheless the
analysis of dimishing urns with thg-axis as the absorbing state is still quite special. Herelse r@fer
to Kuba (2011); Kuba and Panholzer (2012), where the arsmiydiased directly on the recurrence (1).
Another interesting paper that is related to dimishing uodels and lines as absorbing states is Kuba
et al. (2009). There the authors observe several differgniskof limiting behaviors (with five phase
changes).

It turns out that there are some special cases, where it i® mmmvenient to study the generating

function
Hzwv)= 3 <”+m>hn,m(u)z"wm 3)

n>0,m>1 m
that (also) satisfies a first order linear partial differalgiguation of the form

A(z,w)H, + B(z,w)H,, — C(z,w)H = D(z,w;v), (@)

with analytic functionsA(z, w), B(z, w), C(z,w), D(z,w;v). (In the examples below(z, w), B(z, w),
andC(z, w) are polynomials.) For these particular cases it turns @itkle unknown boundary conditions
are not needed since they cancel in the equation. Nevesthttle methods that we are developing below
are — although we do not work out the general case — suitaloleabwith equations of the form (2).
Note that by definition
H(z,0;v) =0. (5)

Furthermore, i = 1 thenh,, ., (1) = 1 so that

1 1

H(z,w;l) = T e 1

This means thabD(z, w; 1) is determined by

A(z,w) + B(z,w) — (1 -z —w)C(z,w)  A(z,w) — (1 —2)C(z,w)
(1—2—w)? (1—2)2 ’

D(z,w;1) =
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In the present context it is convenient to assume that thetifum
n+my\ , ,
H. _ n,,m __ IRV
o(z, w) Z ( . )z w 1/1—2z—w)
n,m>0
is a solution of the homogeneous differential equatidn, w)H, + B(z,w)H,, — C(z,w)H = 0 so that
A(z,w) + B(z,w) = (1 — z —w)C(z,w) (6)
and, thus,
Alz,w) = (1 = 2)C(z,w
(2,w) (1< 2)C(z.w) -
—2)

We first state the following three examples from Kuba and Bk (2007) (that we present in a
slightly modified way).

Example1 The pill's problem (see Brennan and Prodinger (2003); Krartd Mccarthy (1991)) has

D(z,w;1) = —

transition matrix\/ = _11 _01 > and absorbing stat8 = {(0,n) : n > 0}, and the corresponding
differential equation is given by
22 w)H, +w(l — 2)Hy — 2H = —2%
(z—2"—w)H, + w(l — 2) z 1= 0n)?

Here it follows thath,, ., (v) is given by

finm (V) = m”/o 1+ @w=19"(1—q—(v—1)qlogq)™ "dg.

Finally the corresponding random variab¥g, ,,, has limiting distribution

Xn,m

— = X (m — 00),
= +logm

whereX has densitg~—*, x > 0, or

Xnm .
Mo, Beta(l,m)  (fixedm > 1,n — o0),
n

where (the beta distributio®eta(1,m) has densityn(1 —z)™ 1,0 <z < 1.

-1 0

1 -2
S={(0,n):n>0}U{(1,n): n > 0}. Due to the parity condition im (that is, only evenn occur), it
is convenient to consider the generating function

2
H(z,w;v) = Z <n+ m)hn’Qm(U)anm
n

n>0,m>1

Example 2 A variant of the pill’s problem has transition matd{ = and absorbing state
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that satisfies the differential equation

—wH, +2w(l —2)H, — (1 —2)H = %
Here we obtain an explicit solution of the form
HEw) = =P e - - D/P A== - 1/0)
(v—1)vw arctan V(1= 2)? —w—((v—1)/v))?
02 ((1=2)2 —w— ((v—1)/v))2)*? (1-22-w—-(1-2)(v-1)/v) )

which leads to the limiting behavior:

7Xn’2m — R (m — 00),

2=+ 2/m

whereR has densit)er*ﬁ, x> 0,0r

Xn,2m — /Beta(1,m), (m > 1fixed,n — o).

n

Example 3 The cannibal urn (see Pittel (1987); Kuba (2011)) has ttimsmatrix M = ( (1) :i >

and absorbing stat8 = {(0,n) : n > 0} U {(1,n) : n > 0} and the generating function

LERED DN (R LG

n>0,m>1
satisfies the differential equation

(14 wv)v

The solution is explicitly given by

ve? v

H(Z,’UJ;U): 1_(1_€w(1_z_w))’u N 1—wvz

and we have a central limit theorem of the form
Xn,m - E Xn,m
v VarX, n

These three examples show that although the linear diffietemuations look very similar the limiting
behavior of the encoded random varialilg ,,, seems to be far from being universal. The main purpose of
the present paper is to shed some light on this phenomengarticular we detect a sufficient condition
that ensures a central limit theorem.

— N(0,1) (m+n — o).
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Theorem 1 Suppose thak, ,,, » > 0, m > 1 are non-negative discrete random variables with proba-
bilty generating functior,, ,,, (v) = E[v*~=] such that the generating functidii(z, w; v), given by (3)
satisfies a first order linear differential equation of therfp(4), where the coefficient functiors B, C

as well as the ratiosA(z, w)/B(z,w), C(z,w)/B(z,w) are analytic in an open set that containsw
with |z| 4+ |w| < 1 such that the ratiod(z, w)/B(z,w) is negative for non-negative w. Furthermore
we assume that (6) is satisfied (which also implies (7)) antlfi z, w; v) can be represented as

a(z, w;v)

D(z,w;v) = (1 —b(z,w;v))?’

where the functions, b are also in an open set that containsw with |z| + |w| < 1. In particular in
accordance with (6) we havez, w; 1) = —A(z,w) + (1 — 2)C(z,w) andb(z, w; 1) = z.

Let f(c, s) be the solution of the differential equatit%si = A(f,s)/B(f,s) with f(c,0) = c and
let Q(z,w) denote the function that satisfig$Q(z, w), w) = z. We further assume that the function
f(Q(z,w), s) is analytic in an open set that contaifsz, w with |z| 4+ |w| < 1 and|z| + |s|] < 1 and
non-decreasing for positive and reabndw,

Let zo(p; v) andwy(p; v) denote the solutions of the system of equations

HAQEw),0,0:0) =1, 22 b (@2 w),0),0:0) = pus - b(F(Q(,w),0),0;v)

with zo(p; 1) = p/(1 + p) andwo(p;1) = 1/(1 + p). Furthermore seti(p;v) = —logzo(p;v) —
02
ploguo(p;v), plp) = gih(piv)],_, ando®(p) = Fah(piv)|  +pif
u(p) >0 forp e [a,p]
for some positive, 5 thenX,, ,,, satisfies a central limit theorem of the form

Xn,m - E Xn,m
Jn

uniformly form +n — oo, m/n € [o, ], where

— N(O,ag(m/n))

E X ~p(m/m)n  and VarX,, ~ o®(m/n)n.

This theorem does not provide a full answer to the problenwéder, it is a first step that covers at least
a part, where we obtain a central limit theorem. In futurekwoe will provide a more complete picture,
also covering the cases, where there is no central limitrdreo For example it is not clear whether it is
a b

d

In particular it is an open question whether it is possibladapt Theorem 1 so that all cases of (Kuba
(2011)) are covered.

Nevertheless, we will discuss the three examples (frome}mvd another one in the next section. We
also present a (short version of the) proof of Theorem 1 iréhgaining parts of the paper.

possible to formulate conditions that refer directly to éimries of the transition matrix/ =
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2 Discussion of Examples

We do not work out the details here butlixamples 1 and2 several conditions of Theorem 1 are not
satisfied, in particular we hayep) = 0.

The most interesting examplelixample 3. Here we havel(z, w) = —z — w, B(z,w) = C(z,w) =
1, andD(z, w;v) = (1 +wv)v/(1 — vz)?, thatisa(z, w;v) = (1 + wv)v andb(z, w; v) = vz. Itis easy
to check that the conditions of Theorem 1 are satisfied.

In particular it follows thatf(c,s) = 1 — s — e *(1 — ¢), Q(z,w) = 1 — e“(1 — z — w), and
f(Q(z,w),s) = 1—s—e*~*(1—z—w). From that we obtaib(f (Q(z, w,0),0;v) = (1—e"(1—z—w))v.
Hence the functions = z(p; v) andw = wo(p; v) satisfy the system of equations

1-e"(1—z—-w))v=1, z = pw(z +w)
from which we obtain (by implicit differentiation)

20,0(p; 1) wo,v(p; 1) ~1/(14p)
L — > = 2e P> 0.
Hp) 201) P wo(pi1)

Thus, the central limit theorem follows automatically.

We add a new example in order to demonstrate the applicaifiltheorem 1 (even if this example is
not related to an urn model). By the way this example can bigyegeneralized. Suppose that(z, w; z)
satisfies the differential equation

(14 2w)v
— 2w)H, 1 H,—-H=-——+-.
(= + 20) H. + (1 + w) R
Then again all assumptions of Theorem 1 are satisfied. HeteameA(z, w) = —z — 2w, B(z,w) =

1+ w, C(z,w) = 1, andD(z,w;v) = (1 4+ 2w)v/(1 — vz)?, that isa(z, w;v) = (1 + 2w)v and
b(z, w;v) = vz.
From this it follows that
c 52
1+s 1+s

fle,s) = and Q(z,w) = (1 +w)z + w?

and consequently
22
FQUe.u),5) = ML=

The functions: = zy(p; v) andw = wy(p; v) satisfy the system of equations

(1 +w)z+w)v=1, 2(1 4+ w) = pw(z + 2w)
from which we obtain (by implicit differentiation)

200(p3l)  wou(psl) (14 p)?
_ —p =9 5

wp)  Dwe(pl) T T2+ p)
Thus, the central limit theorem follows (again) automdlyca

> 0.

n(p) =
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3 The method of characteristics

The first step of the proof is to use the theory of charactesi$d provide an integral representation (13)
of the solution of the partial differential equation (4).

We start with the inhomogeneous differential equation\erev is considered as a parameter. It is
a standard procedure to transform (4) into a homogeneowdiegu Let@ = Q(z,w, H;v) denote the
solution of the linear differential equation

A(z,w)Q: + B(z, w)Quw + (C(z, w)H + D(z,w;v))Qn = 0. ®)
Then the solutiorf! (z, w; v) of the original equation (4) satisfies the implicit equation
Q(z,w, H(z,w;v);v) = const. 9

Thus, if we can solve (8) then we also get the solution of (4le @advantage of the equation (8) is that it
can be handled with the method of characteristics (see ktp(i®77)).
First we translate (8) into a system of first order ordinaffedéntial equations:

i Az, w), C;—l: = B(z,w), d_il = C(z,w)H + D(z,w;v), (10)
wherez = z(t), w = w(t), H = H(t) are functions irt. A characteristic of (10) is a functiofi(z, w, H)
for which we haveQ(z(t), w(t), H(t)) = const. Clearly, every characteristi@ is a solution of (8). It
is well known that a system of three equations has two indégetcharacteristio9, Q- as a basis and
every characteristiq) can be expressed 85 = F(Q1,Q2) for an arbitrary (differentiable) functiof'.

In the present case we have to solve the equation (9) whicplifies the situation. More precisely we
can rewrite (9) to an equation of the form

Q2(27w7H):F(Q1(Z7waH))7 (11)

where[" is an arbitrary (differentiable) function.
In order to calculate two independent characteristicsdbis/enient teeliminatet from the system (10)
which gives rise to a simpler system of differential equatio

dz _ A(z,w) dH _ C(z,w)H D(z,w;v)

= - 12
dw B(z,w)" dw B(z,w) B(z,w) ’ (12)

wherez = z(w) andH = H(w) are now considered as functionsis
Letz = f(c1,w) be a one-parametric solution of the differential equatggn: %, wherec; is,

for example, the initial value; = z(0). If we express;; from the expression = f(c1,w), thatis,
c1 = Q1(z,w) then@; is a characteristic of the system (10). Note t@atdoes not depend oA and
also not orw. Actually @ just solves the equatioA(z, w)Q, + B(z,w)Q. = 0. Nevertheless itis a
non-trivial characteristic of (10).

In order to obtain a second characteristic we have to solveelcond equation of (12) which is a first
order linear differential equation. Note that we can stz = f(c1,w) and obtain as a solution

e[ ) ([ Pl U8 0)r0).
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wherecs is some constant. Again if we expressexplicitly (and eliminater; with the help ofc; =
Q1 (z, w)) we get another characteristic:

Cy = Q2(27w7H>

= wow (- [ GHG S )

o v D(f(Ql(z7w)75)’S;U) ex N # C(f(Ql(sz)vt)vt) s
0, BU@Qi(zw).s).9) p( AMﬂQﬂawihwﬁ>d'

Now if we apply (11) we obtain the following representation f1:

n = e ([ Giee )

([ R (| R ) r0c).

In our context we will assume that (5) holds, that (2, 0;v) = 0, which implies thatF(z) = 0.
Consequently we have

) — ex v C(f(Ql(z,w),s),s) 5
Hizwiv) p(A B (Qr(zw), L@d> (13)

([ mtee ([ Stemia o))

4 Singularity analysis

Next we assume that the assumptions of Theorem 1 are satisfitltat we can analyze the analytic
properties of the solution functioH (z, w; v) that is given by (13). Actually we will show that if is
close tol that the dominant singularity comes from a curve that is &upetion of the curve + w = 1.

First we note that by assumption the functjti®), (z, w), s) is regular as well as the fracti@i(z, w)/ B(z, w).
Consequently the function

v C(f(Ql(Za w): S), S)
0 B(f(Ql(zv ’U)), 3)7 5)
is analytic, too. Thus, it remains to consider the integral

Y D(f(Qi(z,w),5),8:v)
0 BU@iw).s)s) CPTHEDE

:/ a(f(Qi(z,w), 5), sv) exp (~K(z,5)) /B(f(Qu(2,0), 5),5)
0 (1= b(f(Qu(z,w), 8),5;0))?

First let us assume that= 1. In this case we know by assumption tié{z, w;1) = 1/(1 — z — w) —
1/(1 — z). Furthermore we hav z, w; 1) = 2. Thus the above integral simplifies to

/w L(z,w,s) ds
o (1=f(Qi(z,w),8))%

(z,w) = K(z,w) = ds
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whereL(z, w, s) is a non-zero regular function. As long A6+ (z,w),s) # 1 for 0 < s < w then the
integral represents a regular functiorzimndw. Hence, we have to deteefor which f(Q1(z,w), s) =
1. Let us first assume that andw are real and positive. We also recall that by assump%f-)n_
A(f,s)/B(f,s) < 0. Thus, if we start withz, w close to zero and increase them we observe that the
first critical instance occurs whef(Q1(z, w), O) = 1. Of course this has to coincide with the condition
z + w = 1 and we have to recover the (known) singular behavigigt — =z — w).
Actually we can use the following easy lemma (which followsh partial integration).

Lemmal Suppose thalv(s) and D(s) are three times continuously differentiable functionshstiat
D(s) #0andD’(s) # 0 Then we have

. - N(s) logD(s)<N(s)>/
D(s)? D(s)D'(s) ~ D'(s) \D'(s)

oo (i (32 =

If we apply this lemma in our context it follows that

w L(z,w,s) B ﬂl(z,w)
/o 1 @09 “ = T fQiw.0)

for positive realz, w with z + w — 1 (and a proper non-zero analytic functién(z, w)). Summing up
we obtain for positive real, w with z + w — 1 the asymptotic representation

@) (10g|1 - f(Ql(va)’O)D

La(z,w)
1= f(Qi(zw),

for some non-zero analytic functiobz(z,w). In particular it follows thatl — f(Q1(z,w),0) can be
written as

H(z,w;l) = 0) + O (log |1 — f(Q1(z,w),0)|)

— f(Q1(z,w),0) = ig(z,w)(l —z—w).

Of course the same kind of analysis appliesé@ndw are complex numbers close to the positive real line.
Furthermore we observe that the integral representatioH {e, w; 1) will not get singular ifz + w # 1.
By continuity this also holds if is close tol and|1 — z — w| > § for somed > 0.

Finally if v is close (but different) td andz andw satisfy|1 — z — w| < 0 then we just have to modify
the above analysis slightly and observe tHdt, w; v) can be represented as

EQ(Z,’U);U)

HEw ) = T ). 0100

O (log[1 = b(f(Q1(z,w),0),0;v)]).

Thus, the equation
b(f(Ql(Z7w)7O)70;v) =1 (14)
determines the dominant singularity Bf(z, w; v). By the implicit function theorem it follows that there

exists a solution of (14) of the form= zy(w;v) with zo(w; 1) = 1 — w (if w is close to the positive real
line segmento, 1]).
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5 A central limit theorem

We start with a lemma on bivariate asymptotics for genegdtimctions in two variables which is a slight
generalization of the smooth case in Pemantle and Wilsamt& Pemantle and Wilson (2013).

Lemma 2 Suppose thaf(z,w) is a generating function in two variables that can be writtetthe form

N(z,w)

fzw) = D(z,w)’

whereN and D are regular functions such that the system of equations
D(z,w) =0, wDy(z,w)=pzD.(z,w) (15)

has a unique positive and analytic solution= zo(p), w = wo(p) for p in a positive intervala, 5] such
that D, (z0(p), wo(p)) # 0 in this range and thaD(z,w) = 0 has no other solutions fdr| < z(p),
|w] < wp(p). Furthermore we assume that(zo(p), wo(p)) # 0.

Then we have uniformly fon/n € [, f]

N (zo(m/n), wo(m/n)) zo(m/n) "wo(m/n)”"™
—zo(m/n)wo(m/n)D.(z0(m/n), wo(m/n)) 2rnA(m/n)

[2"w™]f (2, w) ~

,  (16)

where
B D..D2 —2D,,D,Dy + DyD? D2 D,

Alp) zD? z2?2D?2  zwD

2 lz=2z0(p),w=wo(p)

Proof: By assumption the map — f(z,w) has a unique polar singularity at= z(w), wherez(w) is
determined byD (z(w),w) = 0 (for w close to the real intervadvy (a), wo (b)]) which implies

N(z(w), w)
—z(w)D,(z(w), w)

[z"]f (2, w) ~ 2(w)™™.
Finally we fix the ratiom/n = p and a direct application of the saddle point method on thec®au
integral evaluating

w2 f(z,w 1 2" f(z,w))w ™ dw
e =g [ E )

= o

leads to the result. Note that the saddle paint wq(p) that comes from the powerw)~"w~*" has to
satisfy (15). |

We now apply this procedure to a slightly more general sitmatnamely when there is a further pa-
rametemw (that is assumed to be closeltp

N(z,w;v)

f(Z,’LU;U) = m
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In our context we have to identiff/(z, w; v) with H(z, w; v) andD(z, w; v) with 1-b(f(Q1(z, w),0), 0;v).
Of course we have to formulate proper assumptions (sinoléneé above which are actually satisfied for
H(z,w;v)) and, hence, by (16) we obtain an asymptotic expansion dbtine
C(m/n;v)
V21
that is uniform inv (for v sufficiently close tal).
If we fix the ratiop = m/n the leading asymptotics is then just a powenin
h(p;v)n

[2"w™H (z,w;v) ~ zo(m/n;v) " "we(m/n;v)~™

z0(p;v) "wo(p;v) " =e

with h(p; v) = —log zo(p; v) — plogwo(p; v). Actually we have a so-calleguasi-powerwhere we can
expect that (after proper normalization) a central limé@dgrem should hold.
In our context we obtain

]E[UX,W,"] _

[e"w" | H (2, wiv)  C(p;v) (Zo(ﬂ;l)wo(p;l)">"

[zrwen]H (z,w31)  C(p;1) \ 20(p; v)wo(p; v)?

And this is precisely the assumption that is needed in omlepply Hwang'sQuasi-Power Theorem

Hwang (1994).

Lemma 3 LetX,, be a random variable with the property that

Ev¥n = A A)+B@) (1 +0 <i>> (17)
Pn

holds uniformly in a complex neighbourhoodwof= 1, where),, and,, are sequences of positive real
numbers with\,, — oo andy,, — oo, and A(v) and B(v) are analytic functions in this neighbourhood
of v = 1 with A(1) = B(1) = 0. ThenX,, satisfies a central limit theorem of the form

—1/\7 (X, —EX,) = N (0,0%) (18)
and we have

EX, =X+ O (1+ N /on)
and

Var X,, = Apo? + O ((1 + An/gon)Q) ;
where
p=A1)

and

o2 =A"(1) + A(1).
Recall thatA(v) = h(p; v) = —log zo(p; v) — plogwo(p;v) so that

Cz2o0(pl)  wo(pil)

2w Dwolpil)
Since we have assumed th¥}, ,,, are non-negative random variables we can only expect aatdintit
theorem ify > 0, since fory = 0 it would follow that X, ,,, is negative with probability /2.

Finally we mention that since the convergence is uniformp ig [a,b] we also get a central limit
theorem fom, m — oo if m/n € [a, b]. This completes the proof of our main Theorem 1.

p=plp) =
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Abstract. Random walks in the quarter plane are an important object both of combinatorics and probability theory.
Of particular interest for their study, there is an analytic approach initiated by Fayolle, Iasnogorodski and Malysev,
and further developed by the last two authors of this note. The outcomes of this method are explicit expressions
for the generating functions of interest, asymptotic analysis of their coefficients, etc. Although there is an important
literature on reflected Brownian motion in the quarter plane (the continuous counterpart of quadrant random walks),
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further compare various aspects of the discrete and continuous analytic approaches.
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1 Introduction

1.1 Random walks in the quarter plane

Since the seventies and the pioneered papers MalySev (1972); Fayolle and Iasnogorodski (1979), random
walks in the quarter plane (cf. Figure 1) are extensively studied. They are indeed an important object
of probability theory and have been studied for their recurrence/transience, for their links with queueing
systems (Fayolle and Iasnogorodski (1979)), representation theory (Biane (1992)), potential theory. More-
over, the state space N2 = {0,1,2,...}2 offers a natural framework for studying any two-dimensional
population; accordingly, quadrant walks appear as models in biology and in finance (Cont and de Lar-
rard (2013)). Another interest of random walks in the quarter plane is that in the large class of random
processes in cones, they form a family for which remarkable exact formulas exist. Moreover, quadrant
walks are popular in combinatorics, see Bousquet-Mélou and Mishna (2010); Bostan and Kauers (2010);
Kurkova and Raschel (2012). Indeed, many models of walks are in bijection with other combinatorial
objects: maps, permutations, trees, Young tableaux, etc. In combinatorics again, famous models have
emerged from quadrant walks, as Kreweras’ or Gessel’s ones, see Bousquet-Mélou and Mishna (2010);
Bostan and Kauers (2010). Finally, walks in the quarter plane are interesting for the numerous tools used
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for their analysis: combinatorial (Bousquet-Mélou and Mishna (2010)), from complex analysis (MalySev
(1972); Fayolle and lasnogorodski (1979); Fayolle et al. (1999); Kurkova and Raschel (2011, 2012);
Bernardi et al. (2015)), computer algebra (Bostan and Kauers (2010)), for instance.

1.2 Issues and technicalities of the analytic approach

In the literature (see, e.g., MalySev (1972); Fayolle and Iasnogorodski (1979); Fayolle et al. (1999);
Kurkova and Raschel (2011, 2012)), the analytic approach relies on six key steps:

(1) Finding a functional equation between the generating functions of interest;
(i1) Reducing the functional equation to boundary value problems (BVP);
(iii) Solving the BVP;
(iv) Introducing the group of the walk;

(v) Defining the Riemann surface naturally associated with the model, continuing meromorphically the
generating functions and finding the conformal gluing function;

(vi) Deriving the asymptotics of the (multivariate) coefficients.

Before commenting these different steps, let us note that altogether, they allow for studying the following
three main problems:

(P1) Explicit expression for the generating functions of interest (needs (i), (ii), (iii) and (v));
(P2) Algebraic nature of these functions (needs (iv) and (v));
(P3) Asymptotics of their coefficients in various regimes (needs (iii), (v) and (vi)).

The point (i) reflects the inherent properties of the model and is easily obtained. Point (ii), first shown in
Fayolle and Iasnogorodski (1979), is now standard (see Fayolle et al. (1999)) and follows from algebraic
manipulations of the functional equation of (i). Item (iii) uses specific literature devoted to BVP (our main
reference for BVP is the book of Litvinchuk (2000)). The idea of introducing the group of the model (iv)
was proposed in MalySev (1972), and brought up to light in the combinatorial context in Bousquet-Mélou
and Mishna (2010). Point (v) is the most technical a priori; it is however absolutely crucial, as it allows
to access key quantities (as a certain conformal gluing function which appears in the exact formulation
of (iii)). Finally, (vi) uses a double refinement of the classical saddle point method: the uniform steepest
descent method.

1.3 Reflected Brownian motion in the quarter plane

There is a large literature on reflected Brownian motion in quadrants (and also in orthants, generaliza-
tion to higher dimension of the quadrant), to be rigorously introduced in Section 3. First, it serves as
an approximation of large queuing networks (see Foddy (1984); Baccelli and Fayolle (1987)); this was
the initial motivation for its study. In the same vein, it is the continuous counterpart of (random) walks
in the quarter plane. In other directions, it is studied for its Lyapunov functions in Dupuis and Williams
(1994), cone points of Brownian motion in Le Gall (1987), intertwining relations and crossing proba-
bilities in Dubédat (2004), and of particular interest for us, for its recurrence/transience in Hobson and
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Rogers (1993). The asymptotic behavior of the stationary distribution (when it exists) is now well known,
see Harrison and Hasenbein (2009); Dai and Miyazawa (2011); Franceschi and Kurkova (2016). There
exist, however, very few results giving exact expressions for the stationary distribution. Let us mention
Foddy (1984) (dealing with the particular case of a Brownian motion with identity covariance matrix),
Baccelli and Fayolle (1987) (on a diffusion having a quite special behavior on the boundary), Harrison
and Williams (1987b); Dieker and Moriarty (2009) (on the special case when stationary densities are ex-
ponential) and Franceschi and Raschel (2016) (on the particular case of an orthogonal reflection). We also
refer to Burdzy et al. (2015) for the analysis of reflected Brownian motion in bounded planar domains by
complex analysis techniques.

1.4 Main results and plan

This note is an extended abstract of the papers Franceschi and Kurkova (2016); Franceschi and Raschel
(2016), whose main contributions are precisely to export the analytic method for reflected Brownian
motion in the quarter plane. Our study constitutes one of the first attempts to apply these techniques to
the continuous setting, after Foddy (1984); Baccelli and Fayolle (1987). In addition of reporting about the
works Franceschi and Kurkova (2016); Franceschi and Raschel (2016), we also propose a comparative
study of the discrete/continuous cases.

Our paper is organized as follows: Section 2 concerns random walks and Section 3 Brownian motion.
For clarity of exposition we have given the same structure to Sections 2 and 3: in Section 2.1/3.1 we first
state the key functional equation (a kernel equation), which is the starting point of our entire analysis.
We study the kernel (a second degree polynomial in two variables). In Section 2.2/3.2 we state and solve
the BVP satisfied by the generating functions. We then move to asymptotic results (Section 2.3/3.3). In
Section 2.4/3.4 we introduce the Riemann surface of the model and some important related facts.

2 Random walks in the quarter plane

This section is devoted to the discrete case and is based mainly on Fayolle et al. (1999).

2.1 Functional equation

One considers a piecewise homogeneous random walk with sample paths in N2. There are four domains
of spatial homogeneity (the interior of N2, the horizontal and vertical axes, the origin), inside of which
the transition probabilities (of unit size) are denoted by p; ;, pﬁ s pj’ ; and pg’ ;» respectively. See Figure 1.
The inventory polynomial of the inner domain is called the kernel and equals

K(z,y) = xy{z_1gi,jg1 pije'y’ — 1} ey

The inventory polynomials associated to the other homogeneity domains are

k(x,y) = 2{ 0] jaly? — 1}, k(z,y) = {5 platy? — 1}, ko(z,y) = {3 p0,a%y — 1}.

Assuming the random walk ergodic (we refer to (Fayolle et al., 1999, Theorem 1.2.1) for necessary and
sufficient conditions), we denote the invariant measure by {7; ; }; j>0 and introduce the generating func-
tions

1 1 1

m(z,y) = Zi,j>1 7Ti,jxi_ yj_ , m(x) = Zz’}l 7Ti,OJ;i_lv m(y) = Zj;l 71'O,jyj_ .



4 S. Franceschi, 1. Kurkova and K. Raschel

Fig. 1: Transition probabilities of the reflected random walk in the quarter plane, with four domains of spatial homo-
geneity

Writing the balance equations at the generating function level, we have (see (Fayolle et al., 1999, Equa-
tion (1.3.6)) for the original statement):

Lemma 1 The fundamental functional equation holds
~K(z,y)n(x,y) = k(z,y)m(z) + k(z, y)7(y) + ko(z, y)mo 0. 2)

Equation (2) holds a priori in the region {(x,y) € C?: |z| < 1, |y| < 1}. Indeed, the 7; ; sum up to 1, so
that the generating functions 7 (x, y), 7(x) and 7(y) are well defined on the (bi)disc. The identity (2) is a
kernel equation, and a crucial role will be played by the kernel (1). This polynomial K is of second order
in both x and y; its roots X (y) and Y (x) defined by

K(X(y),y) = K(z,Y(x)) =0 A3)

are thus algebraic of degree 2. Writing the kernel as K (z,y) = a(y)x? + b(y)x + c(y) and defining its
discriminant d(y) = b(y)? — 4a(y)c(y), one has obviously

X(y) = *b(y)Q ;Izy\)/ d(y)

The polynomial d has three or four roots, and exactly two of them are located in the unit disc, see (Fayolle
et al., 1999, Lemma 2.3.8). They are named y1, y2, cf. Figure 2. On (y1,y2) one has d(y) < 0, so that
the two values (or branches) of X (y) (that we shall call X (y) and X1 (y)) are complex conjugate of one
another. In particular, the set

M= X([y1,y2]) ={z € C: K(z,y) =0and y € [y1,y2]}

is symmetrical w.r.t. the real axis (Figure 2). This curve will be used to set a boundary condition for the
unknown function 7 (Lemma 2).
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2.2 Statement and resolution of the BVP

The analytic approach of Malysev (1972); Fayolle and Iasnogorodski (1979); Fayolle et al. (1999) pro-
poses a way for solving the functional equation (2), by reduction to a BVP. Generally speaking, a BVP
consists of a regularity condition and a boundary condition.

Lemma 2 The function m satisfies the following BVP:
e 7 is meromorphic in the bounded domain delimitated by M and has there identified poles;

e foranyx € M,
k(z, Yo(2)) _ k(z,Yo(T) k(@ Yo(x))  ko(x, Yo(x))

Fev@) ) e T e n@) " ke @)

71'070.

Proof: The regularity condition follows from Theorem 5, which provides a (maximal) meromorphic
continuation of the function 7. We now turn to the boundary condition. For ¢ € {0, 1}, we evaluate
the functional equation (2) at (X;(y), y) and divide by k(X;(y), y). We then make the difference of the
identities corresponding to ¢ = 0 and 4 = 1. Finally, we substitute Xy(y) = x and X; (y) = T, noting that
wheny € [y1, y2], * € M by construction. Notice that we have chosen the segment [y1, y2| connecting the

points inside of the unit disc (Figure 2), in which we know that the generating function 7 is well defined.
O

ﬁ-% Y3 Ya M

Fig. 2: Left: the polynomial d has three or four roots, denoted by y1, y2, y3, y4; exactly two of them are inside the
unit disc. Right: the curve M = X ([y1, y2]) is symmetrical w.r.t. the horizontal axis

Although Lemma 2 could be written more precisely (by giving the number and the location of the poles
of 7), we shall prefer the above version, since we focus in this note on the main ideas of the analytic
approach.

Lemma 2 happens to characterize the generating functions, as it eventually leads to an explicit ex-
pression for 7, see Theorem 3. Before stating this central result (borrowed from (Fayolle et al., 1999,
Theorem 5.4.3)), we need to introduce a function w called a conformal gluing function. By definition it
satisfies w(z) = w(T) for z € M and is one-to-one inside of M. This function will be constructed in
Theorem 6 of Section 2.4.
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Theorem 3 There exist two functions f and g, constructed from k, K, ko and w, such that the following
integral formulation for m holds:

w'(u)

() - w(m)

ﬂ@=ﬂ@AﬂW>

A similar contour integral representation exists for 7, and eventually the functional equation (2) provides
us with an explicit expression for the bivariate function 7 (z, y).

2.3 Asymptotics of the stationary probabilities

The asymptotics of coefficients 7; ; of unknown generating functions satisfying the functional equation
(2) has been obtained by MalySev (1973) via analytic arguments. He computed the asymptotics of the
stationary probabilities 7; ; as 4, j — oo and j/i = tanc, for any given o € (0,7/2). Let us briefly
present these results. It is assumed in MalySev (1973) that the random walk is simple, meaning that

P-1,1=p1,1 =p-1,-1 =p1,-1 = 0. 4

It is also assumed that both coordinates of the interior drift vector are negative (as in Figure 3). For
a € (0,7/2), we define the point (z(«), y(«)) as follows. Introducing as in Kurkova and Raschel (2011)
the function P(u,v) = 3=, ; pi je™“e’” on R?, the mapping

- VP(u,v)
(2 P 0)

is a homeomorphism between {(u,v) € R? : P(u,v) = 1} and the unit circle. The point (u(a),v(a)) is
the unique solution to Yo“") = (cos v, sin «). Finally, (z(a), y(e)) = (e*(®), ev(@),

[P(u,v)]
Following MalySev (1973), we introduce the sets of parameters

P = {{pish ) k((@(a), y(«)) < 0and k(d(x(a), y(a))) < 0},
Pie = {{pis} ) : k(d(z(a),y(@)) > 0 and K(@(x(a), y(a)) < 0},

and P_, and P, accordingly. The automorphisms 1) and ¢ are defined in Section 2.4 by (8). The
following theorem is proven in MalySev (1973).

Theorem 4 Let (i,5) = (rcosa, rsina) with a € (0,7/2). Then as r — oo we have

C?/(Faf)w_"’(a)y‘j(a) inP__,

_ Cipyiqy? inP_,
mii = (14+0(1))- 1 A1 ) 5
IR OR Py e ®

Cipr'ar” + Capy'ay”  in®Pyy,

where Cy, C1 and Cy are constants that can be expressed in terms of the functions w and 7. The point
(p1,q1) is a solution of the system { K (x,y) = 0, k(¢(x,y)) = 0} and similarly, (p2, q2) is a solution of

{K(I7y) =0, k(¢($,y)) = 0}
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Proof: The stationary probabilities 7; ; are first written as two-dimensional Cauchy integrals, then re-
duced via the residue theorem to one-dimensional integrals along some contours. The asymptotics of
these integrals is characterized either by the saddle point (x(«),y(a)) in the case of the set of parame-
ters P__ or by a pole (p1,q1) or (p2, g2) that is encountered when moving the integration contour to the
saddle point; this happens for the sets of parameters P_, P, _ and P, . O

This approach has been applied for the analysis of the join the shortest queue problem in Kurkova and
Suhov (2003), and for computing the asymptotics of Green functions for transient random walks in the
quarter plane reflected at the axes (see Kurkova and Malyshev (1998)) or killed at the axes (cf. Kurkova
and Raschel (2011)). Moreover, as illustrated in Kurkova and Raschel (2011); Kurkova and Suhov (2003),
the assumption (4) is not crucial for the applicability of the method. The limiting cases & = 0 and
«a = m/2 can also be treated via this approach, with some additional technical details (the saddle point
then coincides with a branch point of the integrand), it is done in Kurkova and Raschel (2011).

2.4 Riemann surface and related facts
In Section 2.1 the set

K ={(z,y) € C*: K(z,y) = 0} = {(z,y) € C*: Y p; ja'y’ = 1}

has appeared very naturally, since in order to state the BVP (our Lemma 2), we introduced the functions
X (y) and Y (), which by construction cancel the kernel, see (3).

In this section the central idea is to consider the (global) complex structure of K. The set K turns out to
be a Riemann surface of genus 1, i.e., a torus. This simply comes from the reformulation of the identity
K(z,y)=0as

{2a(y)z +b(y)}? = d(y).

Moreover, the Riemann surface of the square root of a polynomial of degree 3 or 4 is classically a torus
(with this terminology, the roots of the discriminant are branch points).

This new point of view on X brings powerful tools. Of particular interest is a parametrization of X in
terms of Weierstrass elliptic functions:

K={(z(w),y(w)) : w e C/(wi1Z + wsZ)}. (6)

This parametrization is totally explicit: (w) and y(w) are rational functions in the p-Weierstrass function
and its derivative o’ (see (Fayolle et al., 1999, Lemma 3.3.1)); the periods w; and wo admit expressions
as elliptic integrals in terms of {p; ;} (cf. (Fayolle et al., 1999, Lemma 3.3.2)), etc. Moreover, as any
functions of  and/or y, the functions 7(x) and 7(y) can be lifted on X by setting

Nw) =n(zw), Tw)=7(yw): ©)

Group of the walk

Introduced in MalySev (1972) in a probabilistic context and further used in Fayolle et al. (1999); Bousquet-
Meélou and Mishna (2010), the group of the walk is a dihedral group generated by

C(w,y) = (sc Ml) n(x,y) = (wl y). ®)

’ Zipz',ﬂxi Yy Z]‘ P+1,jyj z
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(One easily verifies that these generators are idempotent: (2 = n? = 1.) The group (¢, n) can be finite
or infinite, according to the order of the element ¢ o 1. The generator (¢ (resp. 77) exchanges the roots in
y (resp. in x) of K(x,y) = 0. Viewed as a group of birational transformations in Bousquet-Mélou and
Mishna (2010), we shall rather see it as a group of automorphisms of the Riemann surface XK.

This group has many applications. First, it allows for a continuation of the functions 7(x) and 7(y)
(Theorem 5 below). It further connects the algebraic nature of the generating functions to the (in)finiteness
of the group (Theorem 7). Finally, in the finite group case, elementary algebraic manipulations of the func-
tional equations can be performed (typically, via the computation of certain orbit-sums) so as to eventually
obtain D-finite expressions for the unknowns, see (Fayolle et al., 1999, Chapter 4) and Bousquet-Mélou
and Mishna (2010).

Using the structure of the automorphisms of a torus, the lifted versions of ¢ and 77 admit simple expres-
sions (Fayolle et al., 1999, Section 3.1.2):

((w) = ~w+ w1 +wy, N(w) = —w + w1 + wa +ws, 9

where, as the periods wy and ws, wy € (0,ws) is an elliptic integral (Fayolle et al., 1999, Lemma 3.3.3).
Accordingly, the group is finite if and only if ws/w3 € Q, which provides a nice criterion in terms of
elliptic integrals.

Continuation

While the generating function () is defined through its power series in the unit disc, it is a priori unclear
how to continue it to a larger domain. This is however crucial, since the curve M on which it satisfies a
BVP (Lemma 2) is not included in the unit disc in general.

Theorem 5 The function w can be continued as a meromorphic function to C \ [x3, z4].

We notice that M does not intersect [x3, x4] by (Fayolle et al., 1999, Theorem 5.3.3), so that Theorem 5
indeed provides a continuation of the generating function in the domain delimitated by M.

Proof: This result, stated as Theorem 3.2.3 in Fayolle et al. (1999), is a consequence of a continuation of
the lifted generating functions (7) on the Riemann surface (or, better, on its universal covering — but we
shall not go into these details here). The continuation on X uses the (lifted) functional equation (2) and
the group of the walk (¢, n). O

Conformal mapping

In the integral expression of Theorem 3, the conformal gluing function w is all-present, as it appears in
the integrand and in f and g as well. The introduction of the Riemann surface X allows to derive an
expression for this function (this is another major interest of introducing X). Let us recall that w; and
wo are the periods of the elliptic functions of the parametrization (6), while ws comes out in the lifted
expression (9) of the automorphisms.

Theorem 6 The conformal gluing function w admits the expression:
’lU(.’I?) = p(pil(aj: w17w2); UJ170J3),

where fori € {2,3}, p(-;w1,w;) is the p-Weierstrass elliptic function with periods wy and w;.
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Proof: While on the complex plane, M is a quartic curve, it becomes on K much simpler (typically, a
segment). This remark (which again illustrates all the benefit of having introduced the Riemann surface)
is used in (Fayolle et al., 1999, Section 5.5.2) so as to obtain the above expression for w. O

Algebraic nature of the generating functions

Recall that a function of one variable is D-finite if it satisfies a linear differential equation with polynomial
coefficients.

Theorem 7 If the group is finite, the generating functions 7(x) and 7(y) are D-finite.

Proof: This follows from manipulations on the Riemann surface, see (Fayolle et al., 1999, Chapter 4).
The D-finiteness is proved on R; refined results (in the combinatorial context of the enumeration of paths)
can be found in Bousquet-Mélou and Mishna (2010), where the D-finiteness is proved on Q. o

The converse of Theorem 7 is not shown in full generality. It is true in combinatorics, see Kurkova and
Raschel (2012).

3 Reflected Brownian motion in the quadrant
Defining reflected Brownian motion in the quadrant

The object of study here is the reflected Brownian motion with drift in the quarter plane R?.
Z(t) = Zo + W(t) + ut + RL(t), vt >0, (10)

associated to the triplet (2, u, R), composed of a non-singular covariance matrix, a drift and a reflection
matrix, see Figure 3:

E:<6'11 021>7 M:<M1>7 R:(Rl,Rz):<r11 7“21)_
012 022 H2 12 T22
In Equation (10), Z, is any initial point in R? , the process (W (¢))¢>0 is an unconstrained planar Brownian
motion starting from the origin, and for i € {1,2}, L(¢) is a continuous non-decreasing process, that
increases only at time ¢ such that Z%(¢) = 0, namely fot Lizi(s)20ydL(s) = 0. The columns R; and R,
represent the directions in which the Brownian motion is pushed when the axes are reached.

The reflected Brownian motion (Z(t)):>¢ associated with (3, u, R) is well defined, see for instance

Williams (1995). Its stationary distribution exists and is unique if and only if the following (geometric
flavored) conditions are satisfied (see, e.g., Harrison and Williams (1987a); Hobson and Rogers (1993))

ri1 >0, rog >0, 711722 — 12721 > 0, Toopy — Tiope <0, Tripe — rop < 0. (11)

More that the Brownian motion in the quadrant, all results presented below concern the Brownian mo-
tion in two-dimensional cones (by a simple linear transformation of the cones). This is a major difference
and interest of the continuous case, which also illustrates that the analytic approach is very well suited to
that context.
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Fig. 3: Drift 1 and reflection vectors R' and R>

3.1 Functional equation
Laplace transform of the stationary distribution

The continuous analogues of the generating functions are the Laplace transforms. As their discrete coun-
terparts, they characterize the stationary distribution. Under assumption (11), that we shall do throughout
the manuscript, the stationary distribution is absolutely continuous w.r.t. the Lebesgue measure, see Har-
rison and Williams (1987a); Dai (1990). We denote its density by m(x) = m(x1,x2). Let the Laplace
transform of 7 be defined by

©(0) = E[e!912)] = //R2 %) () dar.

We further define two finite boundary measures 14, and v5 with support on the axes, by mean of the formula

vi(B) =Ex [/01 ]l{Z(t)eB}dLi(t):|~

The measures v; are continuous w.r.t. the Lebesgue measure by Harrison and Williams (1987a), and may
be viewed as boundary invariant measures. We define their moment Laplace transform by

a(01) = / g (a)dey, pu(8) = / %2721, () de.
Ry Ry

Functional equation

There is a functional equation between the Laplace transforms ¢, (o1 and 3, see (12), which is reminiscent
of the discrete functional equation (2).

Lemma 8 The following key functional equation between the Laplace transforms holds

—7(0)p(0) = 71(0)p1(02) + 72(0)02(01), (12)

where

y(0) = %<9|C’9> + (0|un) = %(0119% + 02203 + 201260102) + 1601 + pabz,
Y1(0) = (R0) = r1101 + r2162,
’72(9) = <R2|9> = 11201 + 79905.
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By definition of the Laplace transforms, this equation holds at least for any § = (6;,62) with R6; < 0
and R 0> < 0. The polynomial ~ in (12) is the kernel and is the continllous analogue of the kernel (1) in
the discrete case. Polynomials y; and 7, are the counterparts of &k and k.

Proof: To show (12), the main idea is to use an identity called a basic adjoint relationship (first proved in
Harrison and Williams (1987a) in some particular cases, then extended in Dai and Harrison (1992)), which
characterizes the stationary distribution. (It is the continuous analogue of the well-known equation 7(Q) =
0, where m is the stationary distribution of a recurrent continuous-time Markov chain with infinitesimal
generator ().) This basic adjoint relationship connects the stationary distribution 7 and the corresponding
boundary measures 1 and v5. We refer to Foddy (1984); Dai and Miyazawa (2011) for the details. O

Elementary properties of the kernel

The kernel v in (12) can be alternatively written as
’7(91, 92) = 6(92)9% -‘1-5(92)91 + 5(62) = a(91)0§ + b(91)92 + 0(91). (13)

The equation (1, 62) = 0 defines a two-valued algebraic function ©1(62) by v(©1(62),62) = 0, and
similarly ©5(6; ) such that y(61, ©2(61)) = 0. Expressions of their branches are given by

—b(61) + \/d(61)

Gzi(el) - 20,(91) ’

where d(61) = b%(61) — 4a(01)c(6;) is the discriminant. The polynomial d has two zeros, real and of
opposite signs; they are denoted by 9% and are branch points of the algebraic function ©5. In the same
way we define ©F and its branch points 65

Finally, notice that d is negative on R\ [#] , #;]. Accordingly, the branches @f take complex conjugate
values on this set.

3.2 Statement and resolution of the BVP
An important hyperbola
For further use, we need to introduce the curve
R = {92 eC: ")/(91, 62) = 0and 01 S (700,91_)} = @;((700,91_)) (14)

It is the analogue of the curve M in Section 2.1. The curve R is symmetrical w.r.t. the real axis, see
Figure 4 (this is a consequence of d being negative on (—o0, 0] ), see above). Furthermore, it is a (branch
of a) hyperbola by Baccelli and Fayolle (1987). We shall denote by G« the open domain of C bounded by
R and containing 0, see Figure 4. Obviously G, the closure of G, is equal to G U R.

BVP for orthogonal reflections

In the case of orthogonal reflections (see Figure 3), R is the identity matrix in (10), and we have vy, (61, 62) =
61 and ")/2(91, 62) = 0. We set

P1(02) = 91*2901(92), Pa () = 0%@2(91)- (15)
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Ir b R

o; o 0, 0 0(6,) 05

Fig. 4: Left: the discriminant d has two roots ] and 6] of opposite signs. Right: the curve R in (14) is symmetric
w.r.t. the horizontal axis and G is the domain in blue

Lemma 9 The function 1 in (15) satisfies the following BVP:

(i) Y1 is meromorphic on Gx with a single pole at 0, of order 1 and residue ¢1(0), and vanishes at
infinity;

(i) 1 is continuous on G \ {0} and

P1(602) = 1 (02), Vhy € R. (16)

Proof: The regularity condition of point (i) follows from Theorem 15, which provides a (maximal) mero-
morphic continuation of the function. Let us now consider (ii). Evaluating the (continued) functional
equation (12) at (61, ©F (61)), we obtain 11 (O (6;)) + 12(61) = 0, which immediately implies that

¥1(03 (61)) = ¢1(03 (61)). (17)

Choosing 0; € (—oc,f; ), the two quantities ©F (6;) and ©; (6, ) are complex conjugate the one of the
other, see Section 3.1. Equation (17) can then be reformulated as (16), using the definition (14) of the
curve R. a

The BVP stated in Lemma 9 is called a homogeneous BVP with shift (the shift stands here for the
complex conjugation, but the theory applies to more general shifts, see Litvinchuk (2000)). It has a
simpler form than the BVP in Lemma 2 for the discrete case, because there is no inhomogeneous term (as
mo,0) and also because in the coefficients in front of the unknowns there is no algebraic function (as Yp)
involved. Due to its particularly simple form, we can solve it in an explicit way, using the two following
steps:

e Using a certain conformal mapping w (to be introduced below), we can construct a particular solu-
tion to the BVP of Lemma 9.

e The solution to the BVP of Lemma 9 is unique (see the invariant Lemma 2 in (Litvinchuk, 2000,
Section 10.2)). In other words, two different solutions must coincide, and the explicit solution
constructed above must be the function ;.
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In Franceschi and Raschel (2016) it is explained that the above method may be viewed as a variation
of Tutte’s invariant approach, first introduced by Tutte for solving a functional equation arising in the
enumeration of properly colored triangulations, see Tutte (1995).

The function w glues together the upper and lower parts of the hyperbola R. There are at least two
ways to find such a w. First, it turns out that in the literature there exist expressions for conformal gluing
functions for relatively simple curves as hyperbolas, see (Baccelli and Fayolle, 1987, Equation (4.6)).
Here (based on Franceschi and Raschel (2016)), we use instead the Riemann sphere 8, as we will see in
Section 3.4. Indeed, many technical aspects (and in particular finding the conformal mapping) happen to
be quite simpler on that surface.

We will deduce from Section 3.4 that function w can be expressed in terms of the generalized Cheby-
shev polynomial

T.(x) = cos(a arccos(z)) = %{(Z’ +Va?— l)a + (2 — Va2 - l)a}

as follows: N
205 — (05 + 65
w(0s) Tg(ZM); (18)
‘ 92 - 92
where we have noted
012
[ = arccos — (19)

V011022 ’

In the case of orthogonal reflection, this methods leads to the main result of Franceschi and Raschel
(2016), which is:

Theorem 10 Let R be the identity matrix in (10). The Laplace transform 1 is equal to
—pmw'(0)
w(fa) — w(0)

Statement of the BVP in the general case

We would like to close Section 3.2 by stating the BVP in the case of arbitrary reflections (non-necessarily
orthogonal). Let us define for §; € R

@1(92) = 92.

G(6s) = %(@;wz),eg)%e;(ez),@.

Similarly to Lemma 9, there is the following result:

Lemma 11 The function @1 satisfies the following BVP:
(i) 1 is meromorphic on Gx with at most one pole p of order 1 and is bounded at infinity;
(i) 1 is continuous on Gx \ {p} and

©1(02) = G(02)p1(02), Vb2 € R (20)

Due to the presence of the function G # 1 in (20), this BVP (still homogeneous with shift) is more
complicated than the one encountered in Lemma 9 and cannot be solved thanks to an invariant lemma.
Instead, the resolution is less combinatorial and far more technical, and the solution should be expressed
in terms of both Cauchy integrals and the conformal mapping w of Theorem 10. This will be achieved in
a future work.
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3.3 Asymptotics of the stationary probabilities
Overview

Let II be a random vector that has the stationary distribution of the reflected Brownian motion. Dai and
Miyazawa (2011) obtain the following asymptotic result: for a given directional vector ¢ € R they find
(up to a multiplicative constant) a function f.(x) such that

o Bl > 7]

z—00 fe(x)

In Franceschi and Kurkova (2016) we solve a harder problem arisen in (Dai and Miyazawa, 2011, §8),
namely computing the asymptotics of P[II € zc + B] as x — oo, where ¢ € Ri is any directional vector
and B C R?F any compact subset. Furthermore, we are able to find the full asymptotic expansion of the
density 7(x1, z2) of Il as z1, 29 — 0o and x2/x1 — tan(«), for any given angle « € (0, 7/2).

Main results

First we need to introduce some notations. The equation () = 0 determines an ellipse € on R? passing
through the origin, see Figure 5. Here we restrict ourselves to the case ;13 < 0 and po < 0, although our
methods can be applied without additional difficulty to other cases. For a given angle «@ € [0, 7/2], let us

0> B 0 ‘\\\
=0 £ < 2 £ X 0(a)
¢
0" n o \\\
6" €a \\\\
— - o -

Fig. 5: Left: representation of the ellipse &, straight lines {~1(6) = 0}, {~2(0) = 0}, and points 6*, 6**, nf* and
¢0**. Right: geometric interpretation of the point () in (21) on &

define the point 6(«) on the ellipse € by
0(o) = argmaxyee(0eq), where e, = (cos «, sin ). 21

The coordinates of #(«) can be given explicitly. One can also construct §(«) geometrically as on Figure 5.
Secondly, consider the straight lines {71 (¢) = 0} and {~2(6) = 0}, depending on the reflection matrix
R only. They cross the ellipse € at the origin. The line {v;(0) = 0} (resp. {12(8) = 0}) intersects the
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ellipse at a second point called 8 (resp. 8**). To present our results, we need to define the images on &
of these points via the so-called Galois automorphisms ¢ and 7, to be introduced in Section 3.4. Namely,
for the point 8* = (07,0%) € € there exists a unique point nf* = (nd3,03) € € with the same second
coordinate. Likewise, there exists a unique point (6** = (67, (63*) € & with the same first coordinate
as 0** = (67*,03*) € &. Points 0*, 8**, nf* and (6** are pictured on Figure 5. Their coordinates can be
made explicit.

Similarly to the discrete case, we introduce the set of parameters

Q__ = {((S.1.R).a) : 71(n(a)) < 0 and 72(¢H(a)) < 0}

and Oy, Q_ and Q4 accordingly. The following theorem provides the main term in the asymptotic
expansion of 7(r cos a, r sin ).

Theorem 12 Let (z,y) = (rcosa,rsina) with a € (0,7/2). We assume that 0(c) € R%. Then as
r — 00 we have

@677{6&\0(&)) in Q777
B Cle—r<ea|n9*) in Q+7,
W(Tea) = (1 + 0(1)) ' 026*7"<€a|(9**> in9Q_4, @2

Clefr<ea|n\9*) 4 C2e*T<€a|49H> in Q4

where Cy, C1 and Cy are constants that can be expressed in terms of functions p1 and o and the
parameters.

In Franceschi and Kurkova (2016) the constants mentioned in Theorem 12 are specified in terms of func-
tions ¢, and 2. But these functions are for now unknown. As we explained in Section 3.2, in a next work
we are going to obtain (1 and (5 as solutions of BVP, thereby determining the constants in Theorem 12.

Proof of the key step of Theorem 12: Theorem 12 is proven in Franceschi and Kurkova (2016). The
first step consists in continuing meromorphically the functions ¢; and ¢, on C \ [#,00) or on the
Riemann surface 8, see Section 3.4. Then by the functional equation (12) and the inversion formula of
Laplace transform (we refer to Doetsch (1974) and Brychkov et al. (1992)), the density 7(x1,z2) can
be represented as a double integral. Using standard computations from complex analysis, we are able to
reduce it to a sum of single integrals. We obtain the following (with the notation (13)):

—1 [T 0)¢1 (0 0)2(0
ﬂ($17x2) = 7(271-7/)2/ / 67m10171292’yl( )Q@l( 2)+,y2( )()02( 1)d01d02

v(0)

1
#2(01)12(01, O (B1)e ™17 r203 ()

REL . NEGY
1 e 216+ (0.) -z do
o | @02 (OF (), fp)e O et

—100 d(92)

These integrals are typical to apply the saddle point method, see Fedoryuk (1986). The coordinates of the
saddle point are the critical points of the functions

cos(a)f; +sin(a)O5F (01) and  cos(a)O7 (62) + sin(a)fs.
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It is the point #(«v). Then we have to shift the integration contour up to new contours which coincide
with the steepest-descent contour near the saddle point. When we shift the contours we have to take into
account the poles of the integrands and their residues. The asymptotics will be determined by the pole if
we cross a pole when we shift the contour and by the saddle point otherwise. a

3.4 Riemann surface and related facts
Riemann surface

The Riemann surface

S = {(91,02) S (Cz : 'y(91,02) = 0}
may be viewed as the set of zeros of the kernel (equivalently, it is the Riemann surface of the algebraic
functions ©2 and ©4). Due to the degree of ~, the surface S has genus 0 and is a Riemann sphere,

i.e., homeomorphic to C U {co}, see Franceschi and Kurkova (2016). It admits a very useful rational
parametrization, given by

- = + — 2
01 (s) 2 4 ST ) 02() 2 4 e s )7 23)

with 3 as in (19). The equation (6 (s), 62(s)) = 0 holds and 8 = {(01(s),02(s)) : s € CU {oo}}.
Group of the process

We finally introduce the notion of group of the model, similar to the notion of group of the walk in the
discrete setting (see MalySev (1972); Fayolle et al. (1999); Bousquet-Mélou and Mishna (2010)). This
group ((,n) is generated by ¢ and 7, given by (with the notation (13))

o 6(91) 1 - 5(92) 1
Ot = (05005 )+ o) = (S5 0n).
By construction, the generators satisfy v(¢(61,62)) = v(n(61,602)) = 0 as soon as v(f1,602) = 0. In

other words, there are (covering) automorphisms of the surface 8. Since (? = n? = 1, the group ((, ) is
a dihedral group, which is finite if and only if the element ¢ o 7 (or equivalently 7 o () has finite order.

Algebraic nature of the Laplace transforms

With the above definition, it is not clear how to see if the group is finite, nor to see it its finiteness would
have any implication on the problem. In fact, we have, with 3 defined in (19):

Lemma 13 The group (¢, n) is finite if and only if w /5 € Q.

The proof of Lemma 13 is simple, once the elements ¢ and 1 have been lifted and reformulated on the

sphere §:
1 e28

S S
These transformations leave invariant 6, (s) and 6-(s), respectively, see (23). In particular, we have the
following result (see Franceschi and Raschel (2016)), which connects the nature of the solution of the BVP
to the finiteness of the group. Such a result holds for discrete walks, see our Theorem 7 and Bousquet-
Mélou and Mishna (2010); Bernardi et al. (2015).
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Theorem 14 The solution ¢y given in Theorem 10 and the conformal gluing function w in (18) are
algebraic if and only if the group ((,n) is finite.

Conformal mapping

The conformal gluing function w introduced in Section 3.2 may be lifted on 8. In fact its expression is
even simpler using the parametrization of 8. We show in Franceschi and Raschel (2016) that

w(fs(s)) = —%{(—3)% +(—s)"5) = —%{eﬁlog(_s) + e_%log(_s)}, (24)

where we make use of the principal determination of the logarithm.

Continuation of the Laplace transforms

To establish the BVP, we have stated a boundary condition for the functions ¢; and @2, on curves which
lie outside their natural domains of definition (the half-plane with negative real-part), see Figure 4. In the
same way, in the asymptotic study we use the steepest descent method on some curves outside of the initial
domain of definition. We therefore need to extend the domain of definition of the Laplace transforms.

Theorem 15 The function @y can be continued meromorphically on the cut plane C \ [0, 00).

Proof: The first step is to continue meromorphically ¢1 (62) to the open and simply connected set {6, €
C: RO, <0orROT (62) < 0}, by setting

1(02) = %(91_(92),92)@2(91_(92))-

This is immediate (see Franceschi and Kurkova (2016) for the details). It is then possible to pursue the
extension to the whole 8 using the invariance properties by the automorphisms ¢ and 7 satisfied by the
lifted Laplace transforms on 8. a
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Abstract.

We study the size and the external path length of random tries and show that they are asymptotically independent in the
asymmetric case but strongly dependent with small periodic fluctuations in the symmetric case. Such an unexpected
behavior is in sharp contrast to the previously known results that the internal path length is totally positively correlated
to the size and that both tend to the same normal limit law. These two examples provide concrete instances of bivariate
normal distributions (as limit laws) whose correlation is 0, 1 and periodically oscillating.

Keywords: Random tries, Pearson’s correlation coefficient, asymptotic normality, Poissonization/de-Poissonization,
Mellin transform, contraction method

1 Introduction

Tries are one of the most fundamental tree-type data structures in computer algorithms. Their general
efficiency depends on several shape parameters, the principal ones including the depth, the height, the size,
the internal path-length (IPL), and the external path-length (EPL); see below for a more precise description
of those studied in this paper. While most of these measures have been extensively investigated in the
literature, we are concerned here with the question: how does the EPL depend on the size in a random
trie? Surprisingly, while the IPL and the size are known to have asymptotic correlation coefficient tending
to one and to have the same normal limit law after each being properly normalized (see [4, 6]), this paper
aims to show that the EPL exhibits a completely different behavior depending on the parameter of the
underlying random bits being biased or unbiased. This is a companion paper to [1].

Given a sequence of binary strings (or keys), one can construct a (binary) trie as follows. If n = 1,
then the trie consists of a single root-node holding the sole string; otherwise, the root is used to direct the
strings into the corresponding subtree: if the first bit of the input string is O (or 1), then the string goes to
the left (or right) subtree; strings going to the same subtree are then constructed recursively in the same
manner but instead of splitting according to the first bit, the second bit of each string is then used. In
this way, a binary dictionary-type tree with two types of nodes is constructed: external nodes for storing
strings and internal nodes for splitting the strings; see Figure 1 for a trie of seven strings.

TPartially supported by MOST under the grant MOST-104-2923-M-009-006-MY3
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""" 11001010
Fig. 1: A trie with n = 7 records: the (filled) circles represent internal nodes and rectangles holding the binary
strings are external nodes. In this example, S,, = 8, K,, = 27, and N,, = 18.

The random trie model we consider here assumes that each of the n binary keys is an infinite sequence
consisting of independent Bernoulli bits each with success probability 0 < p < 1. Then the trie con-
structed from this sequence is a random trie. We define three shape parameters in a random trie of n
strings:

e size S,,: the total number of internal nodes used;

e [PL (or node path-length, NPL) N,,: the sum of the distances between the root to each internal
node;

e EPL (or key path-length, KPL) K, : the sum of the distances between the root to each external node.

We will use mostly NPL in place of IPL, and KPL in place of EPL, the reason being an easier comparison
with the corresponding results in random m-ary search trees in the companion paper [1]; see below for
more details.

By the recursive definition, we have the following recurrence relations

Su 2L Sp, +5%_p +1,
K, 2 Kp, +K;_p +n, (n>2), )

n

N, £ Np, + N, g, +58,+5 B,

where B,, = Binom(n,p) and Sy = S1 = Ko = K1 = Ny = N1 = 0. Here (S}), (K}), and (N;})
are independent copies of (Sy,), (K,) and (N,,), respectively. While many stochastic properties of these
random variables are known (see [4] and the references therein), much less attention has been paid to their
correlation and dependence structure.

The asymptotic behaviors of the moments of random variables defined on tries typically depend on the

ratio }gg g being rational or irrational, where ¢ = 1 — p. So we introduce, similar to [4], the notation

if 1082

Zlg)z) = {Zkez L @

o1
%, if 2 7
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where gy, represents a sequence of coefficients and xj = % when }23 7q’ = 7 with r and [ coprime. In
simpler words, .% [¢](z) is a periodic function in the rational case, and a constant in the irrational case.
We also use .7 [-](z) as a generic symbol if the exact form of underlying sequence matters less, and in this
case each occurrence may not represent the same function.

With this notation, the asymptotics of the mean and the variance of the above three shape parameters

are summarized in the following table; see [4] and the references therein for more information.

Shape parameters 1 (mean) ~ I (variance) ~
Size S, Z[(n) FgM](n)
E(S,) logn V(Sn) (logn)?
NPL NV, e B
1 pglog 4 1
KPL K, S+ F[](n) | T R 4 F g (n)
E(K, V(K.
| DepthD, [[ED,)="E) ] v, =TE) L 0o0) |
Tab. 1: Asymptotic patterns of the means and the variances of the shape parameters discussed in this paper. Here
Z[-|(n) differs from one occurrence to another and h = —plog p — qlog q denotes the entropy. Expressions for g,(vl)

and g,?) will be given below. Asymptotic normality holds for all three random variables Sy, Ny, K.
Note specially that the leading constant

 pglog??  (plog?p + qlog? q) — b

h3 h3

A=)

in the asymptotic approximation to V(K,) equals zero when p = ¢, implying that V(k,,) is not of order
nlogn but of linear order in the symmetric case. This change of order can be regarded as the source
property distinguishing the dependence and independence of K., on S,,.

On the other hand, if we denote by D,, the depth, which is defined to be the distance between the root
and a randomly chosen external node (each with the same probability), then we have not only the relation
E(D,)n = E(K,), but also the asymptotic equivalent V(D )n ~ V(K,,) when p # 1/2 (or A > 0), and
a central limit theorem holds; see Devroye [2].

From Table 1, we see roughly that each internal node contributes Ioih" to N,, namely, that N,, =~

S, 10%". Indeed, it was proved in [4] that the correlation coefficient of S,, and N,, satisfies
p(Sp,Ny)~1  (0<p<1). 3)

Such a linear correlation was further strengthened in [6], where it was proved that both random variables
tend to the same normal limit law N7 (with zero mean and unit variance)

(Sn —E(S,) N, —E(N,)

V(S T V()

d e ..
where — denotes convergence in distribution. In terms of the bivariate normal law N> (see Tong [16]),
we can write

) 45 (M, M),

(Sh - E(Sn) Ny — E(N”)

T d
N AN ) N0,
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where Fy = G 1) is a singular matrix and AT denotes the transpose of matrix A.

We show that the correlation and dependence of K, on S,, are drastically different. We start with their
correlation coefficient.

Theorem A The covariance of the number of internal nodes and KPL in a random trie of n strings
satisfies
Cov(Sy, Ky) ~ nF[gP](n),

where g,(C ) is given in Proposition A below, and their correlation coefficient satisfies

0, ifp # 3
P(Sn, Kp) ~ F L i “)
(n), ifp=3.
Here F(n) = Z[9@)(n) is a periodic function with average value 0.927 - - -.

AV FONmF @] ()

The result (4) is to be compared with (3) (which holds for all p € (0, 1)): the surprising difference here
comes not only from the (common) distinction between p = % and p # % but also from the (less expected)
intrinsic asymptotic nature.

0.9305] 7
0927260 | 0927252
09300, 09272501
0927255
09295 0927248
09272501
0.9290] 0927246 |
0927245
092851 0.927244 |
0927240
0.9280] ’ 0927242 |
092754 oo 0.927240
1007300 500 700 1000 : PR : P Ty

z

3 . 1. 2 ; : ; — = COV(Sn’Kn) ;
Fig. 2: p = 5. periodic fluctuations of (i) p(Sn, Kn) (left) forn = 32,...,1024, (ii) JTB (K +1.080) (middle)

in logarithmic scale, and (iii) F'(n) by its Fourier series expansion (right). Note that the fluctuations are only visible
by proper corrections either in the denominator or in the numerator because the amplitude of F' is very small:
[F()] <1.5x107°.

Furthermore, we show that this different behavior cannot be ascribed to the weak measurability of
nonlinear dependence of Pearson’s correlation coefficient p since the same dependence is also present in
the limiting distribution. (For the univariate central limit theorems implied by the result below, see Jacquet
and Régnier [8] where such results were first established.)

Theorem B (i) Forp # % we have

<Sn—IE(Sn) K, — E(K,
VV(S.) T VV(K,)

where I denotes the 2 x 2 identity matrix.

))T —L N5 (0, 1),
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(ii) Forp = % we have
_% Sn - E(Sn) d
s (Kn - E(Kn)> — MO L),

where ¥, denotes the (asymptotic) covariance matrix of S,, and K, :

o (Pl ZlgP]n)
Sy = (y[g@)](n) 32[g<3>](n))'

: _ . (ZlgW(n) F19?](n)
Alternatively, we may define 3,, := n (9[9(2)](71) Mogn + Z[g®](n)
Sn —E(Sp)
K, —E(K,)
distribution, zero correlation implies independence (see [16]), it is more transparent to split the statement
into two cases. See Figure 3 for 3D-plots of the joint distributions of (S,,, K,,) when n = 107.

). Then both cases can be

_1
stated in one as >, 2 ( ) i> N3(0, I). On the other hand, since for bivariate normal

s
Il
o
S
s
|
o
o
s
|
o
=Y

s
|
o
~
s
|
o
3
s
|
o
©

K, s, K, K,

S Sy

Fig. 3: Joint distributions of (Sn, K,,) by Monte-Carlo simulations for n. = 107 and varying p: the case p = 0.5 is
seen to have stronger dependence than the others.

These results are to be compared with the corresponding ones for random m-ary search trees [1], and the
differences for correlation coefficients are summarized in Table 2. Furthermore, the joint distribution for
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trees P(Sn, Kn) P(Sn, Nin)
tries {p;éq:—>q . ~1
p = q : periodic
m-ary 3<m<26:—0
search trees m > 27 : periodic

Tab. 2: A comparison of the correlation coefficients for random tries and random m-ary search trees: the size of
m-ary search trees corresponds to the space requirement, and the KPL and NPL are defined similarly as in tries.

me-ary search trees undergoes a phase change at m = 26: if the branching factor m satisfies 3 < m < 26,
then the space requirement is asymptotically independent from KPL and NPL, while for m > 27, their
limiting joint distributions contain periodic fluctuations and are dependent; see [1] for more information.

Finally, similar results as those in this paper also hold for other digital families of trees, but for simplic-
ity we focus on tries in this paper; see [7, 4] for more references.

2 Covariance and Correlation Coefficient

In this section, we sketch the main ideas leading to the proof of Theorem A on the asymptotics of the
covariance and correlation coefficient of S,, and K,,. For the latter, we also need the variances of .S,, and
K,, which have been known for a long time; see Jacquet and Régnier [8], Kirschenhofer and Prodinger
[10], Kirschenhofer et al. [11], Régnier and Jacquet [14] or the recent paper [4]. (See also Table 1 for a
summary of these results.)

Our method of proof is based on the by-now standard two-stage approach relying on the theory of
analytic de-Poissonization and Mellin transform whose origin can be traced back to Jacquet and Régnier
[8]. See Flajolet et al. [3] for a survey on Mellin transform, and Jacquet and Szpankowski [9] for a survey
on analytic de-Poissonization. For the computation of the covariance, the manipulation can be largely
simplified by the additional notions of Poissonized variance and admissible functions further developed
in our previous papers [4, 7].

The starting point of our analysis is the recurrence satisfied by S,, and K, in (1). A standard means
in the computation of moments of .S,, and K, is the Poisson generating function, which corresponds to
the moments of S,, and K,, with n replaced by a Poisson random variable with parameter z (this step is
called Poissonization).

More precisely, define the Poisson generating function of E(S,,) and that of E(K,): fl,o(z) =
e Ym0 E(Sn)% and fo1(z) == e * > om0 E(Kn)f—: Then the recurrences (1) lead to the func-
tional equations

fl,O(Z) = f:1.,o(p2) + fl,o(qz) +1—-(1+2)e%, )
Jo1(2) = fo1(pz) + fo1(qz) + 2(1 —e™%).
From these equations, we obtain, by Mellin transform techniques [3],
fio(z) ~2Z[)(z), and  fo1(2) ~ h lzlogz + 2.7 [](z), (6)

for large |z| in the half-plane R(z) > & > 0, where h denotes the entropy of Bernoulli(p). Then, by
Cauchy’s integral representation and analytic de-Poissonization techniques [9], we obtain precise asymp-
totic approximations to E(S,,) and to E(K,,).
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Similarly, for the variances V(S,,) and V(K,,), we introduce the Poisson generating functions of the
second moments: foo(z) = e* Ym0 E (S2)Z% and foo(z) == e* Ym0 E(K7) Z7, which then
satisfy, by (1), the same type of functional equations as in (5) but with different non-homogeneous parts.
Instead of computing directly asymptotic approximations to the second moments, it proves computational
more advantageous to consider the Poissonized variances

{‘:/5(2) = fg,o(z) - f},o(z)2 - Zfi,o(Z)Q,
Vi (2) := fo2(z) — for(2)? — 2f5.1(2)%,

and then following the same Mellin-de-Poissonization approach (as for the means) to derive the first and
the third asymptotic estimate in the second column of Table 1. It remains to derive the claimed esti-
mate for the covariance. For that purpose, we then introduce the Poisson generating function fm(z) =
e > 50 E(S,,Kn)% which satisfies, again by (1),

)

fi1(2) = fi1(p2) + fia(az) + fro®2) (fo,1(g2) + 2) + fr0(g2) (fo,1(p2) + 2)
+pzf{70(pz) + qu{_ro(qz) + foa1(p2) + foa(gz) + 2(1 — 7).

To compute the covariance, it is beneficial to introduce now the Poissonized covariance (see (7) or [4] for
similar details)

é(z) = f1,1(2) - f1,0(2)f0,1(z) - Zf{,o(z)f6,1(z)7
which satisfies
C(z) = C(pz) + Clqz) + h1(2) + ha(2), ®)
where

hi(z) = qu(ﬂ,o(pz) - f{,o(qz)) (fé,l(PZ) - f(/),l(q2>)7

and

52(2) = *z(fl 0(pz) + fro(gz) + p(1 = 2) f o (p2) + a(1 = 2) f{ 4(q2))
(14 2) foa(pz) + (1 + 2) foalaz) — p2* f6 1 (p2) — 42° f5.1(a2))
+ze * (1= (14 2%)e?).

Note that le is zero when p = 5 Furthermore, from (6) (which can be differentiated since they hold in a
sector . = {z € C : R(z) > ¢ |Arg(z)] < 6o} with 0 < 6y < 7/2 in the complex plane), we obtain
that hl( ) = O(|2|) and hy(2) is exponentially small for large |z] in %(z) > 0. Also hi(2) + ha(z) =

O(|z|?) as z — 0. Thus the Mellin transform of k1 (z) + hs(z) exists in the strip (—2, 0), and we have
then the inverse Mellin integral representation

—34ico 7 7 .
e g [ B

where A [¢ fo )2*~1dz denotes the Mellin transform of ¢.
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We then show that . [h(z); s] can be analytically continued to the vertical line R(s) = —1 and has
no singularities there. This is the most complicated part of the proof because /1 (z) contains the product
of the two terms fi 4(pz) — f10(qz) and f§ 1 (pz) — f§1(qz) and thus .#Z[h,(z); s] becomes a Mellin
convolution integral. In [4], a general procedure was given for the simplification of such integrals (see [4,
p. 24 et seq.]). This simplification procedure and a direct application of the theory of admissible functions
of analytic de-Poissonization now yield

Proposition A The covariance of S,, and K, is asymptotically linear:
Cov(S,, K,) ~ nZ[g?](n).

Here

9® = I'(xw) (1 _ Xt 2) L > Tl + DG — D)

h 2t ) T 2
JEZ\{0}
L(x +1) plog?p +qlog?q 9
T(v+1+w(k+1)—T) ©)
(P +Q) 2
0= 1)(20% =20+ 1+ i (20— 1
h;ﬂ 70 D0+ €= 1) + 1+ xk(26 - 1)),

where 7y denotes Euler’s constant, 1(z) is the digamma function and x, is defined in (2).

Remark 1 If }gi fl’ & Q, then only k = 0 is relevant and the second term (the sum over j) on the right-
hand side of (9) has to be dropped. Also the first term here %(1 - ;kat%) is taken to be its limit

+(log2+ 1) as xi, — 0 when k = 0.

The asymptotic estimate for the correlation coefficient in Theorem A now follows from this and the
results for the the variances of S, and K, (see Table 1), where expressions for g( ) and g(3) can be
found, e.g., in [4]. For convenience, we give below the expressions in the unbiased case. Note that both

Flg m](n) and F[g®](n) are strictly positive; see Schachinger [15] for details.

When p = 3, an alternative expression to (9) (avoiding the convolution of two Fourier series) is

@ _ I'(xk) (1 _ in’;i‘ij‘*) 1 > (=D T(xe +6) (LQ+ 1) (xp +£) — (£ + 1))

Ik log 2 tlog2 €+ DI —1) ’

>1

see the discussion of the size of tries in [4], where a similar alternative expression was given for g( )

which reads

) _ Tl —Dxeloe +1)° | 2 (1) O + 00k +6) = 1)
I =T 4log2 +1og2Z 1) —1)

0>1

(3)

Moreover, also in [4], the following expression for g, can be found

@ TOw) (1 - %"ifl) 2 3 (=) T(xx + O)Exn +£—1) — o)

Ik = log 2 log2 £ 020 —1)
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lo,
a uniform expression for all k£ (notably £ = 0). These provide an explicit expression for the periodic

function F'(n) in Theorem A. Also, since all the periodic functions have very small amplitude, the average
value of the periodic function F'(z) can be well-approximated by

Note that y; = 2’“;5 and 2% = 1, and the reason of retaining 2X**2 in the denominator is to give

o

N

~ 0.9272416035 - - - .

3 Limit Law

In this section, we prove Theorem B, part (i); the proof of part (ii) is similar and skipped here. The key
tool of the proof is the multivariate version of the contraction method; see Neininger and Riischendorf
[13]. More precisely, we will use Theorem 3.1 in [13].

b
well-known that such a matrix has exactly one positive-definite square root which is given by
- 1 <a + vac — b? b >

Va+c+2vac— b2 b ct+vac—b?)’

. .. . . b .
We first recall the expression for the square-root of a positive-definite 2 X 2 matrix M = (a c) Ctis

[N

M

with the inverse

e 1 (c+ Vac — b2 —b >
\/(ac—b2)(a+c+2\/ac—b2) —b a+vac—b?

Now we sketch the proof of Theorem B, Part (i).

(10)

Proof of Theorem B, Part (i). First note that

S.\ a (1 0\ (S, 10\ (Sip, 1
()6 D G) 6 1) )+ 6)

where the notation is as in Section 1. The contraction method was specially developed for obtaining
limiting distribution results for such recurrences; see [13].
‘We need some notation. First, define

S ( V(S,)  Cov(Sy, Kn)>

Cov(Sn, Kn) V(K an

This matrix is clearly positive-definite for all n sufficiently large. Next define

and

b\ oot (1= pu(n) + u(Bn) + p(n — By)
( ) = <n— v(n) + v(By) + v(n — Bn)> ’
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where p(n) = E(S,) and v(n) = E(K,,).
Now to apply the contraction method in [13], it suffices to show that the following conditions hold

b L0, MO 5 (12)
E(IM5 + 10205) <1 EUMPIGX 50 <jy0150—ny) — 0 (13)

. . L .
fori =1,2and j € N, where = denotes convergence in the L3-norm,

- ||op is the operator norm, x g
denotes the characteristic function of set S, Bﬁll) = B,, Bg) =n— B, and

ue(F 8 e (6 )

Then the contraction method in [13] guarantees that (S,,, K,) (centralized and normalized) converges in
distribution to the unique fixed-point with mean 0, covariance matrix the unity matrix and finite Ls-norm

X5 0 p) \Xeo 0 g/ \X3)’
where (X7, X7) is an independent copy of (X1, X2). Obviously, the bivariate normal distribution is the
solution. All this is summarized as follows.
Proposition B The following convergence in distribution holds:

-4 (;Z - %Ef{%) 45 N(0, I).

™

Proof: We only check (12) because the second condition of (13) follows along similar lines and the first
condition of (13) follows from (12) in view of

[Millop = /P and [ Mzlop = v/q-
We start with proving the claimed property for bgf) for which we use the notations
Q1(n) =V(S,), Qa(n)=Cov(S,, K,), Qs(n)=V(K,)

and
D(n) = Q1 (n)Q3(n) — Qa(n)?.
Also define
R(n) = Q(n) + Qs(n) + 24/D(n).
Then, by (10), we see that

))Qg(n) + v/ D(n)
D(n)R(n)
Q(n)
D(n)R(n)

b = (1— p(n) + p(By) + p(n — B,

—(n—v(n)+v(Bn) +v(n— B,))
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and a similar expression for bff) holds. From the normality of both S,, and K,, (proved for .S,, via the
contraction method in [5] and a similar method of proof also applies to K,), we have

1—p(n) 4+ w(B,) +pu(n—By) L, n—v(n)+v(B,)+v(in—DB,) L,
NG — 0 and Jnlogn — 0.

Moreover, we have

i ) + VD) 1
D(n)R(n) V- ZgD](n)’

Qa(n) Flg?(n)
nlogn ~ ’
Vloen )~ alognZ O]

where g(1), g(® and X are as above. Thus, both sequences are bounded and, consequently, we obtain the

and

claimed result with L3-convergence above. Similarly, one proves the claimed result for bgf).
Next, we consider M,(f). Here, we only show the claim for the (1,1) entry of M,(ll) (denoted by

Mr(ll) (1,1)) all other cases being treated similarly. First, observe that by definition and matrix square-
root, we have

R(n)  (Q3(n) + /D)) (Bn) + v/ D(Bn)) — Q2(n)2(Bn)
vV R(By) D(n)R(n)

Now, from the strong law of large numbers for the binomial distribution
Bn a.s.

n

MV (1,1) =

and from Taylor series expansion (note that all periodic functions are infinitely differentiable), we have

VR(n) as, 1
VR(Bn) VP’

and
(Q3(n) + D (1)) (@1 (Bn) + /D(Br)) = Q2(1)Q2(Bn) as., p
D(n)R(n)
Thus, M,(Ll) (1,1) LN /P from which the claim follows by the dominated convergence theorem. O
Next, set
s . (nFlPm) o
e 0 Anlogn /)’

Then, we have the following simple lemma.

Lemma 1 We have, as n — oo,

1~1

DINED LR

Proof: This follows by a straightforward computation using the expressions of the matrix square-root and
its inverse from above. |

From this lemma and Proposition B our claimed result now follows.
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The precise analysis of the variance of the profile of a suféig has been a longstanding open problem. We analyze
three regimes of the asymptotic growth of the variance ofpitedile of a suffix tree built from a randomly gener-
ated binary string, in the nonuniform case. We utilize camabirics on words, singularity analysis, and the Mellin
transform.

Keywords: suffix tree, asymptotic analysis, combinatorics on worigydarity analysis, Mellin transform

1 Introduction

One open problem about suffix trees is how to characterizeutrder of internal nodes on th¢h level of

a suffix tree that has leaves. Park et al. [PHNS09] precisely analyzed the profiletdeval tries in 2009.
Ward has been working on the analogous problem in suffix fiiress decade; see, e.g., [NW11, War07].
While the mean profile of retrieval trees and suffix trees lagesame (asymptotically, up to first order, in
the main range of interest of the parameters), the variaofdbe profiles of these two classes of trees are
different. The goal of this paper is to precisely analyzevtgance of the profile of suffix trees.

In retrieval trees, the strings inserted into the tree stingcare often considered to be independent; such
was the case in [PHNSO09]. In contrast to this, in suffix trées strings inserted into the tree are suffixes
of a common string, so these strings are overlapping. Theapsemake the corresponding analysis much
trickier, as compared to [PHNSO09].

We analyze a suffix tree built from the suffixes of a commomgtd = 5,5,55. .., where theS;’s
are randomly generated, independent, and identicallyiloliséd. We view eact$; as a letter from the
alphabetd = {a, b}, whereP(S; = a) = pandP(S; = b) = ¢. (Without loss of generality, we assume
throughout thap > ¢.) We useA’ to denote the set of words of lengthFor a wordu that consists of
occurrences of letterand;j occurrences of lettér, we useP(u) to denote the probability that a randomly
chosen word of lengthu| is exactly equal ta, i.e.,P(u) := pi¢.

The jth string to be inserted into the suffix tree§§") := 5;5;415;12.... We consider a randomly
generated suffix tre@,, built over the firstx suffixes ofS, i.e., built from the suffixes(!) throughS().
Briefly, all n of these suffixes can be viewed as initially being placed atrtot of the suffix tree. The
n suffixes are then filtered down to the left or right childrerttod root, making the classification of the

M. D. Ward’s work is supported by the Center for Science obinfation (CSol), an NSF Science and Technology Center,
under grant agreement CCF-0939370; his work is also sugghbst NSF DMS-124681 and NSF DMS-1560332.
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suffixes according to whether the first letter of each suffiuisor “ b”, respectively. The filtering contin-
ues down through the tree, with splitting at tjth level according to théth letter in the corresponding
suffixes in that portion of the tree.

For each wordw € A*, the suffix tree7,, will contain the internal node correspondingdf and
only if the base-string contains at least two copies of the wardvithin its firstn + k£ — 1 characters.
(Equivalently,7,, contains the internal node corresponding:tid and only if at least two of the suffixes
S™) throughS™ haveu as a prefix.) For this reason, we defihg, := 1 if u appears at least twice in
51852 ... 8n4k—1, Or I, ,, := 0 otherwise. We us&,, ;, to denote the number of internal nodesjinat
level k. With the above notation in place, we observe that, = ZueAk I, . This decomposition will
be crucial to our proofs, which start in Section 3.

Finally, following the lead of [PHNS09], we assume that tingitl o := lim,,_, &/ log(n) exists.

2 Main Results

The value ofVar(X,, ;) depends qualitatively on the quantity which describes the relationship be-
tweenn andk via the relationk/ log(n) — «. It turns out that there are two particular alpha-values of
importance,

1 p2 + q2

log(q)’ “ T TP log(p) + log(q)’
We do not attempt, as Park et al. did in [PHNSQ9], to analyeetises where is exactly equal to one of
thesew;, but instead assume that bdth— «;| are strictly positive. Given this restriction, it is persilsle
to take the approximatioh = « log(n), which we do henceforth without comment.

The variance obeys different laws depending on where theeval « falls in the ranges defined by
thesen;. The range of most interest is (perhaps) the range in wijch @ < a; we discuss this case in
Theorem 2. (The case < «a; is discussed in Theorem 1; and the case< « is handled in Theorem 3.)

Whena is small, we have an easy and very strong bound on the dedé0X., ;).

Theorem 1 Whena < a4, there existsd3 > 0 such that

Var(X, ;) = O(e*”B).

The proof of Theorem 1 follows from lemmas that mimic the t@ghes of [War05]; we omit it from
this shortened version. The intuitive meaning behind Téeot is that levek of the suffix tree is ex-
tremely likely to be completely filled (meaning the variaveidl be extremely small) iflog(n) is suffi-
ciently large in comparison th.

Our main results deal with the less trivial case when a;. We first introduce the functions involved
in our main estimates, and provide a word on how we obtain them

2.1 Functions Involved in Main Results; Methodology

Our basic device for computing the variance of the intermafie is to write X,, ,, as a sum of indicator
variables/,, ,,, and then evaluate

Var(X,, ;) = Var( E Inw) = g Var(l,,,,) + E Cov(ILny,us Inw)- Q)
uc Ak ueAk u,veAF
uFv
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Our final analysis of the sum of théar(I,, ,,) will be fairly simple: we will ultimately just have to
evaluate the inverse Mellin integral
1 c+ioco 1 c+ioco

- —5 —s - h(s)
o ) ") ;kwu) ds=go | F@n*ds, @

where the functiork(s) will be given by
h(s) == —s+alog(p™ +q7?).

(See [FGD95] for more details about the Mellin transformb)eTunctioni(s) is the same as analyzed
in [PHNSO09], and their arguments extend seamlessly to a&.ca

On the other hand, the tern@®ov(l, ., I,v) for v # v will be novel and much more interesting.
To deal with them, we will consider all possible overlappiterompositiongow, wd) of (u,v). To
accomplish this, we observe that

k—1 k—1

= . . NN

ST S Pw) @) +R0) T =3 S <Z> ()nH( -0k (@)

=1 weAr—* £=11,j=0 J
O,QE.AZ

whereH (s, , ¢, d) is defined as

«
H(s,r,c,d) i= —s+a(l =) log(p™ + ) — 5T ) loa((p°a" ™)™ + (p"g'~)*").

Note: For ease of the (already cumbersome) notation, we maerittena nor k as a parameter off.
We will substitute the right hand side of (3) fer= )" _ ,« P(u)~* into equation (2). We will use a
technique forH similar to that used fok, namely, summing over all possible valygs’—* andp’ ¢*—7
of P(¢) andP(6) respectively, and summiriw) into a closed form, as was done at (2).

The dominant contribution to (3) comes from terms with smalincelim, o H(s,r, ¢,d) = h(s),
this implies thad ", | Cov(Iy 4, In,) andy " Var(I, ,) have the same first-order asymptotic growth, as
functions ofn.

We will evaluate the inverse Mellin integral at (2) (and th@bgous integral foi) by using either
the saddle point method or by taking the residue of the polg eft 2) ats = —2; which device we use
will depend on the value at. Before giving our main results, we list the saddle pointtheffunctions
h(s) andH (s, r,c,d), which are

(7 alog(p)+1)

u,v

P alog(q) + 1
' log(p/q)
( a1l —7)log(p) + 1+ (a/k)log((p°g" )" + (pdql‘d)’"))
g = a(l —r)log(q) + 1+ (a/k) log((peqi=—c)kr + (pdgl—d)kr) @)

log(p/q)

It is also easy to verify that for any € Z, the values = p + 2wiy/ log(p/q) is also a saddle point df,
and similarly,s = pr,q + 27iy/ log(p/q) is a saddle point off .

These saddle points will (at last) allow us to express an psytic value forVar(X,, ) in the case
wherea; < a < as.
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2.2 Behavior in the main regime
Theorem 2 Assumey satisfiesy; < oo < ap. Letp andp,. . 4 be as in (4). Then we have

00 (Cy (n) + 205(n))

V/log(n)

Var(X, ;) = x (14 O(log(n)™)).

TheC1(n) is given by

i (n) Z n' Stk 1 (p+ iy K)D(p + iy K + 1)
n) = ,
! ez 2h’ (p + iy K)

whereK := 27/log(p/q) and wheref; (s) := 1 — 27¢ — 5272, RegardingC>(n), we define: = £,
c=1,d=1,andthenCy(n) is given by

0\ (O\ ntloreamed) o piSHpreatvlred) (o, g+ iyK, i, )T (prea+ iyK +2)
Calm)= >, ' '

Oogff;l j nh() = \/27#98_1;1([)7"67(1 +iyK,r, c,d)
x (1+ O(log(n)™")).
with the functionfz (s, ¢, ¢, j) given by
N e G & S
piqt=t +pigt=i D(s+2)m! " \pigt=i 4+ piqt=3" (piq*~" + pig'~7)

m>2
with
Ly(a,b,z) = a(m — 1)*> + m(2 — m) + bmz.
Furthermore, the outer sum ifi;(n) satisfies the decay condition that for any positive intégethe sum
overalll > fyandl < i,j < £is O(n~%/F)*B) for a fixed3 > 0.
2.3 Behavior in the polar regime

In the final a-regime, wherex > «s, the asymptotics arise from the polesat= —2, as the following
theorem states.

Theorem 3 Assume the parametersatisfiesx > «». Then for some > 0, we have
Var(X,. 1) = nh(_Q)(Cl(n) +2C05(n)) x (1+0(n™9))
with f1, f> as defined in Theorem 2, adq (n), C2(n) are given by

¢ / nH(—Q,'r,c,d)
Ci(n) = f1(=2),  Ca(n) = fo(=2) > <z> <j> T ph(=2)
0<t<k

0<4,j<t
with the decay of’>(n) as in Theorem 2.

Having stated our main results, we now proceed to the prodhebrems 2 and 3, which will occupy
the remainder of the paper.
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3 An Expression for the Variance

Our first task in proving Theorems 2 and 3 is to obtain an exgutession for the variance of the internal
profile X,, ;.. Recalling equation (1), we need to derive the valuééof 1, ,,) andCov(I,, ., I, ), SO we
let U,, denote the number of occurrences:oh the firstn characters ob, and we definé’,, analogously.
Then inclusions-exclusion yields the representations

Var(..) = (1 - zl:P(Un+k,1 - i)) - (1 - lelP’(UnJrk,l - i))2
=0 i=0

COV(In,ua [n,v) = Z (P(Un+k71 = 7:7 Vn+k71 - j) - P(Unvafl - Z) X ]P)(V;Hrkfl - ])) (5)

0<i,j<1

where we require: andv to be distinct. Thus, to obtain an expression Yo (X, 1), we just have to
evaluate all the probabilities in (5).

4 Explicit Expressions for Word-Occurrence Probabilities
To estimate the probabilities in (5), we use generating tians, and complex analysis. Motivated
by [BCN12], we define

P(2) = Cuu(2)Cow(2) = Cuw(2)Cou(2), and bu(2) = Cp0(2) — Cu(2), (6)

where the functiong’; ,(z) arecorrelation polynomialsthe fundamental device for dealing with the
phenomenon of word-overlaps. With these functions in hared¢can define generating-functions for all
the probabilities in (5). We summarize the result in thedwihg proposition.

Proposition 1 Lett(z) and¢,(z) be as defined at (6), and define the functions
Dy(2) = (1 = 2)Cuu(z) + 2"P(u), Guw(2) = (L= 2)9(2) + 2" (¢u(2)P(u) + ¢u(2)P(v)),
G (2) = Cua(2), G (2) = P)2", Gl (2) = ¥(2), GL" (2) = 8u0(2) Cua(2) — () Du(2),
GI5" (2) = 6u0(2)? = 8uw(2) (Cou(2) Du(2) + Cuua(2) Du(2) + (1 = 2)15(2)) + 2(2) Du(2) Do (2),

)
with all v-counting functions defined in a manner analogous towtmunting functions. Then we have
the closed-form power series expressions

('U/,'U)
Gl (z)
Buo(2)itiHT

Gz(-u) z n ,

n>0

n>0

(8)

Now we must derive thén + k& — 1)st coefficients of these generating functions. To do this, we
use Cauchy’s Integral Formula, following a standard argurimecombinatorics on words. Our specific
methodology will rely on a vital fact about the denominatbxgz), D, (z) andd, (=) of the probability
generating functions in (8).
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Lemmal There existi, p > 0 such that for allk > K and allu,v € A*, each of the polynomials
D, (z), Dy(z), and d, ,(z) has a unique root (defined respectively s, R, and R, ,) in the disc
|z < p.

The proof forD,,(z) and D, (z) is given in [JS05]; spatial constraints prevent us fromrgivihe proof for
thed, ,(z) portion.

Armed with Lemma 1, we can estimate the word-counting cdeffis of our generating functions to
within a factor ofO(p~"™) by applying Cauchy’s Theorem to the contaut |p|. The following theorem
gives the resultant estimates.

Theorem 4 Let the polynomial®,,, D, 6, » andGé”, GY"), etc. be as in (7) and (8). If we define

(u) Cu,u(Ru) (u) _ P(U)DZ(RU) (,(u) — ]P)(u)

OO TR T TR T DR
then we have the following estimates

1 1 n
n+k’ and P(U’nﬁ»k}fl = 1) ~ ngfgﬁ + Cglfl) R”+1 R
“ u u

P(Upip1 = 0) = e

and the error in each case 8(p~").
Similarly, for the joint event&U,, 4 -1 = 4, Vi4x—1 = j), and

a(u,v) _ w/(Ru,v) a(u,v) o _Gg?dv)(Ruﬂ’)aqltl,v(Ruw) (u,v) _ Gg’,udv) (RUN,U)

Y0 T Rue) O PR T TR
ey GO () 3G (Ru) 0 (Ru)
20— 25;,U(Ru,v)3 26&,1)(}2%@)4
G (Ruo) (=0, o (Ru)3 (Ruo) + 367, (Ruo)?)
25;1.,1)(RU,U)5 7
QW) — Gg?i'v)'(Ruyv) _ 3Gétt6v) (Buv)Ouv” (Ruv) als?) = —w
21 5u,v/(Ru,v)3 25u,v/(Ru,v)4 ’ 2,2 251@,1}(1%%0)3 ’

with Gﬁj;.’”)(z) as in (8), we also obtain these estimates, where again, toe iereach case i®)(p~"):

1
]P)(UrH»kfl = 0, Vn+k71 = O) ~ aE;,LO’U) Rn+k’
u,v
o 1 v, (ntk)
P(Uptk—1=1,Vop-1=0) = aglfoz RIEE + agqflj}zz + RUERHL
_ oy ey 1 (uw) (N + k) (o) (R F)(n 4k +1)
P(Upntk-1=1,Voyp—1=1) = as, RUtF T ag RyHk+L 2,2 Rypk+2 .

Using these expressions, we can evaluate the expressioNaif(l,, ,,) and Cov(1,, ., ) at (5) to
within a factor ofO(p~"™). In doing this, however, it will be helpful to break up ourigsdtes from
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Theorem 4 so that terms of common orderiare denoted under a single variable. We therefore define
the upper-case constants (we suppress the dependena@nadin in the notation)

ey kY
0= R + REHT 1= k+1’
o ot et +ass” | (ali +ari)k  edliVk(E + 1)
0= Rk + k1 k+2 )
A — agulv) + agulvg + a(u ? a(zuzv)@k +1) A, = 222 B CE)U())CE)U(;
1= 1]279;1 + Z_Zz ) 2 — ﬁj’;ga 0= (RuRv)k’
(w) o (w) (v)  (u) W (v)
u 1.1 €1,1 0,0 u v 1.1
Bl:(§3+R)Rk+(§3+RU)R_§’ BQ_(§3+RU>(C§’8+RU)' )
Returning to the expressiovar(X,, k) = >, car Var(lnu) + >, ,eax Cov(ly,,), We obtain an ex-
uFv

pression for our ultimate desired quantity.

Corollary 1 Let A;, B;, C; be as defined in (9). WitH;, B; andC; as in (9), we have the estimate

) 5 (-0 (1S (Ao

u€Ak u,weAF =0
u;«év

4.1 High-Probability Approximations

Our task is now to approximate the expression from Corollaryo achieve this, we follow the usual
suffix-tree strategy: we compare the terms to simpler oneshahill be accurate with very high proba-
bility, and use Mellin transforms to show that sum of the tlifeecences between the old terms and the
new ones is negligible. Our two main tools for demonstrathig negligibility are bounds provided by
the following lemma.

Lemma2 We have the bounds

> P(u)(Cuu(l) = 1) = O(@*?), D P)Cup(1)Cou(1) = O(p*?)
ue Ak u,veAk
uFv

The first portion of Lemma 2 is proved in [JS05]; spatial coaists prevent us from proving the second
portion here. However, by rigorously expanding on the tetiarC,, ., (1) ~ 1 andC,, ,,(1)C, ., (1) = 0,
we obtain the following theorem which is one of the major stefthe proof.

Theorem 5 We define the ternid, , := P(u)+P(v),, Oy, := P(u)Cy (1) +P(v)Cy (1), and K, , =
(2k — 1)P(u)P(v), and the expressions
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Vi(n) = Y 1= (L+nP(u))e " — (1 - (1 +nP(u))e"F)?,
ue Ak
Z n3]P)(u)P(U)Ku,y€7n(P“"”7@11',17)’

u,vEAk
uFv

ng)(n) — Z efnPu,,U (6”6"’” _ 1)(1 4 npu,v + nQ]P’(u)]P’(v)) _ 67n(P""”76"’”)n@u,v(1 + n(Pu,v _ @u,v))-

u,veAF
uFv

V2 (n) :

Then, for every > 0, we have the estimate
Var(X, 1) = Vi(n) — Va(n) + 2V3(n) + O(n1+(a/2) 103(1’)4‘5)'

We mention that the terrif; (n) has already been analyzed in Park [PHNSO09]. It gives the ptio
variance of the internal profile intéie. The termV;(n) is negligible. Thus, after proving Theorem 5, all
that will remain will be to analyz&3(n).

5 Distilling Essence of Estimate

We must now analyze the estimate from Theorem 5, which csnsishe termd/; (n), Va(n) andVs(n).
We can deal with the first two of these terms in two quick thetreTheorem 6 was proven in [PHNSO09].
Theorem 7 has a short proof, which we omit in this conciseioprs

Theorem 6 An asymptotic expression fof (n) is given by the&; (n) portions from Theorems 2 and 3.
Theorem 7 The termV;(n) from Theorem 8 satisfid (n) = Var(X,, )O(n~¢) for somee > 0.

For the rest of the paper, then, we concentrate on the pdrtion), which contains the ter®,, ,, =
P(u)Cy.»(1) + P(v)Cy (1) and constitutes the really novel part of the whole enteepri§Ve deal
with ©, , by nothing that, by Lemma 2, the quantiti€$, , (1) and C, (1) are unlikely to simul-
taneously be large, so the approximati®n , ~ P(u)C, (1) is reasonable. From here, we note
that for ©,,, to be nonzero we must havg, , (1) > 0, in which case there exists some maximal
suffix of « which is also a prefix ofv. If we call this wordw, and then have the precise equality
P(u)Cy (1) = P(0)P(w)P(0)Cy(1). whereo,d € AF~I*I are such thatt = ow andv = wé.
Then we employ the estimaté, .,(1) ~ 1, again as suggested by Lemma 2. We thus have the central
estimate®,,, ~ P(c)P(w)P(¢). Our strategy, then, is to make the substitutions- cw, v = w8,
and®, , = P(o)P(w)P(#) in the summand o¥;3(n), and then sum over all possible such decompo-
sitions. In the proof and final result it will be helpful to rethe shorthan®,, , := P(o) + P(¢) and
T,,0 := P(c)P(#), The following theorem states that this heuristic can berogsly justified.

Theorem 8 LetQ, ,, T, ¢ be as defined above, and define the functions

gw,aﬂ(n) _ e—nIF’(w)Qa,e(ezIP(w)Ta,e _ 1)(1 + I]P)(U))Qg,g + HQ]P(U))szg)
_ e—w(w)(Qg,e—Ta,e)xp(w)-raﬂ (1 + fP(“’)(Qg,e _ ng))
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and‘73(n) = if;ll > wear—¢ Guw,o0(n). Then forVz(n) as given in Theorem 5, we have the estimate
J,@GAZ

Vs(n) = 2173(71) + O(n1+(a/2) log(p)+e)‘
One proves Theorem 8 by making the substitutiB(s)Q,, y ~ P, andP(w)T,¢ =~ ©,,., and then
using Mellin transforms and Lemma 2 to show that the derivearéound is satisfied.
6 Derivation of Asymptotics

To complete the main proof, it remains only to anal%én). We present the key results in this process
in a series of subsections.

6.1 Partitioning the Sum

Ouir first step is to partition the sum which comprigesn). into subsets which share a common value for
the ordered paifP(o), P(0)). We can rewrite the functiog, » ¢(n) from Thereom 8 as an infinite sum,

zP(w))"T™1Q, T P(w)T
Gooo(z) = o~ P(@)Q, 6 Z (zP(w)) '0,9 ,0 Lm( 7,0 : (w) 0,0’ x)
m>2 m: Qa,é) QU,Q
with the functionL,, given byL,,(a, b, ) := a(m — 1)* + m(2 — m) + bmz. The termxQ,, , andT,
only depend on therobabilitiesof o and6; their internal composition does not matter. This allows a
great reduction in the number of terms to handle. With sonus&lbf notation, we define the terms
Qg'{?,d = Qakrcbkr(l—c)’akrdbkr(l—d) = pkrchr(l—c) + pkrqur(l_d),

k — _
Ti,c),d = Tuk:rcbkr(l—c)l’ak:rdbk:r(lfd) = pkrchr(l ©) X pk’quk’T(l )

and then define the atom of all our remaining analysis, wtsch i

) P(w))mT(k) mle(k) T(k) P(w)T(k)
_ —zIP(w)ngzq (CL’ r,c,d r,c,d ( r,c,d r,c,d )
g(x,’l“, ¢, d) - Z € ed Z ml Lm Q(k) P Q(k) y ).

weAk(—T) m>2 r,c,d r,c,d
(10)

With this notation, we have the following proposition.

Proposition 2 Letg(z, r, ¢, d) be as in (10). Thef;(n) from Theorem 8 admits the representation
7 _ 4 4 L i J 11
0<l<k
0<i,j<4

Now we analyzey.
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6.2 Analysis of g(n,r,c,d)

All our final estimates rest on our analysis of the functjagiven in Proposition 2. To begin that analysis,
we take the Mellin transform af and, specifying the bounded portion

(k) (k) (k)
T m—1 T T T
W(s,r,c¢,d) = Z ( ’(”kc)d) - (s +2m)|Lm( 2}:)’(1, (Z)Cd , s +m),
m>2 an,d (S+ )m an,d (?'r‘,c,d2

we obtain
g*(s,r,¢c,d) =T (s +2)W (s, r,c, d)Qi”Vc)’d—s Z P(w)~*
weAk(Q—7)
=T(s+2)W(s,r,c, d)Q(k) =5 (p=s 4 ¢—%)k(-T),

r,c,d

We then consider the value af *¢g*(s, 7, ¢, d), which will be the integrand of our inverse Mellin inte-
gral. Using the relation = o'log(n), we can writen=*g* (s, r, ¢,d) = T'(s + 2)W (s, r, ¢, d)n (s7ed)
where the functiorff is as defined in Section 2.1. From here, we can recover the eély(n, r, ¢, d) via
an inverse Mellin transform. We summarize the results irffelewing theorem.

Theorem 9 Define the discriminant
a(l—r)
(a/k)log(Q) ) +1
Then the functiog(n, r, ¢, d) defined in (10) obeys the following asymptotic scheme.

If A(r,c,d) < ai, theng(n,r,c,d) = O(n=) for everyM > 0.
If an < A(r, e, d) < as, then

A(r,c,d) =

nH(pr.c.a:me,d) ntSHpreativKred)yy (o g+ iyK,r, c,d)T(pr.ea + iy K + 2)
V/log(n) yez \/277%—15(%,07(1 +iyK,r e d)
x (14 O(log(n)~"/%)).

g(n7 T7 C, d) =

If A(r,c,d) > as, theng(n, 7, c,d) = nH(2meDW (=2 7 ¢, d)(1 + O(n~¢)) for somee > 0.

The estimates of Theorem 9 can be derived using technigatarh standard (albeit pretty technical) in
the analysis of tree structures. In the first regime, one hawshatH (s, r, ¢, d) is always decreasing in
s, so integrating alon@t(s) = so for H(sp) = —M gives the desired bound. In the second regime we
use the saddle-point method, and in the final regime, we elér&yasymptotics by taking the residue from
the pole ofl'(s 4+ 2) ats = —2.

Theorem 9, though certainly essential, is not in itself sigfit for our purposes, since we have to sum
g(n, f, %;, %) over a set of triplet$/, i, j) that will grow unboundedly large as — oo. The next lemma
gives the needed statement about uniform convergence.

Lemma 3 Supposey; < a < asy. Then there existg > 0 such that for all triplets(r, ¢, d) in the rect-
angleRy = [0,70] x [0, 1]?, we havey; < A(r,c,d) < as, and the saddle-point estimate of Theorem 9
holds uniformly. Furthermore, the analogous result holdthie polar case, wheth > «s.
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The claims about\(r, ¢, d) lying in particular ranges follow easily from the definitioh A(r, ¢, d). To
show uniformity in the saddle point case, we use bounds f@ivi70], which are uniform on the compact
setRy. In the polar regime, we again use the compactnes$ @b show that the-partial of H (s, r, ¢, d)
ats = 0is bounded below by a positive constant, meaning that foresom0, we can uniformly take the
left-hand side our Mellin box to b®(s) = —2 — ¢, thereby obtaining an error that@(n?(—2-¢m¢d),
with the (r, ¢, d) portion controlled by compactness.

7 Bounding the Talil

Theorem 9 justifies the content 6%(n) in the main Theorems 2 and 3. However, we still have to justify
the uniform(1 4+ O(+)) error-bounds given in the leading equations of those thesi@vhich amounts
to showing that our estimates fofn, r, ¢, d) are uniform outside the compact rectanglg) as well as
prove our claim about the decay of the outer sur@irin).

We can accomplish both these tasks using the same argunivsttwe unify thes-arguments fol in
the polar and saddle-point cases into a single term,

(12)

[) ) Pricd o1 << Q2
- d =
e —1 Ta > as.

Then we note that if we define
G(r,c,d) = ar(—clog(c) — (1 — ¢)log(1 — ¢) — dlog(d) — (1 — d)log(l — d)) + H(pr,c,d,7s ¢, d),
(13)
then by Stirling’s Formula we have

kr kr -
(krc) </€rd>g(n’n &d) = et x Y (log(n)).

where the functiorY (log(n)) is unimportant except for the fact that its growth/decayiafeg(n). We
now state an important and somewhat surprising result ghedtinctionG.

Lemma4 Let the functiorG(r, ¢, d) be as in (13), andi(r, ¢, d) the discriminant from Theorem 9. Then
for any fixedr such that the set?, := {(c,d) : A(r,c,d) > a1} is nonempty, the mafr,d) —
G(r, c,d) attains its maximum at a unique ordered pé&dr, (r), ¢, ()) on the diagonal of,.

The proof of Lemma 4, although not exceedingly difficult arhieical, is rather long and (to us) not very
intuitive. We therefore omit it. Lemma 4 allows us to define tnction

F(r) = G(rycm(r), em(r)) (14)
for everyr on which the sef2,. defined in Lemma 4 is nonempty. We now state two vital factsiatios
F, which are exactly the results needed complete the proof.

Lemma5 The functionF(r) defined at (14) is concave, and moreokien, o F’(r) < 0.

The statements in Theorems 2 and 3 about the decay (@f) immediately follow from Lemma 5, since
we haven (O =(/RF(0) > pFE/k) > (£ )( YnH(reamed) and one readily verifies thdt(0) = h(p)
in the saddle-point case ard0) in the polar case. It remains only to justify the glolikbounds at the
beginning of Theorems 2 and 3 for thogec, d) outside the rectangl&, given in Lemma 3, which the
following achieves.
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Lemma 6 With F' as defined at (14) anglas at (10), for all sufficiently smai, there exists” such that

kr kr F /
< (0)—(ro/2)F'(0)
(krc) <k7'd>g(n, r,c,d) < Cn

forall » > ro and all (¢, d) € [0,1].

The main tool in proving Lemma 6 is Lemma 5, although some vimrkquired in proving uniformity in
(for example) cases where the saddle ppint, is very close to the pole at= —2.
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We study part sizes of supercritical locally restrictedusadial structures. This extends previous results abacatlip
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1 Introduction

In [4] part sizes of compositional structures were studiedias shown that if the composition is smooth
supercritical then the numbers of parts of large sizes amapiotically Poisson and an asymptotic expres-
sion was obtained for the expected value of the maximum paetvehich is accurate up te(1). In [3],
part sizes of locally restricted nearly free integer conitpmss were studied. We will extend some of the
major results of [3, 4] to locally restricted supercritisglquential structures. Runs of a single letter/part
in words/compositions have been studied extensively; spd4, 6, 12]. In locally restricted structures,
such as Carlitz compositions and Smirnov words, runs of glesipart may not be allowed, and hence
it is natural to consider runs of a substructure. Our maialte®n large part size distributions will be
applied to maximum run length of a subcomposition in seveleases of locally restricted compositions.
Our approach follows that in [2, 3] using directed walks ipesl infinite digraphs and properties of the
corresponding infinite transfer matrices. Our proofs regvily on results in [2, 3] about infinite transfer
matrices and large part size distributions.

2 Definitions

Definition 1 (Sequential structures) LetP be a class of combinatorial structures, callpdrts

TResearch supported by NSERC



2 E.A. Bender and Z. Gao
e Each partp has a positive integesize denotedp|.
e We useP,, to denote the set of parts of sizeand assumé’,, := |P,,| < oo for eachn € N.

e For each integek > 0, we denote the class consisting of sequencégaits by
SEQ.(P) :={pip2...pr : p; € P}.

ThusSEQ,(P) contains only the empty sequence which has size and lengthrbughout this
paper ¢ denotes the empty sequence.

e LetSEQ_,(P) denote the class of sequences of at nkostl parts.
LetSEQ(P) = Ur>0SEQ,(P), the set of all sequences.

e Ifa=pips...pr € SEQ(P), then thdengthof a is k and we writelen(a) = k. Thesizeof a is
la] = [p1] + [p2| + - + [Pkl
and thedistancerom p; to p; is |i — j|.

Example 1 (Generalized compositions)When studyin@EQ(P), only the values oF,, are important.
Thus we could think gP as parts in a generalized composition where the pacbmes inP,, “colors”,

or whatever you choose to call them Af = 0, there are no parts of size. Thus, ordinary compositions
correspond taP,, = 1 for all n and words on &-letter alphabet correspond tB; = k£ and P, = 0 for

n > 1. When parts of size occur inn colors, P,, = n. and we have:-colored compositions, which were
studied in [1, 9, 11]. We may also consider colored compasitiwhere a part of size corresponds to a

multiset ofn colored balls with' colors available. Here we have, = ("N 1). 0

Let.A C SEQ(P). Itis called locally restricted if the parts of a structuned within a fixed distance
satisfy certain restrictions. Locally restricted integempositions were studied in [2], where local re-
strictions are defined in terms of local restriction funnio The function was then used to construct a
digraph. In this paper, we define local restrictions diseictiterms of the digraph. Readers wishing to see
the connection between local restriction functions anddigeaph should consult [2].

Definition 2 (Locally restricted structures) Letm € N, S, F C SEQ_,,(P) andR C SEQ,,,(P). The
integerm is called thespanof the locally restricted class of structures associatethwhe digraphD
which has vertex sét (D) = SURU F. If p € SN F, we allow two copies as separate vertices in
the digraph. For convenience, we introduce two copies oéthpty sequence, denoteddyyande ¢, such
thate; € S ande; € F. Suppose satisfies the following conditions.

(&) Thereis an arc from, to every other vertex i§, and at least one arc fror§ to R.
(b) There is an arc ta; from every other vertex iff, and at least one arc frork to F.

(c) The sub-digraptD of D induced byR is strongly connectedR| > 2, and the sub-digraph ab
induced byS U F contains no directed cycle.
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The vertices ofR will be called therecurrent verticesand the vertices of and F will be called the
start verticeandfinish verticesrespectively. If a parp € P appears in some recurrent vertex, thers
called arecurrent part

Let W denote the set of all directed walksihfrome; to 5. We useSEQ(P; D) to denote the class
of all structures of the concatenation formvs - - - v;, wheree,vive---vier € W. If each element
in SEQ(P; D) arises fromonly one walk in 1/, we say thaSEQ(P; D) is a locally restricted class
associated withD.

The “only one” condition is required so that an ogf built frainwill count each element iISEQ(P; D)
just once. The span is actually associated with the digr@pte can easily construct a digraph with
spankm for anyk € N such thaSEQ(P; D’) = SEQ(P; D).

Definition 3 (Regular class) A classSEQ(P; D) of locally restricted structures will be calleggularif
it satisfies the following conditions.

e The gcd of the lengths of all directed cycledi is equal to 1.

e There is a positive integdrand verticesry, v € R such thaiged{m —n : m,n € S} = 1, where
S ={n:n=|vo|+ -+ |vi| for some directed walky - - - v, of lengthk in D }.

Example 2 (Pattern avoidance)Let B be a finite set of structures BEQ(P), and.A be the class of
structures inSEQ(P) which don'’t contain any structure if8. We say that the structures it avoidthe
structures inB (or simply, avoidB). We may construct the clagsusing the following digraph. Leti+1
be the maximum length of the structuresBn LetS = {e;}, F C SEQ_,,(P) andR C SEQ,,(P)
be consisting of structures which avaiti There is an arc from vertex to a vertexb if and only ifab
avoidsB. There is also an arc from; to every vertex irR U F. ThenA = SEQ(P; D). We note that the
second gcd condition in Definition 3 is not satisfied here bheeaach recurrent vertex has size[]

Remark: Words over a finite alphabet which avoid certain patternehmeen studied extensively (see,
e.g., [8]). Here the size of a word is the length of the wordhc8P is finite here, one may use the simpler
transfer matrix7'(z) such thaf; ;(z) = z!"! for recurrent vertex; (See Definition 6 on page 8 for the
transfer matrix). Consequently the agf:(z) = s*(I — T'(z))~'f is a rational function of. We note that
in this case, each recurrent vertex has sizand soT'(z) is a function ofz™, and hence we may apply
[2, Theorem 1] tdl” with x = z™.

Definition 4 (Generating functions and supercritical strudures) Let.A C SEQ(P).
e Define the ordinary generating function (odf)z) := 3", 2Pl =37, P,.2".
e Throughout this paper p is the radius of convergence 6z).
e Ifthe radius of convergence of the agfz) := 3", _ , 2/2| is less tharp, we call A supercritical

Example 3 (Alternating compositions) Alternating, or up-down, compositions are compositionsglich
a part is alternately greater and less than the preceding.pdfe setn = 2, P = N, § = SEQ_,(P),

F = SEQ_,(P)\{1}, andR = {i,j | « > j}. The empty sequence dh(resp.F) connects to every
element inR. There is an arc from € Stoj € F whenever < j or i is the empty sequence. The
arcs having at least one end R should be fairly easy to see. Every alternating composifiociuding
the empty one, is associated with a unigque directed walk fpto ¢ ¢. It is known [2] that the class of
alternating compositions is regular and supercritical.
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Definition 5 (Asymptotically free set) Let A = SEQ(P; D) be a class of locally restricted structures
with |P| = oo and let£ be an infinite set of recurrent parts. &f = p; ... p, andt = min(k, m — 1),
defines(a) := p1...p; and f(a) := pr_s41...pk. Suppose there is a functign: SEQ_,,(P) x
SEQ.,,(P) — N such that the following holds. #z € SEQ(P; D) with! € £ and|l| > g(f(a), s(z)),
thenal’z € SEQ(P; D) whenevel’ € £ and|l'| > g(f(a), s(z)). Then we calll asymptotically free

What this says is that f is large enough as determined by parts closer than distantken it can be
replaced by any large enough partin

Example 4 (k-Carlitz compositions) A k-Carlitz composition is a composition in which each part is
different from each of the precedingparts, i.e.p; # p; whenevefi — j| < m. (Carlitz compositions, for
which adjacent parts differ, is the case= 1. They have been studied extensively. See for example [10].)
They are regular supercritical structures and a digraptcan be constructed with amy > k. LetP = N
andS = {e,}. LetR (respectivelyF) be all compositions iSEQ,,, (P) (respective SEQ_,,, (P)) which

are k-Carlitz. There is an arc from, to all vertices inR U F. There isan arc fronm €¢ Rtobe RU F
whenevenb is an k-Carlitz composition. Since a part that is larger than allrawithin distancek: can

be replaced by any larger part, the S8tis asymptotically free ik-Carlitz compositions.]

3 Main Results

Let r be the radius of convergence of the ogf 88tQ(P; D). In the following, all logarithms will be to
the basd /r. Our main results are the following.

Theorem 1 Let A = SEQ(P; D) be a regular supercritical class of locally restricted sttures, and
L = {l1,ls,...} be an asymptotically free set. Assufhé < |i2| < - - -. Select a structura uniformly at
random fromA,,. Let(y(n) be the number of occurrencesigfin a. The following are true.

@) Al = Ar~" (1+0 (e~°")) for some positive constants A andJ.

(b) The distribution of(n) is asymptotically normal with mean and variance asympadiiiqropor-
tional ton.

(c) The limit
o= i, ZE .

exists, andy, ~ Crl*sl ask — oo, for some positive constagt.

(d) Suppose there is a functian(n) — oo such that{|ix| : £ > 1} N [logn — w1 (n), n] is not empty
for all sufficiently largen. Then there is a functiowz(n) — oo such that the random variables
{Ck(n) : logn—wa(n) < |lx| < n} are asymptotically independent Poisson random variabiés w
meangu;, = Cnrltl,

The distribution of large part sizes in general super@aitcompositional structures has been studied
extensively. Some latest results can be found in [4]. Weeuitivert runs of a given subcomposition into
free parts in a related class of locally restricted striegamd apply Theorem 1(d) to derive the following.



Restricted Sequential Structures and Runs 5

Theorem 2 Let ¢ be a given composition such thatcannot be written in the forre = xyx. Let
A = SEQ(N; D) be aregular supercritical class of locally restricted coositions with spam: = len(c).
Assume that is a recurrent vertex and the digrapgh contains the arc frone to itself. LetC', r, a and(j,
be as defined in Theorem R,, be the maximum run length ofin a, andg,, (k) be the probability thah
contains exactly: runs ofc of lengthR,,. Lety = 0.577216 be Euler's constant and define

1 247l 1 — 2l
B oge ZF< il oge> exp( % og:zc)o 2
2 B g

Then

(@) P(R, < k) ~exp (—1 Cn r’CCI).

— r‘c‘

1 Cn vloge 1 Cn
b) E(R,) = —log —— ———PR|—F 1).
() (R) |C‘ Ogl—r‘cl + |C| 2 0 (].T’lcl) +O( )

— plehyk n _ plehe oo e
© au(h) = S (T )+ RS o)

Corollary 1 Theorem 2 holds for the following classes of compositions.

(a) Allcompositions for any given compositierwherer = 1/2andC = %(1—2—‘°‘)2. In particular,
C = 1/8 whenc = 1, which gives Gafni's result [6].

(b) Carlitz compositions for any given Carlitz compositionwherer = 0.571350 is the smallest

= 1. In particular, whenc = ab with a # b, we have

(1 rott)? 1

. _
(I+r)A+7) s oy

C =

(c) k-Carlitz compositions for any givetCarlitz compositiore.

(d) Alternating compositions for any given alternating gositionc, wherer = 0.6363.

(e) n-color compositions (defined in Example 1) for any givecplor compositiore, wherer = 3*2\/5.

(f) Colored compositions witl?,, = ("*N 1) (defined in Example 1) for any given colored composi-
tionc, wherer =1 — 2= /N,
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4 Converting Runs into Run Parts

The basic idea in the proof of Theorem 2 is to repladelang run of a given subcompositianwith a
new partk with |k| = k|c|, and then apply Theorem 1(d) to a new claéf locally restricted structures
with parts inN as well agun partsk for &k > 1. Let# denote this replacement operation. For example, if
c = 12 anda = 12123122121, thenf(a) = 231211.

Example 5 (Runs in unrestricted compositions)Let .A be the class of all compositions, awrdbe a
given composition withen(c) = m such that it cannot be written in the forsm= xyx. The digraphD’
for A’ = 0(.A) is defined as follows.

o S(D') = {e.}).

e a' € F(D')ifandonlyifa’ € SEQ_,,(P), a’ does not contain two consecutive run parts.

r' € R(D’) ifand only ifr’ € SEQ,,,(P), ' # ¢, r’ does not contain two consecutive run parts.

There is an arc from a vertex' to a vertexb’ if and only ifa’b’ does not contaire and does not
contain two consecutive run parts.

O

Letc be a given composition which cannot be written in the ferm xyx. Itis easy to see that copies
of ¢ in a compositiona cannot overlap with each other. Defife= N U {k : k£ > 1} with |k| = k|c|.
We have the following

Proposition 1 Let A = SEQ(P; D) be a given regular supercritical class of locally restridteomposi-
tions with spann such thatS(D) = {e,}. Letc € R(D). Assume thab contains an arc frone to itself
andc cannot be written in the forma = xyx. LetA’ = 6(A). Then

(@) A’ = SEQ(P; D) is a regular supercritical class wit® = NU {k : k > 1} and some digraph
D'

(b) Foreacha € A, |6(a)| = |a|, and@ is a bijection between!,, and A’,,.

(c) Foreacha € A, LetR(a) be the maximum run length ofin a, and M (a) be the maximum value
of £ such thatt appears ird(a). We haveR(a) = M (a).

Proof: (a) We define the digrapb’ as follows.
o S(D') ={es}

e a’ ¢ F(D')ifand only ifa’ € SEQ_,,(P), a’ does not contain two consecutive run parts and
9~1(a’) appears at the end of a compositiondn

e ' ¢ R(D')ifand only ifr' € SEQ,,(P), r' # ¢, r’ does not contain two consecutive run parts,
andf~!(r") appears in a composition jA.

e Thereis an arc from a vertex to a vertexb’ if and only if a’b’ does not contain two consecutive
run parts, does not contain andfd—!(a’b’) appears in a composition .
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It can be verified thatl’ = SEQ(P; D') is regular supercritical.

(b) This follows immediately from the definition &f

(c) Since the copies af in a cannot overlap with each othérjnduces a bijection between the set of run
parts inf(a) and the set of runs ia, which impliesR(a) = M(a). [J

Example 6 (Runs of a subcomposition inn-Carlitz compositions) Letc be a sequence of. distinct
integers. The digrapld’ for A" = 0(A) is defined as follows.

o S(D') = {e.}.

a’ € F(D’)ifand only ifa’ € SEQ_,,(P), a’ does not contain two consecutive run parts and
9~1(a’) is m-Carlitz.

e ' € R(D') ifand only ifr’ € SEQ,,,(P), r’ # ¢, ' does not contain two consecutive run parts,
andf~1(a’) is m-Carlitz.

e Thereis an arc from a vertex to a vertexb’ if and only ifa’b’ does not contaie, does not contain
two consecutive run parts, arid ! (a’b’) is m-Carlitz.

O

Example 7 (Runs of a subcomposition in alternating compositns) Letm > 2, ¢ = cyco - ¢, bE
an alternating composition such thet is also alternating. The digrap®’ for A’ = 6(A) is defined as
follows.

o S(D) ={es}

e a’ € F(D')ifand only ifa’ € SEQ_,,(P), a’ does not contain two consecutive run parts and

a
6~1(a’) is alternating.

e ' € R(D') ifand only ifr’ € SEQ,,,(P), r’ # ¢, ' does not contain two consecutive run parts,
andd—1(a’) is alternating.

e Thereis an arc from a vertex to a vertexb’ if and only ifa’b’ does not contaie, does not contain
two consecutive run parts, amd ! (a’b’) is alternating.

O

5 Outline of Proofs

The proofs are essentially the same as those in [2, 3]. licpéat, we will make use of the infinite transfer
matrix.

Definition 6 (Transfer matrix) Let SEQ(P; D) be a class of locally restricted structures as in Defini-
tion 2. Letry, ro, ... be an ordered list of vertices iR. We define the transfer matrix(z) such that the
(i, j)th entry of T'(2) is T} j () = 2I*:I*Ivil if there is an arc inDx fromr; tor;; otherwiseT; ;(z) = 0.
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Theweightof an arc(v, w) in D is z!VI*I%l. We define the weight of a directed walk I to be the
product of the weights of all the arcs in the walk. LEt(z) be the ogf for structures IREQ(P; D)
containing at least one recurrent vertex. It is not diffitalsee that 'z (2?) is the sum of weights of all
directed walks in/V containing at least one recurrent vertex. We may expfegs) in terms ofT'(z), the
start vectors(z) and thefinish vectorf(z), which are defined as follows. Thith component of(z) is the
sum of weights of all directed walks from to r;, and thejth component of (z) is the sum of weights
of all directed walks fronr; to e;. SinceTi’fj(z) is the sum of weights of all directed walks of length
fromr; tor;, we have

Fr(2%) =s(2)" Y TH(2)f(2).
k>0

The following lemma summarizes the results which are usetiernproof of our Theorems 1 and 2.
These results are simple extensions of the correspondsudfsdrom [2] for locally restricted composi-
tions.

Lemma 1 Let. A = SEQ(P; D) be a regular class of locally restricted structures.

(a) Letr be the radius of convergence of the generating funcligfz). Thenr < 1 and it is a simple
pole of Fr(z). MoreoverFr(z) has no other singularity ifz| < 1.

(b) Letp € P be arecurrent part and leX,, be the number of occurrencesoin a random structure
in A,,. There are constants; > 0 such that

Pr(X, <Cin) < Ca(1+C3)~" forall n.

(c) Letc be a given structure itd. There is a constanB such that the probability that occurs in a
random structure ind,, is at mostBnrlc!.

Proof of Lemma 1 Part (a) is lifted from [2, Theorem 2] and its proof remainaetly the same.
Parts (b) and (c) are lifted from [2, Lemma 1] and their praefmain exactly the samE]

Proof of Theorem 1 Theorem 1(a) follows from Lemma 1 as shown in [2]. Now theqgfrof Theo-
rem 1(b—d) is essentially the same as that of [2, Theorensiifjgl.emma 1 above, and Lemmas 3, 4 and
5 from [2].

Lemma 2 Let. A = SEQ(N; D) be a class of locally restricted compositions (or colorednpositions
defined in Example 1). The#is supercritical.

Proof: Let G(z) be the ogf for all compositions i which don’t contain any recurrent vertex. Since each
composition counted b (z) has at mosk parts for some fixed integé¢, we haveG(z) < Zf:o P(z)I
(coefficient-wise). Since the radius of convergenc#¢f) is 1, the radius of convergence @1 z) is at
least 1]

Proof of Theorem 2 LetP = NU {k : k > 1}, and A’ = SEQ(P; D’) be the new class defined in
Proposition 1. Sincé is a bijection betweent,, and.A/,, the radius of convergence fa¥’ is the same as
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that for A. Itis easy to see thal = {k : k > 1} is asymptotically free ind’. Applying Theorem 1(d)
with |I;| = j|c|, we obtain

P(R,<k) = J][ P(n) =0)exp (_cnrﬂc\)

k<j<n/|c|
Tk\c|
~  exXp (Cnﬁ) .
This establishes part (a).

UsingE(R,) = > ,>,(1 —P(R, < k — 1)) and the same argument as in [3, page 25] (replacivgh
rlel), we obtain part (b). We remark that thesign beforeP, should be— in the expression of (z) in
[3, page 25]. The same applies to [3, Theorem 1(b,c)]

Part (c) follows from the same argument as in [3, page 27h wheing replaced bylc!. [

Proof of Corollary I This follows immediately from Theorem 2. The valuesradindC' are computed
as follows.

For part (a), it is clearr = 1/2. To obtain the value of®, we let F'(z) be the ogf of compositions
containing a marked-long run of a subcompositiotn We note tha{l — z)/(1 — 2z) is the ogf of all
compositions, and sel®l (1 — z)/(1 — 2z) is the ogf of compositions ending with (or starting wiih)
Hence we have

2 a2
F(z) = (11 s T )> SHlel — (1 — 2)2(1 — lely2klel (1 _ )2,

It follows from the “transfer theorem” [5] that
n ~ (1ol 2 onkle]
[zMF(z) 1 <1 2 ) 2 .

HenceC' = (1 — 2*'“‘)2. In particular,C' = 1/8 for the runs of 1, which gives Gafni's result.

1
2

For part (b), the value of can be found, for example, in [3]. The expressio@dfndr) can be derived
as follows. LetK (z) be the ogf of Carlitz compositions, ait( z) be the ogf of Carlitz compositions with
a markedk-long run ofc = ab, wherea # b. For a given Carlitz composition, let K, (z) be the ogf of
Carlitz compositions that start with. Then we have

Ka(2) = (K(2) = Ka(2))2", ®3)
Kap(2) = 2"7(K(2) - Ky(2)),
Kpa(2) = 2"T%(K(2) = Ka(2)),

F(z) = MK (2) = Ki(z) = Kap(2)) (K (2) = Ka(2) = Kba(2))-

It follows that

F(z) = ZR(a+0) (] _ o t0)2 [ ()2, (4)

1
T+ 21+ )
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The expression ok (z) can be obtained from (3), which gives

Z(l

- 1+ 22

Ku(z) K(z).

Summing over, and notingk (2) =1+ 3_ ., Ka(z), we obtain

K(2) !
Z) = = .
D e e

Letr be the smallest positive number satisfylg, .., % = 1, it is easy to see thatis a simple pole
of K(z) and -
1 1

Yo whe LA

whereh(z) is analytic in|z| < r. Consequently

+ h(z),

K(z) =

2K (2) ~ o

—
o1 [T

It follows from (4) and the “transfer theorem” that

2

n k(a+b) .a+b\2 1 —n
T (1 —=7r*") <7w r—",
(I+7re)(1+7b) ijl(liTﬂ
[z""]F(2) (1- Ta+b)2 1 k(atb)

G T O Y e

Hence
oo (- roth)? 1

C+r 0+ Y, i

The value ofr for part (d) can be found in [3]. To obtain the valuerofor part (e), we note that the
corresponding part generating functionféz) = z(1 — z) 2. Solving the equation(1 — r)~2 = 1, we
obtainr = % To obtain the value of for part (f), we note that the corresponding part generating
functionisP(z) = (1 — z)~~ — 1. Solving the equatiofl — )~ = 2, we obtain- = 1 — 2~V/N. [

6 Discussions

In this paper, we showed how infinite transfer matrix methedetbped in [2] can be applied to enumerate
locally restricted regular supercritical sequential stiwes. Poisson distribution results were derived for
sizes of free parts and applications are given for runs of@uipositions in several classes of composi-
tions. In the upcoming full version of the paper, we plan tteex the results using a more general set
up in terms of sized digraphs. Also in Theorem 1, we imposedtndition that the sef contains parts

of distinct sizes. Such condition is unnecessary for uricéstl sequential structures as shown in [4]. It
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might be possible to relax this condition for some classdsaHlly restricted sequential structures. For
example, when the restriction is size-based, instead ¢thzmed, we may allow the asymptotically free
setL to contain several parts of the same size. Finally it mighpaesible to remove the restriction that
the subcompositior cannot be written in the form = xyx in Theorem 2. The mappingin Propo-
sition 1 is still a bijection provided that the replacementade at the earliest opportunity. However,
the copies ot in a composition may overlap here, and the maximum run leRg#) in a composition

a € A may exceed the maximum run périn 6(a). For example, consider the compositiens 121 and

a = 12121121121. We note that the first two copies ofoverlap at the third position art{a) = 1212.
The maximum run part i8 here, but the maximum run length efn a is 3.
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In order to obtain the full asymptotic expansion for Pélya trees, i.e. rooted unlabelled and non-plane trees, Flajolet and
Sedgewick observed that their specification could be seen as a slight disturbance of the functional equation satisfied by
the Cayley tree function. Such an approach highlights the complicated formal expressions with some combinatorial
explanation. They initiated this process in their book but they spared the technical part by only exhibiting the first-
order approximation. In this paper we exhibit the university of the method and obtain the full asymptotic expansions
for several varieties of trees. We then focus on three different varieties of rooted, unlabelled and non-plane trees,
Pélya trees, rooted identity trees and hierarchies, in order to calculate explicitly their full singular expansions and
asymptotic expansions.

Keywords: Unlabelled non-plane trees; Full Puiseux expansion; Full asymptotic expansion; Analytic Combinatorics.

1 Introduction

By using either Darboux’s method or singularity analysis, we easily get the dominant coefficients of
the asymptotic expansions for the number of some specific Pdlya structures; a Pdlya structure being
decomposable by using some Pdlya operators like the multiset MSET or the powerset PSET constructions.
For the numbers of hierarchies (a specific class of trees) of
size 100 the relative error between the exact number and the  ratio: Approx/exact
first-order approximation is only around 0.01% (note that it R
is only 10719% with an 8-order approximation). However
for small hierarchies, the first-order approximation is not
precise: the relative error for the trees of size 20 is around
0.3% whereas it is only around 0.0004% with the 8-order
approximation (cf. Fig. 1).
In a technical report [Fin03c], Finch provided recurrence
formulas to compute all the coefficients in the asymptotic
expansion for Pdlya trees. He developed there the classical
Darboux’s method to derive the recurrences and computed ® w ® ® o
explicitly the five most important coefficients.
According to Finch’s report, Flajolet proposed at that time ~ Fig. 1: Ratio between the approximations and
to study the fundamental equation given by the Weierstrass the exact numbers of hierarchies
Preparation Theorem as, somehow, a slight disturbance of

0.998

0.996

size
o0
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the functional equation satisfied by the Cayley tree function. Using this point of view, the procedure to
exhibit the full asymptotic expansion is much more highlighted and the complicated formal expressions
can be combinatorially understood. Flajolet and Sedgewick initiated this process in their book [FS09, p.
477] in the context of Pdlya trees but they spared the technical part of the proof by only exhibiting the
first-order approximation.

In this paper, we explain why such an approach is generic to obtain easily the full asymptotic expansions
for several varieties of trees. We focus on varieties that can be seen as a disturbance of the Cayley function
in the way that they can be described by their generating function 7'(z) as:

T(z) = ¢(z) exp(T'(2)),

for some constrained function ((z). For such classes of trees, we exhibit the full Puiseux (i.e., singular)
expansion of the generating series. We then compute the generic full asymptotic expansion of the num-
ber of trees. In Section 3, we then focus on three different varieties of rooted, unlabelled and non-plane
trees. The first class of trees is the classical set of Pélya trees that already appears in the papers of Cay-
ley [BLW76], Pélya [P6137] and Otter [Ott48]. The generating function of Pdlya trees is easily described
with a functional equation using the multiset construction. By replacing the construction by the powerset
operator we get the class of rooted identity trees, the second class we are interested in. Such trees are
studied, for example, in the work of Harary er al. in [HRS75]. Finally we deal with hierarchies, i.e.,
rooted unlabelled non-plane trees without nodes of arity 1. This class has been introduced by Cayley too,
but it is also directly linked to series-parallel networks in the papers of Riordan and Shannon [RS42] and
Moon [Moo87]. In the Section 3.4, we give numerical approximations for the first coefficients of the sin-
gular and the asymptotic expansions of each specific variety of trees. We conclude the paper (Section 4)
by mentioning several other structures where our generic approach could be applied directly.

2 Main results

For each of the varieties under consideration, the fundamental idea consists, from an analytic point of view,
at studying its generating function as a disturbance of the classical Cayley tree function (cf. e.g. [FS09, p.
127]). Let C(z) be the Cayley tree function; it satisfies the functional equation

C(z) = z - exp(C(2)). (1

Its dominant singularity is 1/e and C(1/e) = 1. Recall that the Cayley tree function is closely related to
the Lambert W function. Many fundamental results about this classical function are given in the paper of
Corless et al. [CGHT96].

In order to obtain generically the full asymptotic expansion of the number of the structures of a variety
of trees, let us first compute the full Puiseux expansion (i.e., the full singular expansion) of the Cayley
tree function and then study how the disturbance induced by a given variety modifies this behaviour. Let
us recall the definition of Bell polynomials, extensively studied in Comtet’s book [Com74] and denoted
by Bn,k ()

ol L1\ Tt Cn—k+1
Bt = X ot () ()T

c!- Cpn—k+1
Cly---yCn—kt1 >0

2ici=k
>t =mn
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The Bell polynomials appear naturally in Faa di Bruno’s formula [Com74] that states the value of iterated
derivatives of the composition of two functions.

Proposition 1 The full Puiseux expansion of the Cayley tree function is

n—1 k=1
11 1 on/2
C(z) =, 1-V2vi—ez— > <Z(_1)k3n_1,k (5’1""’@) H(n+2i)> T(l —e2)"/2,
i=0 :

-1/ n>2 \k=1
where the functions B,, i,(-) are the Bell polynomials.

The calculation of the first terms of the singular expansion gives

C(2) P V2V —ez + %(1 —ez) — %\/5(1 —ez)3/? ¢ %(1 —ez)?—

—1

769 59 1768 5 680863
Mﬁ(l —e2)%/? 4+ ﬁ(l —ez)” — 5143200
Let us recall that the expansion until O((1 — ez)3/?) has been derived in [FS09]. We prove the full
expansion with their approach but with further precision. Note that, in the formula of Proposition 1, the
inner sum of k can be factored in the same way as the classical Ruffini-Horner method for polynomial

evaluation. Doing so makes its computations much more efficient.

V2(1 —e2)?2 + O ((1 —e2)?).

The second step consists in studying the ordinary generating function T'(z) = > -, T5,2" of the tree
variety under consideration as a disturbance of the Cayley tree function. We follow the approach presented
in [FS09, p. 477] for Pélya trees. We assume the existence of a function ¢(z) such that

T(z) = ((2) - exp(T(2)). 2)

Theorem 2 Let T be a variety of trees whose generating function is T(z), and p be its dominant sin-
gularity. If the generating function T(z) satisfies the Equation (2), if the dominant singularity of ((z) is
strictly larger than p and if (V) (p) # 0, then T(2) satisfies the following full Puiseux expansion

n/2
z
T(z) = 1+ tn<1> ,
AP S U
witht; = —+/2epC M (p); and, for alln > 1

n—1

n/ ¢/
o= =20 (o))" ST etz B (o))
n Eeézln{)dQ
| nt 02 1 ¢t () ¢l ()
,.; ( T >(C(1)(P))’" 4 Z . (i1 + 1)! (ir + 1)1
Ej ij = %

where () (z2) stands for the ith derivative of ((z), B(1) = 1, and for all £ > 1,

-1 k—1

B(t) =Y (-1)*Bi_1 (; i, e M1+2> [T+ 2.

k=1 =0
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Proof key idea: The complete proof follows the strategy of Flajolet and Sedgewick. The main idea is to
compose the Puiseux expansion of C'(z) at the singularity 1/e and the analytic expansion of ((z) at the
dominant singularity of T'(z). O

In Theorem 2, the assumption ¢(M)(p) # 0 could be replaced by a weaker assumption that there exists
an integer r > 0 such that (") (p) # 0. Making this weaker assumption would however make the proof a
bit more technical without adding substantial information.

The the first terms of the singular expansion of T'(z) are given by

P 4/¢M (p) P
L (8D )?  e(pe™ (p))? (1 ~ 5)2 _(769V2(epC M (p)*2 113297 2(e¢M ()2 (p)
135 3 p 4320 48¢ M) (p)
V202 Vel@(p) (3P () 8¢V (p) 2\ _z)?
96 ( €2~ <) )) (1-5) +o((-3))

We are now ready to compute the full asymptotic expansion for the class 7.

Theorem 3 Let T be a variety of trees whose generating function is T'(z), and p be its dominant sin-
gularity. If the generating function T(z) satisfies the Equation (2), if the dominant singularity of ((z) is
strictly larger than p and if (V) (p) # O, then asymptotically when n tends to infinity,

o 1 041
Tn n—>Noo W Z ﬁ ' (Z QTRZ+1T> )

£>0 r=1

where

r—1 J £
. 1\"”
Q, = E (1) 9,11 § H (z + 2) SJorallr > 0;
j=0 =0

€, ... 6;>1 "

Zi (1 =T
with the sequence (t;) defined in Theorem 2, Ry = 1 and

‘2]%

¢ r —2k; _ 2ki 1 NS (_1V\i(s
Ry = Z Z (2 1) > =0 531 2j=0(—1) (j)J
kv =1

X (g_zkl__2kl—1+z_1)k’l forall€>0.
r=1 kiy..,s o

r = ¢ mod 2 ijjzé

1

r

+ IV

2

In particular, the first few terms in the asymptotic expansion of T}, are given by

T, — p" (_til _ 3(t1 — 4t3) _ 5(5t1 — T2t3 + 96t5) _ 105(t1 — 44t3 + 160t5 — 128t7)
n—00 /7n3 2 16n 256n2 2048n3
_ 21(79t1 — 10800t3 + 81600t5 — 161280t7 + 92160t9) ) (i))
65536n* nd))’

where the ¢;’s are given in the Theorem 2.
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3 Different varieties of rooted unlabelled and non-plane trees

In the following three sections, we will show how both Theorems 2 and 3 directly apply to three families
of trees, namely the Pélya trees, the rooted identity trees and the hierarchies. In each of these sections, we
will use the same notations 7, T'(z) and ¢(z) to refer to the family of considered trees.

For each of the three examples, we proceed in two steps. First we focus on efficient recurrences in
order to compute the first numbers of the sequence (7}, ),cn that encodes for each positive integer n the
number of trees of size n. Second, by using the numerical procedure given in [FS09, p. 477], we compute
an approximation of the dominant singularity of T'(z).

Finally, at the end of the section, we exhibit two Tables 1 and 2 to compare the numerical approxima-
tions (according to each class of trees) of the coefficients given in the Theorems 2 and 3. We also exhibit
the typical gain in the relative error obtained by using a more precise asymptotic approximation.

3.1 Pdlya trees

A Pdlya tree is a rooted unlabelled and non-plane tree. Let us denote by T the set of Pdlya trees. It
satisfies the following unambiguous specification :

T =ZxMSETT,

because a Polya tree is by definition a root, specified by Z (of size 1), followed by a multiset of Pdlya
trees (we refer the reader to [FS09] for more details). By the symbolic method (cf. [FS09]), we get

T(z) = zexp (Z T(ZZL)> ) 3)

i>0

with T'(z) being the ordinary generating function enumerating 7. The latter formula already appears
in Polya’s paper [P6137] and has been sketched by Cayley ([BLW76, p. 67]) as an introduction to the
counting theory for unlabelled objects. This method takes into account symmetries of the objects and thus
quantifies isomorphisms. We have a classical alternative definition: cf. e.g. [FS09, p. 71].

1
T(z)=z-]] T @)
n>0

with T;, the number of trees of size n in 7. Some combinatorial arguments, given in [FS09, p. 27-30],
prove that both definitions are equivalent. From the latter Equation (4), we deduce a recurrence for the
sequence (T},)nen for Plya trees.

Fact4 The sequence (T,,)ncn enumerating Polya trees satisfies
n ifn € {0,1}

T — 1 n—1 I.nf_lj

n IZin > Tomi| ifn>1L

n_
=1 m=1
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This result is given as an exercise by Knuth [Knu97, p. 395]. Furthermore, Otter [Ott48] proved a very
similar recurrence for unrooted trees. The first values of the sequence, given in OEIS® sequence A000081,

are
0,1,1,2,4,9,20, 48,115,286, 719, 1842, 4766, 12486, 32973, 87811, . . .

The number of Pélya trees from each size from 1 to n can be computed in O(n?) arithmetic operations
(by using memoization).

Proof of Fact 4: Several authors, in particular, Flajolet and Sedgwick obtained such a recurrence by using
the logarithmic derivative of T'(z): foralln > 1

T'(2) nz"
=1 T——:.
: T(2) + 77.Z>O 1—2n

We rewrite this equation as

2T (2) = <1 + Y nls in> T(2).

Extracting the n-th coefficient of the generating functions gives:

n—1 m
nTy =Ty + Y ({Zz‘] 3 meljzm) Ty,
=1

m>0
Since [2¥](1 — 2™)~! equals 1 if m divides k and O otherwise, we get

n—1

(n=1)T, =Y > mTy | Tus.

i=1 \ mli

The notation m/|i corresponds to the condition that the integer m divides the integer i. The stated formula
is obtained by interchanging the two sums. g

By using Flajolet and Sedgewick’s numerical procedure (cf. [FS09, p. 477]) with n = 200 terms, we
get the following 50-digits approximation of p:

p ~ 0.33832185689920769519611262571701705318377460753297 . ..

We are now interested in the full Puiseux expansion of the generating function of Pélya trees. In view
of Equations (2) and (3), we define have

T(z) = ((2) - exp(T(2)), where ((z) = z - exp Z e . Q)

n
n>2

Fact 5 The function ((z) defined for Pélya trees satisfies the assumptions of the Theorems 2 and 3.

@ QEIS: On-line Encyclopedia of Integer Sequences
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This fact has already been proved by Cayley as mentioned in [BLW76, p. 67]. We recall here the argu-
ments given in [FS09, p. 477].

Proof: The definition of ((z) given in Equation (??) implies that its dominant singularity is /p, (with
the constant p being the dominant singularity of 7'(z)). Since 1/e is the dominant singularity of the
Cayley tree function C'(z) and [2"|T'(z) > [2"]C(z) (by using Equation (3)) for n sufficiently large, we
get p < 1/e. Thus \/p > p and we finally infer that the function ((z) is analytic beyond the disc of
convergence of T'(z). Finally we easily get {'(p) > 0. O

Theorem 2 and the above approximation for p give the first coefficients for the Puiseux expansion
of Pdlya trees presented in the Table 1. The computations of the numbers ¢;’s have been done with an
approximation of the function {(z), computed with the truncation of the series 7'(z) after the 100-th first
coefficients. Experimentally, it seems that the accuracy is actually much larger than the 20 digits given in

Table 1.
Finally the previous approximations and the result of Theorem 3 give

-n 0.07828911261061096133 ...  0.3929402676631860168 . . .
W o= L (0.7797450101873204419...+ 4 - i
n—oo ™ n n
1.537879315978838092. ..  8.200844090435596194 . . . 1
3 + 1 + O — .
n n n

Note that, from here, it is then easy to get back the first evaluations exhibited by Finch [Fin03c].

3.2 Rooted identity trees

A rooted identity tree is a rooted unlabelled (non-plane) tree for which the only automorphism preserving
the root node is the identity. Harary et al. studied this class of trees in [HRS75]. In his book [Fin03a],
Finch also mentions this class. Intuitively, whereas a Pdlya tree can be seen as a root followed by a
multiset of Pdlya trees, a rooted identity tree can be seen as a root followed by a set of rooted identity
trees (i.e., no repetition is allowed). Let us denote by 7 the set of rooted identity trees. It satisfies the
following unambiguous specification

T =2Z xPSETT.

The symbolic method gives the functional equation

T(z) = zexp (Z(l)l_lT(ZZZ)> .

i>0
An equivalent formula for the function T'(z) is
T(z)==z" H(l R
n>0

In order to obtain an efficient recurrence relation satisfied by the numbers of rooted identity tree, we use
the same strategy as above (for Pdlya trees), and thus obtain:

Proposition 6 The sequence (T,,)nen enumerating rooted identity trees satisfies
n ifn €{0,1}
n—1
T — 1 n—1 Lfi )
— ST | Y ()" M T | ifn > 1L
i=1

m=1
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The first values of the sequence, see in OEIS A004111, are
0,1,1,1,2,3,6,12,25,52,113, 247, 548, 1226, 2770, 6299, . . .

The number of rooted identity trees from each size from 1 to n can be computed in O(n?) arithmetic
operations. Once we are able to compute efficiently the first numbers 7}, we can estimate the dominant
singularity of T'(z) to be approximately

p ~ 0.39721309688424004148565407022739873422987370995276 . . .

Obviously this dominant singularity is larger than the one for Pdlya trees because there are less rooted
identity trees than P6lya trees.

. R . 1 T(2"
To describe T'(z) like in Equation (2), we get {(z) = z - exp (ZnEQ(—l)” 1%)

Proposition 7 The function ((z) defined in the context of rooted identity trees satisfies the assumptions
of the Theorems 2 and 3.

The approximations of the first coefficients of the Puiseux expansion for rooted identity trees are given in
the Table 1. The second Table 2 gives the approximations of the asymptotic expansion of 7},:

- 0.1851197977766337056 . . . 0.4272427290060978745 . . .
Tn = P <0.6425790797442694714. o= - 5
n—oo ™ n n
2.255455568987212079 . . . 16.60970953335647846 . . . 1
- 3 - 4 +O{ 5 :
n n n

It seems that these numbers do not appear elsewhere in the literature.

3.3 Hierarchies

A hierarchy is a rooted unlabelled and non-plane tree with no node of arity 1. The size notion for hi-
erarchies is the number of leaves. This class already appears in the work of Cayley (cf. [BLW76, p.
43]. Using the notations from [FS09, p. 72] for hierarchies, we have both following specification and
functional equation for its generating function

1 T(%
T = Z+ MSET>,T, T(z)zi (z—l—i—exp (Zy)) .
>0
Again, we obtain a recurrence formula that computes the numbers 77, .

Proposition 8 The sequence (T,,)nen enumerating hierarchies satisfies
ifn € {0,1}

9 n—1 L ] 1
Z mT, + E Z; 115 Z Tnmi— éé{nfmizl} lfn >1,

m=1

n—1

S|—= 3

min
m#n

with the notation 6, _ -1y evaluates to 1 if n — mi = 1 and to 0 otherwise.
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The first values of the sequence, see in OEIS A000669, are given by
0,1,1,2,5,12,33,90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, . . .

They are stored (there the sequence is shifted by 1). We note that in this context, we cannot easily simplify
the recurrence in order to avoid a sum over the divisors of n (for 7;,). However here, the sum is not inside
another one, thus the complexity (in the number of arithmetic operations) to compute 75, is quadratic. We
estimate the dominant singularity of 7'(z) to be approximately

p ~ 0.28083266698420035539318755911632333333736599643391 . ..

In order to fall under the framework described by Equation (2), we need to consider the generating
function T'(z) = T'(z) — 1(1 — z). The two generating functions 7'(z) and T'(z) have the same dominant
singularity. Thus we get ~ R

T(z) = ((2) - exp(T'(2)),

with

() = gesp [ g2+ T ).

2 1
n>2

Proposition 9 The function ((z) defined in the class of objects associated to T(z) satisfies the assump-
tions of the Theorems 2 and 3.

It remains to slightly modify the 2 first coefficients in the singular expansion of f(z) to obtain the singular
expansion of 7'(z) and fill both Tables 1. and 2. In particular we get

p—" 0.2409833212579280352 ...  0.3678657493849431861 . ..
Tn = — | 0.3658015862381119375. .. — -
n—oo ™ n n2
0.9991064877914853523 ...  4.137777553476907813. .. 1
— - +0(—<)]-
n3 n4 nb

It seems that these numbers do not appear elsewhere in the literature.

Let us conclude this section on hierarchies by mentioning the OEIS sequence A000084, that is di-
rectly related. It counts the number of series-parallel networks with n unlabelled edges; both generating
functions are essentially the same (up to a simple factor). We thus get the Puiseux expansions and the
asymptotic expansion for these objects as a by-product.

3.4 Approximations

In order to obtain the following approximations for the coefficients in the Puiseux expansions or for
the asymptotic expansions of the numbers of trees, we have used the open-source mathematics software
Sage [Dev15] and the Python library MPmath [J*14] for some specific high precision calculations.

The first table synthesises the first elements of the sequences (¢, )nen satisfying the Puiseux expansions
for the previous Pdlya structures:

T(z) = t, (1 - ;)n/Q.

n>0
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Coeff. Pélya trees Rooted identity trees Hierarchies

to 1.000000000000000000 1.000000000000000000 0.6404163334921001777

t1 —1.559490020374640884 —1.285158159488538943 —0.7316031724762238750
to 0.8106697078826992796 0.5505438316333229659 0.03799806716699161541
t3 —0.2854870216128456058 —0.5681159369076463432 0.1384103018915147449

ta 0.1653723657120838943 0.4261261857916583247 —0.07387395031732463851
ts —0.3424599704021542007 —0.1312888430707878210 —0.05428300802019698042
te 0.3174072259465285628 0.1224152517144394163 0.03800381072191918081
tr —0.1077788002916310083 —0.3225499663026797778 0.03109684705422999274
ts 0.06138495705583510410 0.2539454170234272677 —0.02381831461193008886
ty —0.1952123835975564636 0.04875363678533678081 —0.02078556533052714092
tio 0.2059848312779074186 —0.00002800001023286558041 | 0.01666265537126027377
ti1 —0.05272470849819056138 —0.3631594631270670335 0.01611178365047090583
ti2 0.01702656875495366861 0.2637344037695510765 —0.01295368177079785790
tis —0.1523706243663253961 0.2617035123807709629 —0.01338408339711046374
tia 0.1737028832998504627 —0.1368754575043169801 0.01075691931570711729
t1s —0.01447370373952704466 —0.5927534134371262366 0.01183388780152404393
tie —0.02189951761121556237 | 0.3911340105112945142 —0.009441457380326882677
ti7 —0.1445471935709097045 0.6832510269350502136 —0.01084956346194149131
tis 0.1760771088850177779 —0.3902593892984113718 0.008607637481105329431

Tab. 1: Approximation of the Puiseux expansions for Pélya trees, rooted identity trees and hierarchies

The following Table 2 contains the first numbers (7, ),cn satisfying the asymptotic expansions for the
previous Pdlya structures:

—n

T,

L i
~ gy =———— .
n—oo ‘/7TTL3 nt

i>0

Coeff.

Pélya trees

Rooted identity trees

Hierarchies

70

0.7797450101873204419

0.6425790797442694714

0.3658015862381119375

T1

0.07828911261061096133

—0.1851197977766337056

0.2409833212579280352

T2

0.3929402676631860168

—0.4272427290060978745

0.3678657493849431861

73

1.537879315978838092

—2.255455568987212079

0.9991064877914853523

T4

8.200844090435596194

—16.60970953335647846

4.137777553476907813

5

57.29291473494343825

—157.9003693373302727

23.43410248921570084

76

503.0445050262735854

—1840.110517359351172

170.1188811511555370

77

5359.600933884326064

—25387.34869954017854

1514.745295656330186

78

67342.06920114653067

—404610.0663959841556

16007.82637588106931

79

975425.4970695924728

—7.313377058487246593e6

195812.3506172274875

710

1.599693249293173348e7

—1.477949138517813328e8

2.719234685827618831e6

T11

2.928225313353392698e8

—3.301794456762036735¢e9

4.222444465223140109e7

T12

5.914523441293936053€9

—8.080229604228356791e10

7.243861962702191648e8

T13

1.305991927898973201el1

—2.149826267241085239¢e12

1.359774926415692519¢10

T14

3.128498399789526502¢12

—6.179075814699061934e13

2.770908644498957323e11

T15

8.078305401468914384¢e13

—1.908151484770832703e15

6.089496262810801422€12

T16

2.236301680891647428e15

—6.301063280436556255¢16

1.435269254893331074e14

T17

6.605960869699262787¢16

—2.215767775919040241e18

3.610881990157578400e15

718

2.073828085209932615e18

—8.267080545525264413e19

9.656755540184967275e16

Tab. 2: Asymptotic expansion of the number of Pdlya trees, rooted identity trees and hierarchies

It is interesting to note that, in Table 2, for n sufficiently large and due to the sign of the values of the
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(7;), all truncations after the nth term in the full expansions (forn = 1. .. 17) correspond to lower bounds
for the case of Pdlya trees and hierarchies and all of them are upper bounds for rooted identity trees.

Size

10 20 50 100 200 500

Order-1 approximation | 1.391-1072 | 2.859-107% | 4.204-10"% 1.027 - 10~4 2.540 - 10~° 4.039-1076

Order-4 approximation | 1.039 - 1072 | 3.448 -107° | 2.383-1077 6.872-107° 2.071-1071° | 2.078-107'2

Order-8 approximation | 7.722-10"* | 3.369-107° | 3.822-107'° | 6.195-107"% | 1.123.107*% | 2.611-10"'®

Tab. 3: Relative error induced by approximations for hierarchies

Finally, by using only 20 digits of precision in our approximations of the values (") (p)’s we cannot
hope to obtain a better approximation than the one of order 8 (Table 3) for the number of large trees (i.e.
with size larger than 500).

4 Conclusion

The strength of the approach presented here is its universality. We have shown, in full detail, how it
applies to Pélya trees, rooted identity trees and hierarchies but many other examples fill in our framework.

1.

Rooted oriented trees and series-reduced planted trees. The OEIS sequences A000151 and A001678
can be directly studied.

Series-parallel networks. In the context of [RS42], [Moo87] and [Fin03b] we get back several
generating functions (listed in OEIS A058385, A058386 and A058387) that can be studied in the
same vein as hierarchies. Let us recall that many links between trees and series-parallel graphs have
already been exhibited, thus the fact that the behaviours of their generating series are analogous is
not a surprise.

Phylogenetic trees and also total partitions. The OEIS sequence A000311, counting phylogenetic
trees and also total partitions that are labelled objects, can also be analysed with our technique.
Note here that the function ((z) does not explicitly depend on T'(z) and thus every derivative is
explicit. Just put a factor n! in front of 7}, to obtain its full asymptotic expansion. We thus exhibit
the polynomials whose existence has been stated in [Com74, p. 224].

The unrooted versions of the previous rooted trees. With some further work, we are able to ex-

hibit the full asymptotic expansion of the unrooted versions of the previous rooted trees we were
interested in. In fact their generating functions P(z) satisfy some equation of the form

P(z) =T(z) — %TQ(Z) + %T(z2).

Since we have the full Puiseux expansion of the series 7'(z), we can compute the one of the series

P(z). Some examples of such series correspond to the following sequences A000055, A000238,
A000014.... An open question would be to be able to write a functional equation for P(z) as a
disturbance of the Cayley tree function, and then to use directly an analogous approach as the one
studied in Section 2. There, we would get ¢ (1) = 0 since we know that these trees are unrooted.

Acknowledgements. The author is very grateful to Cécile Mailler for the carefully reading of this manuscript and to

the anonymous referees for the suggested improvements.
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We present a toolbox for everyday life in analytic combinatorics, namely the new asymptotic expansion
module which is included in the mathematics software system SageMath. The code of this module was
contributed by the authors of this poster.

Keywords: Asymptotic expansions, SageMath, software

SageMath [1] is a free and open-source mathematics software system. Since version 6.10, it is
shipped with a module for computations with asymptotic expansions [3]; no workaround or loading
of a package is needed. Even better, it is automatically tested with each release to guarantee
functionality and repreducibility of the results.

The asymptotic expansion module® is integrated completely into SageMath’s infrastructure
and interacts with all of SageMath’s other mathematical objects very well. All contributed code
and documentation goes through a transparent peer-review process; this ensures that SageMath’s
quality standards on efficient, readable, and maintainable code are met.

Due to space restrictions, we limit ourselves to the univariate case here. However, the module
is designed for multivariate asymptotic expansions as well.

1 Creating an Asymptotic Ring
We use the coefficient ring
C = SR.subring(no_variables=True) # symbolic constants

which is a ring of symbolic constants; note that this includes the rationals Q. A univariate
asymptotic ring for our calculations is created by

A = AsymptoticRing(growth_group="QQ°n * n~QQ * log(n)~QQ’,
coefficient_ring=C,
default_prec=5)

n=A.gen()

A typical element of A is the asymptotic expansion

42 (;)nn log (n)? + o((é) nlog (n)%>

() See http://doc.sagemath.org/html/en/reference/asymptotic for the online-documentation.

as n — o0.
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2 Basic Arithmetic

Beside the very basic arithmetical operations addition, subtraction and multiplications, series
expansions are automatically performed for division, the exponential function or the logarithm.
For example, typing log(n + 1) returns

1 1 1 1
log(n +1) = log (n) +n~! — §n_2 + gn_3 - in_‘l + 571_5 +0(n7%).

More advanced stuff is possible, e.g., (1 + 1/n) n returns

1\" 1 11 7 2447
(1 + ) —e——en '+ —en?——en? en™* + O(Tf‘r’) .
n

2 24 16 5760

3 Example: Catalan Numbers

There are several possibilities to obtain asymptotics for the Catalan numbers. We use the
convenience generator function for (kg) and type
binomial_2n_n = asymptotic_expansions.Binomial_kn_over_n(
'n’, k=2, precision=3)
C_n = binomial 2n_n / (n+1)

This results in

1 2n 1 5 145 9
Co= (P = gt = Dyt = o(4mnH)
n—l—l(n) NG s s et " )

This could have been achieved by using factorial() to build the binomial coefficient manually,
as well.

Getting the asymptotic expansions, for example, the harmonic numbers is even easier, since
there is a pre-defined generator in SageMath.

4 Singularity Analysis
The Catalan numbers satisfy the generating function

def catalan(z):
return (1 - sqrt(1-4x*z)) / (2*z)

So, in contrast to the direct calculation of their asymptotic expansion out of the exact formula,
we can do a singularity analysis. SageMath assists here as well. We perform

C_n = A.coefficients_of_generating_function(
catalan, singularities=(1/4,), precision=3)
to obtain ) 9 145
4", 7—_ 471”7%_’_ 4m 77—|—O( 4m 74)

NG 8/ 128f

again. We can proceed similarly with the harmonic numbers.
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Bootstrapping for finding the dominant singularity is easily possible as well. For example, let
us consider longest runs of words over a two letter alphabet, see [2, Example V.4]. The generating
function counting runs where one of the two letters has less than n consecutive repetitions is
(1 —2")/(1 — 2z + 2"*1). The dominant singularity satisfies the fix-point equation z = f(z) with

def f(z):
return (1 + z~(n+1)) / 2

By starting with the approximation z = § + O( (g)")7 applying f twice yields the known expansion
71+1 1”+1 \" +1 1"+O 3\" ,
“T271\2) "s\1) "8\ 20) ")
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Abstract. The register function (or Horton-Strahler number) of a binary tree is a well-known combinatorial parameter.
We study a reduction procedure for binary trees which offers a new interpretation for the register function as the
maximal number of reductions that can be applied to a given tree. In particular, the precise asymptotic behavior of
the number of certain substructures (“branches”) that occur when reducing a tree repeatedly is determined.

In the same manner we introduce a reduction for simple two-dimensional lattice paths from which a complexity
measure similar to the register function can be derived. We analyze this quantity, as well as the (cumulative) size of
an (iteratively) reduced lattice path asymptotically.

Keywords: Register function; binary tree; lattice path; asymptotics

1 Introduction

Binary trees are either a leaf or a root together with a left and a right subtree which are binary trees. It is
well-known that the generating function counting these objects with respect to the number of inner nodes

is given by
z) = = z.
2z n+1l\n
n>0
Thus, the nth Catalan number C,, = n%rl (2:) counts the number of binary trees with n inner nodes.

By simple algebraic manipulations, it is easy to verify that B(z) fulfills the identity

Blz)=1+7 j2zB<(1 —ZQZ)Q)'

However, as we will see in Section 2, we can justify this identity from a combinatorial point of view as
well, and the most important part of this combinatorial interpretation is a reduction procedure for binary
trees.

TB. Hackl and C. Heuberger are supported by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl Popper Kolleg
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Fund (KWF).
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The aim of this paper is to analyze the binary tree reduction with a focus on the structures that emerge
when repeatedly reducing a given tree. After the aforementioned introduction of the reduction in Sec-
tion 2, we discover an inherent connection to a very well-known branching complexity measure of binary
trees: the register function.

Sections 2.1 and 2.2 deal with the analysis of the number of r-branches and the number of all branches
within trees of given size, where an r-branch can be thought of a local structure in a binary tree that
survives exactly r reductions.

In Section 3, we switch our attention from binary trees to two-dimensional lattice paths. As we will see,
the generating function of these objects fulfills a similar functional equation as the generating function
for binary trees—and its combinatorial interpretation strongly depends on a reduction process as well.
The remainder of Section 3 is devoted to analyzing the lattice path reduction. In particular, Section 3.1
investigates fringes of lattice paths, which play a similar role as branches with respect to binary trees.

On a general note, we used the open-source mathematics software system SageMath [16] in order to
perform the computationally intensive parts of the asymptotic analysis for each of the quantities investi-
gated in this paper. Furthermore, the proofs and many details are omitted in this extended abstract; they
can be found in the full version.

2 Tree Reductions and the Register Function

As mentioned in the introduction, we want to find a combinatorial proof for the following proposition.
Proposition 2.1. The generating function counting binary trees by the number of inner nodes, B(z) =
=4 fulfills the identity

2

z z
B(z):1+1—2z3<(1—2z)2)’ M

Proof (Sketch): The central idea of this proof is to consider a reduction of a binary tree ¢, which we write
as ®(t):

First, all leaves of ¢ are erased. Then, if a node has only one child, these two nodes are merged; this
operation will be repeated as long as there are such nodes. Finally, the nodes without children are declared
to be leaves.

Observe that this reduction is only defined for trees ¢ that have at least one inner node. The various
steps of this operation (which was introduced in [19]) are depicted in Figure 1. The number attached to
the nodes will be explained later.

It can be shown that the generating function

z 22

1- QZB<(1 - 22)2)

counts all binary trees that can be reduced at least once. Thus, the functional equation (1) can be inter-
preted combinatorially as follows: a binary tree is either just [, or it can be reduced at least once. O

Remark. Note that (1) can be used to find a very simple proof for a well-known identity for Catalan
numbers:
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Fig. 1: Illustration of the compactification ®: in the first tree, the leaves are deleted (dashed nodes) and nodes with
exactly one child are merged (gray overlay). The second tree shows the result of these operations. Finally, in the last
tree all nodes without children are marked as leaves.
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Comparing the coefficients of 2" t!, (1) leads to

n+1 5 2k+1 Oyl 2k o 2k+] i
Cuer = "1 ) O —gyamet = 2 1>

k>0 k>0 >0

C 2n,—2k n

> a (% 7
0<k<n/2

which is known as Touchard’s identity [14, 17].

With this interpretation in mind, (1) can also be seen as a recursive process to generate binary trees by
repeated substitution of chains. This process can be modeled by the generating functions

2

Bo(2) =1, Bi(z)=1+ 1—2223“1((1_22@2)’ r> 1. @)

By construction, B,.(z) is the generating function of all binary trees that can be constructed from [J with
up to r expansions—or, equivalently—all binary trees that can be reduced to O by applying ® up to r
times.

As it turns out, these generating functions are inherently linked with the register function (also known
as the Horton-Strahler number) of binary trees. In order to understand this connection, we introduce the
register function and prove a simple property regarding the compactification ®.

The register function is recursively defined: for the binary tree consisting of only a leaf we have
Reg() = 0, and if a binary tree ¢ has subtrees ¢; and t2, then the register function is defined to be

Reg(t) = max{Reg(t1), Reg(t2)}  for Reg(t1) # Reg(t2),
8 Reg(t1) + 1 otherwise.

In particular, the numbers attached to the nodes in Figures 1 and 2 represent the register function of the
subtree rooted at the respective node.

Historically, the idea of the register function originated (as the Horton-Strahler numbers) in [8, 15]
in the study of the complexity of river networks. However, the very same concept also occurs within
a computer science context: arithmetic expressions with binary operators can be expressed as a binary
tree with data in the leaves and operators in the internal nodes. Then, the register function of this binary
expression tree corresponds to the minimal number of registers needed to evaluate the expression.

There are several publications in which the register function and related concepts are investigated
in great detail, for example Flajolet, Raoult, and Vuillemin [5], Kemp [9], Flajolet and Prodinger [4],
Louchard and Prodinger [10], Drmota and Prodinger [1], and Viennot [18]. For a detailed survey on the
register function and related topics see [13].

We continue by observing that the compactification @ is a very natural operation regarding the register
function:

Proposition 2.2. Let t be a binary tree with Reg(t) = r > 1. Then ®(t) is well-defined and the register
Sunction of the compactified tree is Reg(®(t)) = r — 1.

As an immediate consequence of Proposition 2.2 we find that ® can be applied r times repeatedly to
some binary tree ¢ if and only if Reg(¢) > r holds. In particular, we obtain

P"(t) =0 <= Regt)=r 3)
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With (3), the link between the generating functions B,.(z) from above and the register function becomes
clear: B, (z) is exactly the generating function of binary trees with register function < 7.

In order to analyze these recursively defined generating functions an explicit representation is conve-
nient. As it turns out, the substitution z = ﬁ =: Z(u) is a helpful tool in this context.

In particular, it can be shown that applying z ﬁ corresponds to u +—+ u2, which helps to find

the explicit representation
2 27

1—u U
Bo(e) = ——> 1=t

Jj=0

Note that at this point, we could obtain the generating function for binary trees with register function
equal to r simply by computing the difference B,.(z) — B;_1(z) for r > 1. These functions can be used
to study the asymptotic behavior of the average register function value.

However, as these results are well-known (cf. [5]), we will continue in a different direction by studying
the number of so-called r-branches.

2.1 r-branches

The register function associates a value to each node (internal nodes as well as leaves), and the value at
the root is the value of the register function of the tree. An r-branch is a maximal chain of nodes labeled
r. This must be a chain, since the merging of two such chains would already result in the higher value
7+ 1. The nodes of the tree are partitioned into such chains, from r» = 0, 1, .. .. The goal of this section is
the study of the parameter “number of r-branches”, in particular, the average number of them, assuming
that all binary trees of size n are equally likely.

“n,
AL

Fig. 2: Binary tree with colored r-branches

This parameter was the main object of the paper [19], and some partial results were given that we are
now going to extend. In contrast to this paper, our approach relies heavily on generating functions which,
besides allowing us to verify the results in a relatively straightforward way, also enables us to extract
explicit formul@ for the expectation (and, in principle, also for higher moments).
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A parameter that was not investigated in [19] is the total number of r-branches, for any r, i.e., the sum
over r > (. Here, asymptotics are trickier, and the basic approach from [19] cannot be applied. However,
in this paper we use the Mellin transform, combined with singularity analysis of generating functions, a
multi-layer approach that also allowed one of us several years ago to solve a problem by Yekutieli and
Mandelbrot, cf. [11]. The origins of singularity analysis can be found in [6], and for a detailed survey see
[7].

For reasons of comparisons, let us mention that the value of register function in [19] are one higher than
here, and that n generally refers there to the number of leaves, not nodes as here.

According to our previous considerations, after r iterations of ®, the r-branches become leaves (or,
equivalently, O-branches). The bivariate generating function allowing us to count the leaves of the binary
trees is vB(zv).

The proofs of the statements in this section, together with SageMath worksheets containing the corre-
sponding computations, can be found in the full version of this paper.

Theorem 1. Let r € Ny be fixed. The expected number of r-branches in binary trees of size n and the
corresponding variance have the following asymptotic expansions:

B =t (1 )b o (- ) 4 o (P - T ) Lo, @

4 6 4r 20n\  4v) " 12p2\ 21 10 210 - 47
A"—1  2.16"—25-4"+23 13.64" —14-16"+7-4" — 6 .,
Vi = — - O(n~2). 5
w3 e 90 - 16" 420 - 16™n + 0™ )

Of course, the expected number of r-branches can also be computed explicitly by using Cauchy’s
integral formula. This yields the following result:

Proposition 2.3. The expected number of r-branches in binary trees of size n is given by the explicit

Sformula
n+1 2n 2n 2n
Bur = S\ (1) 20 ) (o)) ©

n) A>1

2.2 The total number of branches

So far, we were dealing with fixed r, and the number of r-branches in trees of size n, for large n. Now we
consider the total number of such branches, i.e., the sum over » > 0, which was not considered in [19].
First, to get an explicit formula, the results from Proposition 2.3 can be summed.

Corollary 2.4. The expected number of branches in binary trees of size n, denoted as E,, is given by the
explicit formula

n+1
n+1 2n 2n 2n
En=—— > (2-27"®)k -2
(2:) P ( ) [<n+1k> (nk:>+<nlk>}7

=1
where vo(k) is the dyadic valuation of k, i.e., the highest exponent v such that 2" divides k.

While it is absolutely possible to work out the asymptotic growth from this explicit formula, at it was
done in earlier papers [5, 9], we choose a faster method, like in [4]. It works on the level of generating
functions and uses the Mellin transform together with singularity analysis of generating functions [7, 12].

The following theorem describes the asymptotic behavior for the expected number of branches in a
binary tree.



Reductions of Binary Trees and Lattice Paths 7

Theorem 2. The expected value of the total number of branches in a random binary tree of size n admits
the asymptotic expansion

/
En = %n + ébg‘*" - cho(g_;) N 121?)g2 - 61;g2 * % +0(logy ) + O(loin)’
where
o) = 1022 kzﬂF(X;)C(X’“ — Dl = et
is a 1-periodic function of mean zero, given by its Fourier series expansion.
Remark. Note that the value of the derivative of the zeta function is given by ¢'(—1) = —1—12 —log A ~

—0.1654211437, where A is the Glaisher-Kinkelin constant (cf. [2, Section 2.15]).

Remark. The occurrence of the periodic fluctuation & where the argument is logarithmic in 7 is actually
not surprising: while this phenomenon is already very common in the context of the register function,
fluctuations appear very often in the asymptotic analysis of sums.

While this multi-layer approach enabled us to analyze the expected value of the number of branches
in binary trees of size n, the same strategy fails for computing the variance. This is because the random
variables modeling the number of r-branches are correlated for different values of r—and thus, the sum
of the variances (which we compute by our approach) differs from the variance of the sum.

This concludes our study of the number of branches per binary tree. In the next section, we analyze
a quantity that has similar properties as the register function, but is defined on simple two-dimensional
lattice paths.

3 A Similar Recursive Scheme Involving Lattice Paths

Recall that the register function describes the number of compactifications of a binary tree required in
order to reduce the tree to a leaf. By defining a similar process for simple two-dimensional lattice paths,
a function that plays a similar role as the register function is obtained.

Simple two-dimensional lattice paths are sequences of the symbols {1, —, |, <}. It is easy to see that
the generating function counting these paths (without the path of length 0) is

4z

=171 =4z + 1622 + 642° + 2562* +10242° + - - - .
— 4z

L(z)

Proposition 3.1. The generating function L(z) = lfiz fulfills the functional equation

2

L(z) = 4L((1;2722)2

) +42. )

Remark. It is easy to verify this result by means of substitution and expansion. However, we want to give
a combinatorial proof—this approach also motivates the definition of a recursive generation process for
lattice paths, similar to the process for binary trees from above.
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RN

M =N\=1
Fig. 3: Repeated application of the reduction ®, on a path with compactification degree 2

Proof (Sketch): While we leave the detailed proof to the full version of this paper, we still want to
introduce a lattice path reduction which plays an analogous role as the binary tree reduction in the proof
of Proposition 2.1.

We consider the reduction @, which acts on any given lattice path ¢ with length > 2 as follows:

First, the path needs to be modified such that it starts horizontally and ends vertically. This is done by
rotation to the right of the entire path and/or the very last step, respectively.

Then, the horizontally starting and vertically ending path is reduced by replacing each pair of successive
horizontal-vertical path segments in the following way:

o If a segment starts with — and the first vertical step is T, replace it by 7,
e if a segment starts with — and the first vertical step is |, replace it by \,
e if a segment starts with <— and the first vertical step is |, replace it by /,
e and if a segment starts with <— and the first vertical step is T, replace it by .

Rotating the resulting path by 45° in order to obtain a path with horizontal and vertical steps then yields
&1 (¢). It can be shown that this reduction corresponds to the right-hand side of (7). ]

The process described in the proof of Proposition 3.1 allows us to assign a unique number to each lattice
path:

Definition. Let ¢ be a simple two-dimensional lattice path consisting of at least one step. We define the
compactification degree of ¢, denoted as cdeg(¢) as

cdeg(f) =n = @L(f) e {T, =]}

Remark. The parallels between the compactification degree and the register function are obvious: both
count the number of times some given mathematical object can be reduced according to some rules until
an atomic form of the respective object is obtained. Therefore, both functions describe, in some sense, the
complexity of a given structure.
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In the remainder of this section we want to derive some asymptotic results for the compactification
degree, namely the expected degree of a lattice path of given length as well as the corresponding variance.
Analogously to our strategy for (1), we want to interpret (7) as a recursive generation process as well

and therefore set )

L5(z) =4z, L(2)=4L7, ((1_2722)2) r> 1.

With the help of the substitution z = Z(u) the generating function can be written explicitly as

”
u2

L7(z) =4 —— .
(Z) (1 +u2r)2

T

®)

The coefficients of this function can be extracted explicitly by applying Cauchy’s integral formula.

Proposition 3.2. The number of two-dimensional simple lattice paths of length n that have compactifica-
tion degree 1 is given by

e = e (0) - ()]

A>0

In fact, by studying the substitution z = Z(u) closely, the asymptotic behavior of the coefficients of
L7 (z) can be extracted as well.

We turn to the investigation of the expected compactification degree. Let .Z,, denote the set of simple
two-dimensional lattice paths of size n. Consider the family of random variables X, : .%,, — Ny modeling
the compactification degree of the lattice paths of length n under the assumption that all paths are equally
likely. The following results are immediate consequences of Proposition 3.2.

Corollary 3.3. The probability that a lattice path of length n has compactification degree r is given by
the explicit formula

pox, =)= R s (P00 - (25 )]

A>0

and the expected compactification degree for paths of length n is given by

_ 1)2(k) _ 277471 _ 277,71
EX, =) 8k(2 1)Knk> (nkl : ©)

k>1

Remark. The formula for P(X,, = r) is very similar to the results for the classical register function
obtained by Flajolet (cf. [3]). It is likely that applying the techniques that were used in [10] could be used
to determine expansions for arbitrary moments.

The following theorem characterizes the asymptotic behavior of the expected compactification degree
and the corresponding variance.

Theorem 3. The expected compactification degree of simple two-dimensional lattice paths of length n
admits the asymptotic expansion

¥+4+2—3log2

EX, =1
n=l0g4m 2log2

+ 61 (logyn) + O(n™"), (10)
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and for the corresponding variance we have

2 _241og? 7w — 48¢"(0) — 24 21 11
™ og”m . ¢"(0) B ogﬂ_7+52(10g4n)
24 log” 2 log 2 12

v +2—3log?2

log 2

VX, =

1
51 (logyn) + 63 (log, n) + O(@) (11)

where §1(x) and 62(x) are 1-periodic fluctuations of mean zero whose Fourier coefficients can be given
explicitly.
3.1 Fringes

We define the rth fringe of a given lattice path ¢ of length > 1 to be ®7 (¢), i.e. the rth fringe is given by
the rth reduction of the path. In particular, if £ can be reduced r times, we call the length of ®7 (¢) the
size of the rth fringe. Otherwise, we say that this size is 0.

The rth fringes of positive size can then be enumerated by the bivariate generating function

Hozo)= 3 o500

£ path
cdeg(£)>r

where |¢| denotes the length of a lattice path.
It can be shown that H,.(z, v) fulfills the recursion
4zv

H, =4H i ’
) = ) >
1—4zv’ r(zv) =4 7_1(( ) ’U>’T_1’

which can be used to find the explicit representation

Hy(z,v) =

4m+1y2y

H,(z,v) = (14 u2)? —4u? v’

The generating function H..(z,v) can now be used to derive the asymptotic behavior of the expectation
Eﬁ;r and the variance VnL.J, of the size of the rth fringe, where all paths of length n arise with the same
probability.

Theorem 4. Let r € Ny be fixed. The expectation and variance of the rth fringe size of a random path of
length n have the asymptotic expansions

L no 1-4" 3g—n
= 12
Vo= T g T O (12)
and S R S T U
VE = — — oo 13
N T T 45 - 167 + 06, ™), (13)
where 0, = 2%%(2%/2”) > 1. If additionally v > O, then for the random variables Yy, modeling the

rth fringe size of lattice paths of length n we have

Yn'r - En'r 1 “ —w* _
]P( 5 < l‘) — / e w?/2 dw+O(n 1/2)’
\/ Vn;r V 2m —0o0

i.e. the random variables Y., are asymptotically normally distributed.
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As we have the generating function H,.(z,v) in an explicit form, the expected value can also be ex-
tracted explicitly by means of Cauchy’s integral formula.

Proposition 3.4. For given r € Ny, the rth expected fringe size of a random path of length n is given by
the explicit formula

X+ A/ 2n—1 on—1
EL —gqrti-n — .
mr Z 3 {(n—?)\) (n—?TA— 1)]

A>1

Analogously to our investigations concerning branches in binary trees, we also study the asymptotic
behavior of the expected fringe size, i.e. the sum over the size of the rth fringes for » > 0. Like the
compactification degree, this parameter can also be interpreted as a complexity measure for lattice paths.

Corollary 3.5. The expected fringe size EX of a random path of length n can be computed as

1 o 2n —1 2n —1
L _ 3(9 _ 9—v2(k) va(k)+1 _ _
EL 12.4nz::(2k (2-2 ) + k(2 1))[<n_k> <n—k—1>]'

k=1

The following theorem quantifies the asymptotic behavior of EL := " _ ' EL

r>0 n;re

Theorem 5. Asymptotically, the behavior of the expected fringe size EL for a random path of length n is
given by

4 1 5+ 3y —11log2 logn
EL=_ -1 ———= 4+ 4(l O( ), 14
w=gn gl gy Tl +O(=) 14
where §(z) is a 1-periodic fluctuation of mean zero with Fourier series expansion
2 3+ Xk 2erria
§(x) = r( ) (200 -1 1))e2kmic.
0 =3 st (7 ) 0= D+ )
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Hwang’s quasi-power theorem asserts that a sequence of random variables whose moment generating functions are
approximately given by powers of some analytic function is asymptotically normally distributed. This theorem is
generalised to higher dimensional random variables. To obtain this result, a higher dimensional analogue of the
Berry-Esseen inequality is proved, generalising a two-dimensional version by Sadikova.
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1 Introduction

Asymptotic normality is a frequently occurring phenomenon in combinatorics, the classical central limit
theorem being the very first example. The first step in the proof is the observation that the moment gener-
ating function of the sum of n identically independently distributed random variables is the n-th power of
the moment generating function of the distribution underlying the summands. As similar moment generat-
ing functions occur in many examples in combinatorics, a general theorem to prove asymptotic normality
is desirable. Such a theorem was proved by Hwang [16], usually called the “quasi-power theorem”.

Theorem (Hwang [16]). Let {Q,}n>1 be a sequence of integral random variables. Suppose that the
moment generating function satisfies the asymptotic expression

My (s) = E(e2*) = ") (1 + O(k 1)), (1.1)
the O-term being uniform for |s| < 1, s € C, 7 > 0, where

1. Wi(s) = u(s)pn + v(s), with u(s) and v(s) analytic for |s| < T and independent of n; and
u"'(0) # 0;

2. limy o0 o = 005

3. lim,, o0 Kp = 00.

The authors are supported by the Austrian Science Fund (FWF): P 24644-N26.
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Then the distribution of §2,, is asymptotically normal, i.e.,

. (Q — u(0)n
V06,

where ® denotes the standard normal distribution

O(z) = \/%/; exp (—;y2> dy.

See Hwang’s article [16] as well as Flajolet-Sedgewick [8, Sec. IX.5] for many applications of this
theorem. A generalisation of the quasi-power theorem to dimension 2 has been provided in [12]. It has
been used in [14], [15], [6], [13] and [17]. In [5, Thm. 2.22], an m-dimensional version of the quasi-
power theorem is stated without speed of convergence. Also in [2], such an m-dimensional theorem
without speed of convergence is proved. There, several multidimensional applications are given, too.

In contrast to many results about the speed of convergence in classical probability theory (see, e.g., [11]),
the sequence of random variables is not assumed to be independent. The only assumption is that the mo-
ment generating function behaves asymptotically like a large power. This mirrors the fact that the moment
generating function of the sum of independent, identically distributed random variables is exactly a large
power. The advantage is that the asymptotic expression (1.1) arises naturally in combinatorics by using
techniques such as singularity analysis or saddle point approximation (see [8]).

The purpose of this article is to generalise the quasi-power theorem including the speed of convergence
to arbitrary dimension m. We first state this main result in Theorem 1 in this section. In Section 2, a new
Berry—Esseen inequality (Theorem 2) is presented, which we use to prove the m-dimensional quasi-power
theorem. We give sketches of the proofs of these two theorems in Section 4. All details of these proofs
can be found in the full version of this extended abstract. In Section 3, we give some applications of the
multidimensional quasi-power theorem.

We use the following conventions: vectors are denoted by boldface letters such as s, their components
are then denoted by regular letters with indices such as s;. For a vector s, ||s|| denotes the maximum norm
max{|s;|}. All implicit constants of O-terms may depend on the dimension m as well as on 7 which is
introduced in Theorem 1.

Our first main result is the following m-dimensional version of Hwang’s theorem.

sup
zeR

< x) — ®(z)

1 1
-0 =,
(M*m)

Theorem 1. Let {Q,,},,>1 be a sequence of m-dimensional real random vectors. Suppose that the mo-
ment generating function satisfies the asymptotic expression

M, (s) := E(e!?%)) = V) (1 4 O(k; 1)), (1.2)
the O-term being uniform for ||s|| < 7, s € C™, 7 > 0, where

1. W, (s) = u(s)dy, + v(s), with u(s) and v(s) analytic for ||s|| < 7 and independent of n; and the
Hessian H,,(0) of u at the origin is non-singular;

2. limy oo §p = 00;

3. limy, o0 Ky, = 00.
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Then, the distribution of Q,, is asymptotically normal with speed of convergence O(¢r, v 2), ie.,

o [ (B ) 0] -0 (). (-

where ®x, denotes the distribution function of the non-degenerate m-dimensional normal distribution with
mean 0 and variance-covariance matrix 3, i.e.,

1 1
y(x) = — | ex —T21>d,
2(x) (27r)m/2\/det2/y<x p( 2" Y]

where'y < x means yy < xg for 1 < £ < m.
If H,(0) is singular, the random variables

Q,, — gradu(0)¢,
Vén

converge in distribution to a degenerate normal distribution with mean 0 and variance-covariance matrix
H,(0).

Note that in the case of the singular H,(0), a uniform speed of convergence cannot be guaranteed.
To see this, consider the (constant) sequence of random variables €2,, which takes values +1 each with
probability 1/2. Then the moment generating function is (e! + e~*)/2, which is of the form (1.2) with
én = n, u(s) = 0, v(s) = log(e’ + e *)/2 and k,, arbitrary. However, the distribution function of
,,/+/n is given by

0 0 ifz<-1/yn,
P(\/’i<x>— 1/2 if —1/y/n<x<1/yn,
" 1 if1/yn <z,

which does not converge uniformly.

In contrast to the original quasi-power theorem, the error term in our result does not contain the sum-
mand O(1/k,). In fact, this summand could also be omitted in the original proof of the quasi-power
theorem by using a better estimate for the error E,,(s) = M,,(s)e~ ") — 1.

The proof of Theorem 1 relies on an m-dimensional Berry—Esseen inequality (Theorem 2). It is a
generalisation of Sadikova’s result [22, 23] in dimension 2. The main challenge is to provide a version
which leads to bounded integrands around the origin, but still allows to use excellent bounds for the tails
of the characteristic functions. To achieve this, linear combinations involving all partitions of the set
{1,...,m} are used.

Note that there are several generalisations of the one-dimensional Berry—Esseen inequality [3, 7] to
arbitrary dimension, see, e.g., Gamkrelidze [9, 10] and Prakasa Rao [20]. However, using these results
would lead to the less precise error term in (1.3), see the end of Section 2 for more details. For that reason
we generalise Sadikova’s result, which was already successfully used by the first author in [12] to prove a
2-dimensional quasi-power theorem. Also note that our theorem can deal with discrete random variables,
in contrast to [21], where density functions are considered.

For the sake of completeness, we also state the following result about the moments of €2,,.
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Proposition 1.1. The cross-moments of 2, satisfy
1 m
o B(TT98) = pl@n) + 0 (s gl ),
= ket ST

for ky nonnegative integers, where px is a polynomial of degree y_," | k; defined by
(X)) = [ ghm]eu(®)XFv(s)
In particular, the mean and the variance-covariance matrix are

E(L,,) = grad u(0)¢,, + gradv(0) + O(x, 1),
Cov(Q,) = H,(0)¢, + H,(0) + O(r; 1),

respectively.

2 A Berry—Esseen Inequality

This section is devoted to a generalisation of Sadikova’s Berry—Esseen inequality [22, 23] in dimension 2
to dimension m. Before stating the theorem, we introduce our notation.

Let L = {1,...,m}. For K C L, we write s = (sy)rex for the projection of s € C* to CX.
For J C K C L,let xsjr: C/ — CX, (s;)jes = (sk[k € J))kex be an injection from C” into CX.
Similarly, let ¢ 7 ;e : CK — CX, (si)rex + (sk[k € J])rex be the projection which sets all coordinates
corresponding to K \ J to 0.

We denote the set of all partitions of K by IIx. We consider a partition as a set o« = {J1,...,Ji}.
Thus || denotes the number of parts of the partition «.. Furthermore, J € « means that J is a part of the
partition a.

Now, we can define an operator which we later use to state our Berry—Esseen inequality. The motivation
behind this definition is explained at the end of this section.

Definition 2.1. Let K C L and h: CX — C. We define the non-linear operator

Ax(h) == Z e H hoy Kk

a€cllx Jea

where
fa = (=11 (] = 1)1
We denote Ay, briefly by A.

For any random variable Z, we denote its cumulative distribution function by Fz and its characteristic
function by ¢z.

With these definitions, we are able to state our second main result, an m-dimensional version of the
Berry—Esseen inequality.

Theorem 2. Let m > 1 and X and Y be m-dimensional random variables. Assume that Fy is differen-
tiable.
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Let
F~

A = sup 9 Y(I‘)’)7

yerm  Oy;

2 (j
-3

=1

2

Cl = 3 3

for1 < j < m where {i} denotes a Stirling partition number (Stirling number of the second kind).
Let T' > 0 be fixed. Then

2 A t)— A t
sup |Fx(z) — Fy(z)| < ——— / ’ (px)(t) — Alpy)(t) ’ it
ZER™ 2m)™ Jygi<r [Tecr te
+2 Y By swp [Fx,(27) = Fy,(27)| Q.1)
0£JCL z ERY
4 2 Z]’:1 Aj
T
Existence of E(X) and B(Y) is sufficient for the finiteness of the integral in (2.1).

Let us give two remarks on the distribution functions occurring in this theorem: The distribution func-
tion Fy is non-decreasing in every variable, thus A; > 0 for all j. Furthermore, our general notations
imply that Fx ; is a marginal distribution of X.

The numbers B; are known as “Fubini numbers” or “ordered Bell numbers”. They form the sequence
A000670 in [18].

Recursive application of (2.1) leads to the following corollary, where we no longer explicitly state the
constants depending on the dimension.

(Cl + CQ)

Corollary 2.2. Let m > 1 and X and Y be m-dimensional random variables. Assume that Fy is
differentiable and let

F-
A,*supaY(y), 1<7<m
yerm  O0yj

Then

sup |Fx (z) — Fy(z)|
zER™

= 0( / ‘AK(SDX oXrk,L)(tx) — Ax(py o XK 1)(tK) dtx + ZJm=1AJ> (2.2)
oircr” IbxlI<ST [Teex tr T

where the O-constants only depend on the dimension m.
Existence of E(X) and E(Y) is sufficient for the finiteness of the integrals in (2.2).
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In order to explain the choice of the operator A, we first state it in dimension 2:
A(h)(sl,Sg) = h(Sl,Sg) — h(Sl,O)h(O,Sg). (23)

This coincides with Sadikova’s definition. This also shows that our operator is non-linear as, e.g., A(s1 +
s2)(s1,82) # A(s1)(s1, 52) + A(s2)(s1, 52).

In Theorem 2, we apply A to characteristic functions; so we may restrict our attention to functions h
with 2(0) = 1. From (2.3), we see that A(h)(s1,0) = A(h)(0, s2) = 0, so that A(h)(s1,s2)/(s152) is
bounded around the origin. This is essential for the boundedness of the integral in Theorem 2. In general,
this property will be guaranteed by our particular choice of coefficients. It is no coincidence that for
« € I, the coefficient p,, equals the value p(cv, {L}) of the Mobius function in the lattice of partitions:
Weisner’s theorem (see Stanley [24, Corollary 3.9.3]) is crucial in the proof that A(h)(s)/(s1 - Sm) is
bounded around the origin.

The second property is that our proof of the quasi-power theorem needs estimates for the tails of the
integral in Theorem 2. These estimates have to be exponentially small in every variable, which means
that every variable has to occur in every summand. This is trivially fulfilled as every summand in the
definition of A is formulated in terms of a partition.

Note that Gamkrelidze [10] (and also Prakasa Rao [20]) use a linear operator L mapping h to

(51,52> —> h(Sl, 82) — h(Sl, 0) — h(07 82). (24)

When taking the difference of two characteristic functions, we may assume that 2(0,0) = 0 so that the first
crucial property as defined above still holds. However, the tails are no longer exponentially small in every
variable: The last summand h(0, s2) in (2.4) is not exponentially small in s; because it is independent
of s; and nonzero in general. However, the first two summands are exponentially small in s; by our
assumption (1.2).

For that reason, using the Berry—Esseen inequality by Gamkrelidze [10] to prove a quasi-power theorem
leads to a less precise error term O((;SZI/2 log™ ! ¢,,) in (1.3). It can be shown that the less precise error
term necessarily appears when using Gamkrelidze’s result by considering the example of €2,, being the
2-dimensional vector consisting of a normal distribution with mean —1 and variance n and a normal
distribution with mean 0 and variance n. This is a consequence of the linearity of the operator L in
Gamkrelidze’s result.

3 Examples of Multidimensional Central Limit Theorems

In this section, we give two examples from combinatorics where we can apply Theorem 1. Asymptotic
normality was already shown in earlier publications [4, 2], but we additionally provide an estimate for the
speed of convergence.

3.1 Context-Free Languages

Consider the following example of a context-free grammar GG with non-terminal symbols S and 7', termi-
nal symbols {a, b, ¢}, starting symbol S and the rules

P={S—aSbs, S = bT, T —bS, T — T, T — a}.
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The corresponding context-free language L(G) consists of all words which can be generated starting with
S using the rules in P to replace all non-terminal symbols. For example, abcabababba € L(G) because it
can be derived as

S — aSbsS — abTbaSbS — abcTbabTbbT — abcabababba.

Let P(€2,, = x) be the probability that a word of length n in L(G) consists of 1 and x5 terminal
symbols a and b, respectively. Thus there are n — x1 — x5 terminal symbols c. For simplicity, this random
variable is only 2-dimensional. But it can be easily extended to higher dimensions.

Following Drmota [4, Sec. 3.2], we obtain that the moment generating function is

with y,,(2) defined in [4]. Using [4, Equ. (4.9)], this moment generating function has an asymptotic
expansion as in (1.2) with ¢,, = n. Thus €2,, is asymptotically normally distributed after standardisation
(as was shown in [4]) and additionally the speed of convergence is O(n’l/ 2).

Other context-free languages can be analysed in the same way, either by directly using the results in
[4] (f the underlying system is strongly connected) or by similar methods. This has applications, for
example, in genetics (see [19]).

3.2 Dissections of Labelled Convex Polygons

Let 51 W--- U Si1 = {3,4,...} be a partition. We dissect a labelled convex n-gon into smaller convex
polygons by choosing some non-intersecting diagonals. Each small polygon should be a k-gon with
k & Si11. Define ay, (r) to be the number of dissections of an n-gon such that it consists of exactly r; small
polygons whose number of vertices is in S;, for ¢ = 1, ..., t. For convenience, we use as(r) = [r = 0].
Asymptotic normality was proved in [2, Sec. 3], see also [1, Ex. 7.1] for a one-dimensional version. We
additionally provide an estimate for the speed of convergence.

Let
flz,x) = Z an (r)x"z" L
n>2
r>0

Then choosing a k-gon with k£ € S; Y- - - .S, and gluing dissected polygons to k — 1 of its sides translates

into the equation
t
feer Y n Y

=1 keS;

Following [1], this equation can be used to obtain an asymptotic expression for the moment generating
function as in (1.2) with ¢,, = n. The asymptotic normal distribution follows after suitable standardisation
with speed of convergence O(n~1/2).

4 Sketch of the Proofs

We now sketch the main ideas of the proofs of Theorems 2 and 1. All details can be found in the full
version of this extended abstract.
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Sketch of the proof of Theorem 2: As in [23, 10, 20], our proof of the Berry—Esseen inequality proceeds
via adding a continuous random variable Q to our random variables X and Y. The characteristic function
of Q vanishes outside [—7,T]™. The error resulting from replacing the difference of the distribution
functions |Fx — Fy| by |Fxt+q — Fy+q| can be estimated by the final summand in (2.1). In principle,
Lévy’s theorem then allows to bound the difference of the distribution functions by the difference of
the characteristic functions. Instead of only using the difference of the characteristic functions, we use
the difference |A(px) — A(py)|, which ensures boundedness of the integral in (2.1) at least if the first
moments exist. However, we have to compensate A by the sum over the differences of the marginal
distribution functions, which yields the second summand in (2.1). O

Sketch of the proof of Theorem 1: First, the characteristic function of the standardised random variable
X = (Qn - gradu(0)¢n)/ On 18

oxt =7 oM7)

for ||s|| < 7+/¢n /2. Thus, we obtain convergence in distribution as stated in the theorem.

To obtain a bound for the speed of convergence, we use the Berry—Esseen inequality given in Theorem 2
for Y an m-dimensional normal distribution. We bound the difference of A evaluated at the characteristic
function of X and the one of the normal distribution by the exponentially decreasing function

3
B < oen(—Tlal2 ) (IISH +||SH)
Alex)(s) ~ Alev)(©)] < exp( =TIl + Ollsl) ) o (==
for suitable s where ¢ is the smallest eigenvalue of .

We then estimate the integral in (2.1). For the variables in a neighbourhood of zero, we get rid of the
denominator by Taylor expansion using the zero of A(px) — A(py) at 0. The error term of the Taylor
expansion can be estimated by the difference of the characteristic functions using Cauchy’s formula. The
exponentially small tails are used to bound the contribution of the large variables in the integral in (2.1).

The second summand in (2.1) can be estimated inductively. ]
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Probabilistic consequences of some
polynomial recurrences
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Abstract. In this paper, we consider sequences of polynomials thaetfgalifferential—difference recurrences. Our
interest is motivated by the fact that polynomials satigfysuch recurrences frequently appear as generating poly-
nomials of integer valued random variables that are of @stein discrete mathematics. It is, therefore, of interest
to understand the properties of such polynomials and tmebgbilistic consequences. As an illustration we analyze
probabilistic properties of tree—like tableaux, comhbimeat objects that are connected to asymmetric exclusion pr
cesses. In particular, we show that the number of diagonadim symmetric tree—like tableaux is asymptotically
normal and that the number of occupied corners in a randamltke tableau is asymptotically Poisson. This extends
earlier results of Aval, Boussicault, Nadeau, and Labondei¢ta, respectively.

Keywords: Generating polynomial, recurrence, tree—like tableaux

1 Introduction and motivation

In this paper we will consider a sequence of polynomials
m
Pn(x) = an,k'rka n>0
k=0

that satisfy a differential—difference recurrence of ofithe following forms
Po(@) = fal@)Pa-1(@) + go(2) P,y () 1)
or

’

Pu(z) = fo(@)Poo1(z) + gn(x) P,y (2) ()

for some sequences of polynomigfs,), (g,) and a givenPy(x).

As a motivation for our interest we give examples of recucesnof these types that we encountered
in recent literature. The first two examples appear in theeodrof tree—like tableaux introduced in Aval
etal. (2013).

TPartially supported by a Simons Foundation grant #208766



2 P. Hitczenko and A. Lohss
(ABN) Aval et al. (2013):

B.(z) = nz(z+1)B,_1(x) +z(1 —2*)B),_,(z),
Bo(z) = =

(LZ) Laborde Zubieta (2015):

Py(@) = nPy(w)+2(1-a)P,_(w),

Laborde Zubieta also considered the following version

’

Qu(x) = 2n2Q, 1(x) +2(1—-2%)Q, (),

QO(*T) = 17
whereQ@, () is a polynomial of degre2n whose odd—numbered coefficients vanish. But this recuerenc
can be reduced tZ) by considering,,(z) = P, (z?).

The following recurrence for fixed parameterandb was considered in Hitczenko and Janson (2014)
(see Sections 2 and 4 there):

(HJ) Hitczenko and Janson (2014):

Poap(x) = ((n=1+b)z+a)Puap(@)+2(l—2)P, ()
PO,a,b(x) 1.

This is a generaliztion of the classical Eulerian polyndmi&pecifically, the choice of parameters- 1
andb = 0 givesP, 1 o = E,(x), where

=3 (1t
k=0

and () is the number of permutations ¢f,...,n} with exactlyk ascents. The recurrence for the
polynomialsE,, (z) is:

E.(z)=(n—-1Dz+1)Ep_1(z) + 2(1 — 2)E/,_, ().

A very similar recurrence played a role in Dasse-Hartauthitczenko (2013) although it appeared there
only implicitly.

(DHH) Dasse-Hartaut and Hitczenko (2013):

Va() = (@n—1Dz+1)Voa(2) +22(1 - 2)V;_, ()
Volz) = 1.
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As one more example, the following recurrence was used iaiffend Hitczenko, 2016, Section 3) in
connection with the analysis of a version of a card gamed#iie memory game.

(AH) Acan and Hitczenko (2016):
An(z) = @n—1DAp_1(z) +x(x— 1A, | (z),
Ao(x) = XT.

In the examples above the polynomials are generating potiais of integer valued random variables
and it is of interest to understand what bearing the form efcaimrence has on the probabilistic properties
of these random variables. This is, of course, not a new idddravarious forms has been studied for
a long time (see, for example, many results and referencekjalet and Sedgewick (2009)). Still, we
believe that there is more work to be done to better undedstemnprobabilistic consequences of the above
recurrences.

2 Tree-like tableaux

Although we would like to keep the discussion at a generadlleve will use particular objects, namely
tree—like tableaux as a primary illustration. Thereforelhwiefly introduce the definition and their basic
properties; we refer the reader to Aval et al. (2013); Laba&tdbieta (2015); Hitczenko and Lohss (2015)
for more information and details.

A Ferrers diagramis a left—aligned finite set of cells arranged in rows and ewls with weakly de-
creasing number of cells in rows. lalf-perimetelis the number of rows plus the number of columns.
The border edge®f a Ferrers diagram are the edges of the southeast bordetheamumber of border
edges is equal to the half—perimetertrée—like tableauxf sizen is a Ferrers diagrams of half-perimeter
n + 1 with some cells (called pointed cells) filled with a point aating to the following rules:

1. The cell in the first column and first row is always pointddg(ipoint is known as the root point).
2. Every row and every column contains at least one pointkd ce

3. For every pointed cell, all the cells above are empty othalicells to the left are empty.

We will also considesymmetric tree—like tableaua subset of tree—like tableaux which are symmetric
about their main diagonal (see (Aval et al., 2013, Secti@yfdr more details). As noticed in Aval et al.
(2013), the size of a symmetric tree—like tableaux must ik dtis known that there are! tree—like
tableaux of sizen (see (Aval et al., 2013, Corollary 8)) arxin! symmetric tree—like tableaux of size
2n + 1 (see (Aval et al., 2013, Corollary 8)).

Cornersof a tree—like tableau (symmetric or not) are the cells inchitidoth the right and bottom edges
are border edge®ccupied cornerare corners that contain a point. Figure 1 shows examplesetlike
tableaux.

3 General setting

Motivated by examples discussed in Section 1 we wish to densi sequence of polynomials

m
Pu(z) = puga®, n>0
k=0
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0] (ii)
[ ] [ ] [ ] [ ] [ ] 0|

Fig. 1: (i) A tree-like tableaux of siz&3 with 4 corners an@ occupied corners. (ii) A symmetric tree—like tableaux
of size11 with 6 corners4 of which are occupied.

that satisfy one of the recurrences (1) or (2) with the givetial polynomial Py(x). The sequences of
polynomials(f,(z)) and(g,(x)) are typically of low degree, but formally this is not requireSimi-
larly, in all of the above examples we hayg(1) = 0 and we will assume that throughout. It should
be emphasized, however, that there are natural situationdich the conditiory,,(1) = 0 fails. For
example, Wang (2014) considered a recurrence

Tu(w) = (2 + ©)Tu-1(2) + maT,_ (x),

for fixed numberg andm. The choicec = 0 andm = 1 is a classical situation of Bell polynomials (see
e. g. a discussion at the end of Section 7.2 in Chapter VIl ghtev(1974)). Furthermore, the choice
c=1and any fixedn € N gives polynomials associated with Whitney numbers of Dogvlattices (see
Benoumhani (1999)). For polynomials satisfying

Fu(z) = (z + D)Fya (@) + x(@ +m)F,_y (2)

with m € N we refer to (Benoumhani, 1997, Section 4) and referencesitheSo, clearly it is of interest
to consider (1) or (2) without the assumption that1) = 0 but as we indicated earlier we will assume
this throughout this paper.

Since we are interested in a probabilistic interpretatimwill assume that,, , > 0 andthad ", p, , >
0 for everyn. Then

Pn(x) _ Z Dk

k
P.(1) (0"

k>0

is the probability generating function of the integer valuandom variableX,, whose distribution func-
tion is given by

Pn,k
P(X, =k)= =2 k>0. 3
(Xo=h) = 325 b= )
We note that recurrence (1) defines the polynomiglsip to an additive constant or, equivalently, up to
the valueP, (1). In our context the polynomials arise in the study of disembinatorial structures, and
thus a natural choice of the normalization is obtained hynigtP,,(1) be the cardinality of the structure
consisting of all objects of size. For example, Laborde Zubieta sBt(1) = n! and@,(1) = 2"n!
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representing the number of tree-like tableaux of sizend the symmetric tree—like tableaux of size
2n + 1, respectively.

We want to use recurrences (1) and (2) to study the conveegerttistribution of the sequencéX’,,)
associated with these recurrences through (3).

4 Method of moments

One natural approach is to use the method of moments or, mecésely, the method of factorial mo-
ments. Itis based on the fact thafiifis a random variable uniquely determined by its (factori@ments

EX),=EX(X-1)...(X—-(r—1)), r=1,2,...
and(X,) is a sequence of random variables such that
E(X,) —EX),, n—oo, r=12,...

then ;
X, — X, n— oo,

where ““% ” denotes the convergence in distribution.
As is well-known, for a random variabl€ with probability generating functioh(z) = E2X we have

E(X)T = h(r)(1)7
whereh(")(z) is ther!” derivative ofh(x). Thus, in terms of polynomialg?, (z)) this means

P (1)
P, (1)

and consequently, we would be interested in comptﬂﬁé(l) and finding the asymptotic of the ratio on
the right-hand side above.
For recurrence (1) using Leibniz formula for higher ordenidgive of the product we obtain

PO@) = (Poa)"™ = (fal@)Paa (@)D + (ga(2) P 1<£>)(r_1)

_ i( ) £ (2) PR () +Z<T )gg’“)(x)P,Y:’“’(x)
k=
- P“>1<x>+Z () (3 )ste ) st

T ”(x)Pnfl ().

The idea now is that if,, andg,, are low—degree polynomials then one obtains a manageahieeace

for P,(f)(l). We will illustrate this on Laborde Zubieta's examgleZ). In that casef,,(z) andg, (x) are
polynomials of degree zero and one, respectively and treualtbve expression reduces to

PO (@) = gn(2)P™ (2) + (ful@) + (r — 1)gh(x)) PV () 4)

E(X,), =
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if » > 2 (and agrees with (1) if = 1). Laborde Zubieta used this, the specific form of the polyiatsn
fn(x), gn(x), andP, (1) = n! to show that the random variablés, defined by (3) satisfy

n—2
—

EX,=1 and vatX,)=

This suggests that the sequelidg,) converges in distribution to a Poisson random variable pattam-
eter 1. This is, indeed the case, and can be deduced fromdheence (1) as was shown in Hitczenko
and Lohss (2015). Here is a general statement that cQv&is

Proposition 1 Let
Pn(*r) = an,kl'k
k=0

be a sequence of polynomials satisfying recurrence (1) &figir) = f,, andg,(z) = g, - (x — 1) for
some sequences of constafts) and(g,,). Assume thag,, ;, > 0 and that}_, p,, » > 0 for everyn > 1,
and thatm = m,, may depend on. Consider a sequence of random variab|és,) defined by (3). If

Po_i1(1)
Pa(1)

gn =o0(fn) and f, —¢>0, as n— (5)

then
X, % Poisic) as n — oo,

where Poigc) is a Poisson random variable with parameter

As established by Laborde Zubieta (2015), the generatihgpmials for the number of occupied corners
in tree—like tableaux satisfy recurren@ez) (that means taking,, = n, g, = —2, andP,(1) = n!in
Proposition 1). Thus, the assumptions (5) are clearlyfgdisvith ¢ = 1 and we obtain the following
extension of Laborde Zubieta’s result (see Hitczenko antsk@2015))

Corollary 2 Asn — oo, the limiting distribution of the number of occupied cormer a random tree—like
tableau of size: is Poig1).

A companion result for symmetric tableaux is as follows (bl#ezenko and Lohss (2015) for more
details). The expected value and the variance were obta@didr in Laborde Zubieta (2015).

Corollary 3 Asn — oo, the limiting distribution of the number of occupied cormén a random sym-
metric tree—like tableau of siz& + 1 is 2 x Poig(1/2).

Proof of Proposition 1: By (Bollobas, 2001, Theorem 20, Chapter 1) it is enough tmstiat for every
r > 1 the factorial moments

E(Xn)r = EXn (X —1)... (Xn — (r — 1)),
of (X,,) converge ta" asn — oco. Usingg,, (1) = 0 andy,,(z) = g, in (4) we obtain

FO(1) = (fut (= Dga) PV (1),
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Consequently,
(r) (r—1)
V(1) P (1)
P, (1) 9.\ P50 (1)
= I r (”“‘”ﬁ) P

Therefore, upon further iteration,
(" (r—r)
P ( n k— 1( ) In—k PnfT (1)
n— 1 —k-1 .
P (Hf FPe() P k(l) * ( )fn—k Pn—r(l)

Since the last factor i, it follows from (5) that for every: > 1 asn — oo,

r

P (1)
Pn(l)

as desired. ]

— C

Remark 1 In principle it should be possible to prove a similar result polynomials of higher degrees
than those considered in Proposition 1. However, we havérigatto do that, primarily because we have
not encountered instances of such recurrences.

5 Real-rootedness of P,(z)

The idea we explore in this section is that if all rootsif(x) are real therP,,(z) can be written as a
product of linear factors. Furthermore, since the coeffisi@re non—negative the roots are non—positive.
Hence, these linear factors may be interpreted as the gengefanctions of{0, 1}—valued random vari-
ables and then knowing that the variance of their sum corsaig infinity suffices to conclude that the
sum is asymptotically normal. More specifically, assume tha

—00<Yn<0,i=1,...,m

are roots ofP, (x) and writer; ,, = —; ,, S0 thatr; , > 0. ThenP,(z) has a factorization

m

Pn(x) = Pn,m H(:E + Wk,n)a

k=1

so that

EuXn — P, (x) _ ﬁ LA Thn _ ﬁ T ke .
Pn(l) paie 1+7Tk,n it 1+7Tk,n 1+7Tk,n

The factor on the right—hand side is the probability gernegaiunction of a random variablg, ,, such
that

Tkon
) =

— k=1,...,m.
14+ 7en

P(éen=1) = and P(&, =0

14+ 7men
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Moreover, since the product of the probability generatungctions corresponds to taking sums of inde-
pendent random variables we have that

n
Xn = § §k,n7
k=1

where (¢, ,,) are independent. Therefore, it follows immediately frorthei Lindeberg or Lyapunov
version of the central limit theorem (see e. g. (Billingsl&995, Theorem 27.2 or Theorem 27.3)) that

X, -EX,
VvarX,)

as long as vdIX,,) — oo asn — oo. (HereN (0, 1) denotes the standard normal random variable.)
Since showing that the variance &f, tends to infinity is generally not difficult from the recurcas
(1) and (2), the main issue is real-rootednesB gf). This is, of course, not a new idea and the problem
has a very long history and the questions of real-rootedioessany families of classical polynomials
have been settled long time ago. In particular, in the cdrtexpresent discussion, the proof that all roots
of polynomials(HJ) are real was a slight modification of the proof for the Eulenlynomials given
by Frobenius (1910) more than hundred years ago. Nonethdhestechniques seem to be tailored to
the particular cases at hand. As far as general criterigh®oraal-rootedness of a family of recursively
defined polynomials, not much seem to have been known untilredatively recent papers Dominici
et al. (2011); Liu and Wang (2007). The first concerns recwee2) and requireg,(z) andg,(z) to
have degrees at most one and two, respectively. The sectied, specified to generality of (2) does not
put any restrictions on the degreesfofz) andg, (z) but requires thag,, () < 0 whenever: < 0. While
many of the real-rootedness results for classical polyatsmay obtained from one of these criteria (and
sometimes from both, e. g. Eulerian or Bell polynomials) same not covered by them. In particular,
neither Dominici et al. (2011) nor Liu and Wang (2007) applie our first exampl¢ABN). Yet, as it
turns out a modification of methods developed in Dominicile{2011) may be used to show that the
polynomialsB,, (z) defined by(ABN) do, indeed, have all roots real. We will not prove it in thisesxded
abstract, instead referring the reader to the full versiahie paper.

-4 N(0, 1),

6 Asymptotic normality of the number of diagonal boxes in sym-
metric tree—like tableaux
In this section we analyze the recurreii@@N). The polynomials

n+1
B, (z) = Z B(n,k)z*, n >0,
k=1

were introduced in (Aval et al., 2013, Section 3.2) and aeegihnerating polynomials for the number of
diagonal cells in symmetric tree—like tableaux of skze+ 1 (that is to say thaB(n, k) is the number
of symmetric tree—like tableaux of sizZ + 1 with k£ diagonal cells). As was shown in Aval et al.
(2013)(B,,(x)) satisfy the recurrend@BN) and it follows readily from that that the expected number of
diagonal cells in symmetric tableaux of size+ 1 is 3(n+ 1)/4 (see (Aval et al., 2013, Proposition 19)).
Continuing that work, we find the expression for the variasmee show that the number of diagonal cells
is asymptotically normal. The precise statement is asviclo
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Theorem 4 Let D,, be the number of diagonal boxes in a random symmetric tleetéibleau of size
2n + 1. Then, ass — oo
D, —-3n+1)/4 4

— N(0,1).
7(n+1)/48
Since(D,,) are random variables defined by
B(n, k) B(n, k)

B =k = = Bk~ Bal)

where(B,,(z)) satisfy recurrencABN) it follows form our discussion that theorem will be proveden
we show that the variance &1,, grows to infinity withn and that all roots oB3,,(x) are real. The precise
statements are given it two propositions below.

Proposition 5 The variance of the number of diagonal cells in a random sytmcrteee—like tableaux of
size2n + 1 s,
T(n+1)
var(D,) = ——=. 6
(Da) = = (6)

Proposition 6 For all n > 0, the polynomiaBB,, (z)
a) has degree + 1 with all coefficients non-negative, and
b) all roots real and in the interval-1, 0].

Because of the space limitation we will include here a prééfroposition 5 only and we refer the reader
to the full version of the paper for the proof of Proposition 6

Proof of Proposition 5: First we will calculate the second factorial momentiof. Differentiating the
recurrenc€ABN) twice and evaluating at = 1 yields

B!'(1) =2nB,_1(1) + 6(n — 1)B.,_;(1) +2(n — 2)B/_,(1).

n—1

Furthermore, since
B, (1) =2nB,_1(1)

and
var(D,,) = E(D,); — E*D,, + ED, 7
we obtain
(D) = B, (1) 2nB,_1(1) +6(n—1)B,_,(1) +2(n — 2)BY_,(1)
M2 BL) 2nB,_1(1)
-1 -2
- %Em_l + 2 2E(D, ),
= 1+ MED”—I + n_2 (Var(Dn—l) + EQD‘!L—l - ED’IL—I)

n
2n —1

= 1+n

-2
Var(Dn—l) + n—EQDn—l + < ) EDn—L
n
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Now, usingED,, = 3(n + 1)/4 (as computed fronfABN) in (Aval et al., 2013, Proposition 19)) and (7)
we obtain

n—2 n—2/3n\> 2n—13n
varD,) = 1+ var(D,,_1) + (I) + — T
(3(n+1) 2+3(n+1)
4 4
n— 2 7
= van D,,_ —.
n (Dn-1) + 15

This recurrence is easily solved (see e. g. (Graham et &4,1%ection 2.2)) and yields (6) completing
the proof of Proposition 5 and Theorem 4. |

Remark 2 The representation ab,, as the sum of independent indicator random variables irsghat
a local limit theorem holds too. Specifically, usiB@,, = 3(n + 1)/4 and va(D,,) = 7(n + 1)/48 we

have that
2v/6 < ( 24(k — 3(n + 1)/4)2) )
P(D,=k)= —————=|exp | — +o(1
( ) Nz CES A T+ 1) (1)
holds uniformly ovek asn — co. We refer to (Hitczenko and Janson, 2014, Theorem 2.7 arstasiion

of its proof in Section 5) for more detailed explanation andRetrov, 1975, Theorem VII.3) for a general
statement of a local limit theorem.

7 Conclusion

We have considered recurrences for generating polynowiiaksquences of integer valued random vari-
ables and tried to use these recurrences to identify thetdigonal limits of the associated sequences of
random variables. Some examples lead to Poisson limitse edner to Gaussian limits. In particular, we
established the asymptotic normality for the number of direg cells in the random tree—like tableaux by
verifying that the generating polynomials have only reaitscand that the variance tends to infinity with
n. However, there seem to be lack of general criteria that dvallbw one to find the limiting distribution
of the underlying sequence of random variables directlynftbe recurrences of the form (2) or (1). For
example, the limiting distribution of the random variabéssociated with the recurren@&H) is neither
Poisson nor normal. In fact, as have been shown in (Acan atdetiko, 2016, Section 3) {fX,,) is a
sequence of random variables associated with the recer¢Ait) through (3) then

X
n 4, x,
2/

where X is a random variable with the probability density functire—" if z > 0 and is 0 otherwise.
However, it is not clear how to see it from the recurre(®kl). Factorial moments satisfy

2n —1+r
]E(Xn)T = 271 1 E(anl)r +

r(r—1)
2n —1

]E(anl)rfl
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and one can get from there

m @Qn)t 92
]EX»,L = —EXW,— = —= X
on — 1 T en-nn T ey Y™

and
var(X,) = (4 — m)n+ O(v/n).

In principle, higher moments can be found too. For example

E(X,)s =6 <% —4n — 3> ~ 6y/7n3/?

but the computations become increasingly more complicaEsen the asymptotic behavior of the first
two moments is not immediately clear from the recurref@dd).

Thus, it seems worthwhile to further study the recurrenigeq L) and (2) to obtain a more comprehen-
sive picture of their probabilistic consequences.
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Using Pdlya urns to show normal limit laws
for fringe subtrees in m-ary search trees
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We study fringe subtrees of random m-ary search trees, by putting them in the context of generalised Pdlya
urns. In particular we show that for the random m-ary search tree with m < 26, the number of fringe subtrees
that are isomorphic to an arbitrary fixed tree 7' converges to a normal distribution; more generally, we also
prove multivariate normal distribution results for random vectors of such numbers for different fringe subtrees.

Keywords: Random trees; Fringe trees; Normal limit laws; P6lya urns; m-ary search trees

1 Introduction

The main focus of this paper is to consider fringe subtrees of random m-ary search trees; these
random trees are defined in Section 2. Recall that a fringe subtree is a subtree consisting of some
node and all its descendants, see Aldous [1] for a general theory, and note that fringe subtrees
typically are “small” compared to the whole tree.

We will use (generalised) Pdlya urns to analyze vectors of the numbers of fringe subtrees of
different types in random m-ary search trees. As a result, we prove multivariate normal asymptotic
distributions for these random variables, for m-ary search trees when m < 26. (It is well known
that asymptotic normality does not hold for m-ary search trees for m > 26, see [2].)

Polya urns have earlier been used to study the total number of nodes in random m-ary search
trees, see [16, 13, 17]. In that case one only needs to consider an urn with m — 1 different types,
describing the nodes holding ¢ keys, where i € {0, 1,...,m — 2}. Recently, in [10] more advanced
Pélya urns were used to describe protected nodes in random m-ary search trees, where the types
were further divided depending on characteristics of the different fringe subtrees (however, in [10]
only the cases m = 2, 3 were treated in detail).

In [10] a simpler urn was also used to describe the total number of leaves in random m-ary search
trees. In this work we further extend the approach used in [10] for analyzing arbitrary fringe subtrees
of a fixed size in random m-ary search trees. This paper is an extended abstract of [12], where we
also prove similar results for the general class of linear preferential attachment trees, and also extend
the methods used in [10] to analyze the number of protected nodes in m-ary search trees for m < 26.

2 me-ary search trees

We recall the definition of m-ary search trees, see e.g. [15] or [6]. An m-ary search tree, where
m > 2, is constructed recursively from a sequence of n keys (ordered numbers); we assume that the
keys are distinct. Each node may contain up to m — 1 keys. We start with a tree containing just an
empty root. The first m — 1 keys are put in the root, and are placed in increasing order from left to

TPartly supported by the Swedish Research Council
Partly supported by by the Knut and Alice Wallenberg Foundation
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right; they divide the set of real numbers into m intervals Jy, ..., J,. When the root is full (after
the first m — 1 keys are added), it gets m children that are initially empty, and each further key is
passed to one of the children depending on which interval it belongs to; a key in J; is passed to the
1’th child. (The binary search tree, i.e., the case m = 2, is the simplest case.) The procedure repeats
recursively in the subtrees until all keys are added to the tree.

We are primarily interested in the random case when the keys form a uniformly random permuta-
tion of {1,...,n}, and we let 7T, denote the random m-ary search tree constructed from such keys.
(Only the order of the keys matters, so alternatively, we may assume that the keys are n i.i.d. uniform
random numbers in [0, 1].)

Nodes that contain at least one key are called internal, while empty nodes are called external. We
regard the m-ary search tree as consisting only of the internal nodes; the external nodes are places
for potential additions, and are useful when discussing the tree but are not really part of the tree.
Thus, a leaf is an internal node that has no internal children, but it may have external children.

We say that a node with ¢ < m — 2 keys has 7 + 1 gaps, while a full node has no gaps. It is easily
seen that an m-ary search tree with n keys has n + 1 gaps; the gaps correspond to the intervals of
real numbers between the keys (and +00), and a new key has the same probability 1/(n + 1) of
being inserted into any of the gaps. Thus, the evolution of the random m-ary search tree may be
described by choosing a gap uniformly at random at each step, and inserting a new key there.

Note that the construction above yields the m-ary search tree as an ordered tree. Hence, a non-
random m-ary search tree is an ordered rooted tree where each node is marked with the number of
keys it contains, with this number being in {0,...,m — 1} and such that nodes with m — 1 keys
have exactly m children, and the other nodes are leaves. There is a natural partial order on the set
of (isomorphism classes of) nonrandom m-ary search trees, such that 7' < T" if 7" can be obtained
from T' by adding keys (including the case 77 = T)).

In applications where the order of the children of a node does not matter, we can simplify by
ignoring the order and regard the m-ary search tree as an unordered tree. (Then, we can also ignore
the external nodes.) A partial order 77 < T" is defined on the set of (isomorphism classes of)
unordered m-ary search trees in the same way as in the ordered case.

3 Main results

In this section we state the main results on fringe subtrees in random m-ary search trees. These
results are extensions of results that previously have been shown for the specific case of the random
binary search tree with the use of other methods, see e.g., [4, 5, 9].

Remark 3.1 As said in the introduction, m-ary search trees can be regarded as either ordered or
unordered trees. The most natural interpretation is perhaps the one as ordered trees, and it implies
the corresponding result for unordered trees in, e.g., Theorem 3.2. However, in some applications it
is preferable to regard the fringe trees as unordered trees, since this gives fewer types to consider in
the Pdlya urns that we use, see e.g., Example 5.1.

The following theorem generalises [9, Theorem 1.22], where the specific case of the binary search
tree was analyzed.
Let H,, := Y ;. 1/k be the m’th harmonic number.

Theorem 3.2 Assume that 2 < m < 26. Let T, ..., T% be a fixed sequence of nonrandom m-ary
search trees and let Y,, = (Xg1 , X .. ,ng), where Xgl is the (random) number of fringe

n
subtrees that are isomorphic to T" in the random m-ary search tree T, with n keys. Let k; be the

number of keys of T' fori € {1,...,d}. Let
p, = EY = (E(XT) BT, E(XE).

Then
n V(Y — ) 5 N(0,3), 3.1)
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Where ¥ = (Uij)ﬁjzl is some covariance matrix. Furthermore, in (3.1), the vector p,, can be
replaced by the vector fi,, ‘= nji, with

- ( P(Ti, =T") P(Try = T%) ) (3.2)

BN, D)+ (k1 2) 7 (Hyy — (ke + (ke +2)/ ‘
Moreover, if the trees T, ..., T% have at least one internal node each, then the covariance matrix
3. is non-singular.
Remark 3.3 That p,, can be replaced by the vector fi,, means that

i P(Tw, =TY)
E(XI) = : 172y, 33
17 s 1 (o) LA G 33

A weaker version of (3.3) with the error term o(n) follows from the branching process analysis of
fringe subtrees in [11], see the proof in Section 6. The vector fi,, can also, using (5.2) below, be
calculated from an eigenvector of the intensity matrix of the Pdlya urn defined in Section 5, see
Theorem 4.1(i). See also [14].

Also the covariance matrix X = (Uij)?, j=1 can be calculated explicitly from the intensity matrix

of the Pdlya urn, see Theorem 4.1(ii). The results in [14] show also

0ij = lim % Cov(XI", XI). (3.4)

The following theorem is an important corollary of Theorem 3.2. It also follows from Fill and

Kapur [7, Theorem 5.1]. The special case of the random binary search tree was proved by Devroye

[4], and the covariances for Y, j in that case were given by Dennert and Griibel [3], see also [9, The-

orem 1.19 and Proposition 1.10]. For binary search trees also the case when the size k is depending

on n has been analyzed; in that case both normal and Poisson limit laws appear, see e.g., Fuchs [8]
and [9].

Theorem 3.4 Assume that 2 < m < 26. Let k be an arbitrary fixed integer and let Y, j, be the
(random) number of fringe subtrees with k keys in the random m-ary search tree T, with n keys.
Then, as n — oo,

n V2 (Y h —EV,y) 5 N(0,07), (3.5)

where ai is some constant with O‘i > 0 except when k = 0 and m = 2. Furthermore, we also have

—1/2 _ n d 9
n (Yn,k (Hmfl)(k+1)(k+2))_)N(O’U’“)' (3.6)

Remark 3.5 The asymptotic mean W’W

stant o7 can again be calculated explicitly from our proof.

in (3.6) easily follows from (3.3). The con-

We give one example of Theorem 3.4 in Section 7, where we let m = 3 and k = 4.

4 Generalised Pélya urns

A (generalised) Pdlya urn process is defined as follows, see e.g. [13] or [17]. There are balls of ¢

types (or colours) 1, ..., g, and for each n a random vector X,, = (X, 1,..., Xy ), Where X, ; is
the number of balls of type ¢ in the urn at time n. The urn starts with a given vector Xj. For each
type i, there is an activity (or weight) a; € R>, and a random vector &; = (&1, . ., &iq), Where

&j € Z>0 and &; € Z>_1. The urn evolves according to a discrete time Markov process. At each
time n > 1, one ball is drawn at random from the urn, with the probability of any ball proportional

to its activity. Thus, the drawn ball has type ¢ with probability % If the drawn ball has
g I
)

type 1, it is replaced together with AX r(; ; balls of type j, j = 1,...,q, where the random vector
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AXr(f) = (AXT(Z)I, cee AXT(f;)q) has the same distribution as &; and is independent of everything else

that has happened so far. We allow AX 7(11)1 = —1, which means that the drawn ball is not replaced.
The intensity matrix of the Pélya urn is the ¢ X ¢ matrix
A= (aj Egjl);{]:] (41)

The intensity matrix A with its eigenvalues and eigenvectors is central for proving limit theorems.
We use the basic assumptions (A1)—(A6) on the Pélya urn stated in [13, p. 180] together with the
following simplifying assumption, cf. [10]:

(A7) Ateach time n > 1, there exists a ball of a dominating type, as defined in [13].

Using the Perron—Frobenius theorem, it is easy to verify all conditions (A1)—(A6) for the Pélya urns
used in this paper, and (A7) follows because the urn is irreducible if we ignore balls with activity 0,
and there will always be a ball of positive activity, see [13, Lemma 2.1] and the discussion in [12].

Before stating the results that we use, we need some notation. By a vector v we mean a column
vector, and we write v’ for its transpose (a row vector). More generally, we denote the transpose
of a matrix A by A’. By an eigenvector of A we mean a right eigenvector; a left eigenvector is the
same as the transpose of an eigenvector of the matrix A’. If u and v are vectors then u'v is a scalar
while uv’ is a ¢ x ¢ matrix of rank 1. We also use the notation u - v for v’v. We let \; denote the
largest real eigenvalue of A. (This exists by our assumptions and the Perron—Frobenius theorem.)
Leta = (ay,. .., aq) denote the (column) vector of activities, and let u} and v; denote left and right
eigenvectors of A corresponding to the largest eigenvalue A1, i.e., vectors satisfying

ul A = A\u, Avy = M.
‘We assume that v; and u; are normalised so that
a-vy =av =via=1, up vy = ujvy = viug = 1, 4.2)

see [13, equations (2.2)-(2.3)]. We write v; = (v11,. .., V1q)-
We define Py, = viu}, and Py = I, — Py,, where I is the ¢ X ¢ identity matrix. We define the
matrices

B; .= E(fiﬁg) 4.3)
q

B = ZvliaiBi (44)
=1

S / PretABetA Plei%ds, (4.5)
0

where we recall that e = 377 7 A7/j1. From [13] it follows that when Re A < A; /2 for each
eigenvalue A # )1, the integral X.; in (4.5) converges.

Furthermore, it is proved in [13] that, under assumptions (A1)—(A7), &), is asymptotically normal
if Re A < A1/2 for each eigenvalue A # A;. We will apply the following result from [13].

Theorem 4.1 ([13, Theorem 3.22 and Lemma 5.4]) Assume (A1)—(A7) and that we have normalised
as in (4.2). Also assume that Re A < \1/2, for each eigenvalue \ # \;.

(i) Then, as n — oo,
n (&, — ) 5 N(0, %), (4.6)
with u = A\1v1 and some covariance matrix X..
(1) Suppose further that, for some c > 0,
a-E(&) =c i=1,...,q. 4.7

Then the covariance matrix in (4.6) is given by ¥ = cX, with X1 as in (4.5).
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O

Remark 4.2 It is easily seen that (4.7) implies that Ay = ¢ and u; = a, see e.g. [13, Lemma 5.4].
There is also an alternative way to evaluate ¥ in the case when A is diagonalisable (which is the
case at least for many examples of Theorem 3.2 and Theorem 3.4, e.g., the example in Section 7),
see [12, Theorem 4.1(iii)] or [13, Lemma 5.3].

Remark 4.3 From (4.6) follows immediately a weak law of large numbers:
X, /n 25 p. (4.8)

In fact, the corresponding strong law X, /n 25 1 holds as well, see [13, Theorem 3.21]. Further-
more, in all applications in the present paper, all £;; are bounded and thus each X, ; < C'n for some
deterministic constant; hence (4.8) implies by dominated convergence that also the means converge:

EX,./n — u. 4.9

5 Pdlya urns to count fringe subtrees in random m-ary search
trees

In this section we describe the Pdlya urns that we will use in the analysis of fringe subtrees to prove
Theorem 3.2 and Theorem 3.4 for m-ary search trees. We consider either ordered or unordered trees,
see Remark 3.1.

Let T, ..., T be a fixed sequence of (nonrandom) m-ary search trees and let as in Theorem 3.2
Y, = (X', X7 .. XT") where X7 is the number of fringe subtrees in 7, that are isomorphic
to T*. We may assume that at least one tree T contains at least m — 2 keys. (Otherwise we simply
add one such tree to the sequence.)

Assume that we have a given m-ary search tree 7,, together with its external nodes. Denote the
fringe subtree of 7,, rooted at a node v by 7,,(v). We say that a node v is living if T,,(v) < T for
somei € {1,...,d},ie., if T,(v) is isomorphic to some T" or can be grown to become one of them
by adding more keys. Note that this includes all external nodes and all leaves with at most m — 2
keys (by the assumption that at least one tree T contains at least m — 2 keys). Furthermore, we let
all descendants of a living node be living. All other nodes are dead.

Now erase all edges from dead nodes to their children. This yields a forest of small trees, where
each tree either consists of a single dead node or is living (meaning that all nodes are living) and can
be grown to become one of the 7. We regard these small trees as the balls in our generalised Pélya
urn. Hence, the types in this Pélya urn are all (isomorphism types of) nonrandom m-ary search trees
T such that T < T for some i € {1,...,d}, plus one dead type. We denote the set of living types
by

d
S:=|[Hr:7=T7}, (5.1
i=1
and the set of all types by S* := S U {x}, where * is the dead type.

When a key is added to the tree 7, it is added to a leaf with at most m — 2 keys or an external
node, and thus to one of the living subtrees in the forest just described. If the root of that subtree still
is living after the addition, then that subtree becomes a living subtree of a different type; if the root
becomes dead, then the subtree is further decomposed into one or several dead nodes and several (at
least m) living subtrees. In any case, the transformation does not depend on anything outside the
subtree where the key is added. The random evolution of the forest obtained by decomposing 7, is
thus described by a Pdlya urn with the types S*, where each type has activity equal to its number of
gaps, and certain transition rules that in general are random, since the way a subtree is decomposed
(or perhaps not decomposed) typically depends on where the new key is added.

Note that dead balls have activity O; hence we can ignore them and consider only the living types
(i.e., the types in S) and we will still have a P6lya urn. The number of dead balls can be recovered
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from the numbers of balls of other types if it is desired, since the total number of keys is non-random
and each dead ball contains m — 1 keys.

Let X, 7 be the number of balls of type 7" in the Pélya urn, for T’ € S. The trees T* that we want
to count correspond to different types in the Pélya urn, but they may also appear as subtrees of larger
living trees. Hence, if n(T,T") denotes the number of fringe subtrees in 7 that are isomorphic to
T', then Xg i is the linear combination

X' =3 n(T,T) X 1. (5.2)
TeS

The strategy to prove Theorem 3.2 should now be obvious. We verify that the PSlya urn satisfies
the conditions of Theorem 4.1 (this is done in Section 6); then that theorem yields asymptotic nor-
mality of the vectors (X, 7)res, and then asymptotic normality of (X7, ..., XT*) follows from
(5.2).

Example 5.1 (a Polya urn to count fringe subtrees with & keys) As an important example, let us
consider the problem of finding the distribution of the number of fringe subtrees with a given number
of keys, as in Theorem 3.4. In this case, the order of children in the tree does not matter so it is easier
to regard the trees as unordered.

Thus, fix £ > m —2and let T%, 5 € {1,...,d}, be the sequence of all m-ary search trees that can
be obtained with at most k keys. Hence, (5.1) yields S = {T"% : 1 < i < d}.

In the decomposition of an m-ary search tree constructed above, a node v is living if and only if
the fringe subtree rooted at v has at most k keys. Hence, the decomposition consists of all maximal
fringe subtrees with at most k keys, plus dead nodes, which we ignore.

The replacement rules in the Pélya urn are easy to describe. The types are the m-ary search trees
with at most k keys. A type T" with j keys has j + 1 gaps, and is thus given activity 7 + 1. Let
T1,...,Tj41 be the trees obtained by adding a key to one of these gaps in T". (Some of these may
be equal.) If we draw a ball of type T" and j < k, then the drawn ball is replaced by one ball of a
type randomly chosen among 77, ..., T+ (with probability 1/(j + 1) each); note that these trees
have j + 1 < k keys and are themselves types in the urns. On the other hand, if j = k, then each of
these trees has k£ + 1 keys so its root is dead; the root contains m — 1 keys so after removing it we
are left with m subtrees with together k + 1 — (m — 1) < k keys, so these subtrees are all living and
the decomposition stops there. Consequently, when j = k, the drawn ball is replaced by m balls
of the types obtained by choosing one of 77, ..., k1 uniformly at random and then removing its
root; this leaves m living subtrees and we add balls of the corresponding types.

To find the number of fringe subtrees with k keys, we sum the numbers X, 7 of balls of type T'
in the urn, for all types T" with exactly k keys. Note that we similarly, using (5.2), may obtain the
number of fringe subtrees with ¢ keys, for any ¢ < k, from the same urn. This enables us to obtain
joint convergence in Theorem 3.4 for several different k, with asymptotic covariances that can be
computed from this urn.

Note that for £ = m — 2, the urn described here consists of m — 1 types, viz. a single node with
i — 1keysfori=1,...,m — 1. This urn has earlier been used in [16, 13, 17] to study the number
of nodes, and the numbers of nodes with different numbers of keys, in an m-ary search tree.

In Section 7 we give an example with m = 3 and k£ = 4; in that case there are 6 different (living)
types in the Pélya urn.

Remark 5.2 The types described by the Pdlya urns above all have activities equal to the total num-
ber of gaps in the type. Since the total number of gaps increases by 1 in each step, we have a-§; = 1
for every 4, deterministically; in particular, (4.7) holds with ¢ = 1. Hence, A\; = 1 by Remark 4.2.

6 Proofs

As said in Section 4, it is easy to see that the Pdélya urns constructed in Section 5 satisfy (Al)-
(A7), for example with the help of [13, Lemma 2.1]. To apply Theorem 4.1 it remains to show that
Re A < A1/2 for each eigenvalue A # \;. We will find the eigenvalues of A by using induction
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on the size of S, the set of (living) types. For definiteness we consider the version with ordered
unlabelled trees; the version with unordered trees is the same up to minor differences that are left to
the reader.

Note that there is exactly one type that has activity j for every j € {1,...,m — 1}. (These
correspond to the nodes holding 7 — 1 keys.) These types are the m — 1 smallest in the partial order
=, and they always belong to the set S constructed in Section 5.

Let ¢ := |S| be the number of types in S, and choose a numbering 77, ..., T, of these ¢ types
that is compatible with the partial order <. For k < g, let

Sk = {Th...,Tk}. (61)

For k > m — 1, we may thus consider the Pélya urn with the & types in Sy constructed as in
Section 5. Note that this corresponds to decomposing T, into a forest with all components in Sy U
{*}. Furthermore, let X} := (XF |,... X ~ ), where X7 ; is the number of balls of type T} in the
urn with types Sy, at tlme n and let Ay, be the intensity matrlx of this Pélya urn. Thus A = A,.

First let us take a look at the diagonal values &;;. In the result below we assume m > 3, the case
m = 2 is similar and we refer to [12] for the corresponding statement and proof in that case.

Proposition 6.1 Let m > 3andm — 1 < k < q. Then (Ax)i; = —a; for every typei = 1,... k.
Hence, the trace satisfies

k
tr(Ag) = — Z a;. (6.2)
i=1

Proof: Observe that if we draw a ball of type ¢ with k; keys, then the ball is replaced either by a
single ball of a type with k; + 1 keys or by several different balls obtained by decomposing a tree
with k; + 1 keys that has a dead root. In the latter case, m — 1 of the keys are in the dead root, so
each living tree in the decomposition has at most k; + 1 — (m — 1) = k; — m + 2 keys.

Hence, if m > 3, then in no case will there be a ball with exactly k; keys among the added balls,
and in particular no ball of type i; consequently, £;; = —1 and (Ag);; = —a;, see (4.1). O

Theorem 6.2 Let m > 2. The eigenvalues of A are the m — 1 roots of the polynomial ¢, (N\) :=
ngl (A +4) — m! plus the multiset

{—=a;:i=mm+1,...,q}. (6.3)

Proof: We prove by induction on k that the theorem holds for A, (with ¢ replaced by & in (6.3)),
for any k£ with m — 1 < k < q. The theorem is the case k = q.

First, for the initial case Kk = m — 1, T} is a single node with ¢ — 1 keys, i = 1,.. ., k; thus X;L’fi_l
is the number of nodes with i — 1 keys, i.e., the number of nodes with i gaps. (In particular, X" !
is the number of external nodes.) This P6lya urn with m — 1 types has earlier been analyzed, see
e.g., [13, Example 7.8] and [17, Section 8.1.3]. The (m — 1) x (m — 1) matrix A4,,_; has elements
a;; =—iforie{l,...,m—1},a;,-1 =i—1fori € {2,...,m}, a1;m—1 =m - (m — 1) and
all other elements a; ; = 0, i.e.,

-1 0 0 0 (m—1)
1 -2 0 0 0
0 2 -3 0 0
An-1=1 0 0 3 0 0 : (6.4)
0 0 0 ... m—=2 —(m-1)

As is well-known, the matrix A,,_1 has characteristic polynomial ¢,,(A); this shows the theorem
for kK = m — 1, since the set (6.3) is empty in this case.
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We proceed to the induction step. Let m — 1 < k < ¢. By using arguments similar to those that
were used in the proof of [10, Lemma 5.1] we will show that A inherits (with multiplicities) the
eigenvalues of A;. We write a* = (ay, ..., ay) for the activity vector for the Pélya urn with types
in Sk.

We have Sgy1 = Si U {Tk+1}. Since the vector Xjf“ obviously determines also the number
of subtrees of each type in the decomposition of 7,, into the types in Sk, there is an obvious linear
map T : R**! — RF that is onto such that X* = TX*+1. Furthermore, starting the urns with an
arbitrary (deterministic) non-zero vector Xy ' € Z5 and AF = TXF ™, the urn dynamics yield

A Xk+1
k+1 k+1y _ “k+1%0
E(ATT —A5T) = R R (6.5)
ApXF
0

Consequently, since also a*+1 - X¥+1 = ¥ . X% (this is the total activity, i.e., the total number of
£aps),

TAp Xy T = (@ AFTHTE@T — a5 ) = (oF - AF) E(X] — A7) = ApXy
= A TAST,

and thus, since Xé““ is arbitrary,
TAp1 = AgT. 6.7)

Let u’ be a left generalised eigenvector of rank p corresponding to the eigenvalue A of the matrix
Ak, i.C.,
’LLI(Ak - )\Ik)p = 0.

Then, by (6.7),
’U,/T(Ak_H — )\Ik+1)p = u/(Ak - )\Ik)pT = 0,

and thus w'T = (T"u)’ is a left generalised eigenvector of Ay for the eigenvalue A. Since T is
onto, 7" is injective and thus 7" is an injective map of the generalised eigenspace (for \) of Ay
into the generalised eigenspace of Aj1. This shows that A is an eigenvalue of A1 with algebraic
multiplicity at least as large as for A;. Consequently, if Ay has eigenvalues Ay, ..., A; (including
repetitions, if any), then Ay, has eigenvalues A1, ..., Ag, Ap+1 for some complex number Ay 1.

Then the result follows by the following observation. The trace of a matrix is equal to the sum of
the eigenvalues; hence,

trAg41 = A1+ -+ A1 = tr Ag + At (6.8)
and thus by (6.2) (when m > 2) or the corresponding result in [12] (when m = 2),
A1 = tr(Agy1) — tr(Ag) = —ag1- (6.9)

Thus, by induction, Theorem 6.2 holds for every Ay, with m — 1 < k < ¢, and in particular for
A=A, O

Theorem 6.2 shows that the eigenvalues of A are the roots of ¢, plus some negative numbers
—a;; hence the condition Re A < A;/2 in Theorem 4.1 is satisfied for all eigenvalues of A except
A1 if the condition is satisfied for the roots of ¢,, (except A1); it is well-known that this holds if
m < 26, but not for larger m, see [18] and [7].

In the remainder of this section we assume m < 26. Thus Re A < )\;/2 for every eigenvalue
A # A1, and Theorem 4.1 applies to the urn defined above.

Proof of Theorem 3.2: By Theorem 4.1(i), (4.6) holds, with y = A\jv1 = vy.
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By 5.2), Y, = (XI',xI"

n n 7

L XT d) = RAX, for some (explicit) linear operator R. Hence,

(4.6) implies
n~Y2(Y, —nRp) = R(n"Y2(X, — p)) -5 N (0, RZR). (6.10)
Furthermore, by [14],
EX, =nu+0(n1/2), (6.11)
and thus
p, =EY, = R(EX,) = nRu+ o(n'/?). (6.12)

Hence, (6.10) implies (3.1) (with the covariance matrix RX.R’, where X is as in (4.6)).
Moreover, as said in Remark 3.3, it follows from [11], to be precise by combining [11, (5.30),
Theorem 7.10 and Theorem 7.11], that

EY, = nii+ o(n). (6.13)

By combining (6.12) and (6.13) we see that Ry = i (since neither depends on n), and thus (6.12)
yields (3.3).

To see that the covariance matrix RY.R’ is non-singular when each T* has an internal node so
k; > 0, suppose that, on the contrary, v’ RXR'u = 0 for some vector u # 0. Then, by [14, Theorem
3.6], W'Y, = wRA, is deterministic for every n. We argue as for the case ¥ = 2 in the proof
of [9, Lemma 3.6]. We may assume that every u; # 0, since we may just ignore each 7% with
u; = 0; we may also assume that 1 < k; < ky < .... Let NV be a large integer, with N > kg,
and let T be a tree consisting of a single path with IV + k1 internal nodes, each of them (except the
root) the right-most child of the preceding one. Let T5 consist of a similar right-most path with N
internal nodes, together with m — 1 copies of T3, which have their roots as the m — 1 first children
of T5. Note that both T} and 75 have (N + k1)(m — 1) keys, so they are possible realizations
of TN+, )(m—1)- Moreover, for any tree T, i > 2, T and T have the same number of fringe
trees isomorphic to 7%, while T contains m — 1 more copies of 7! than T, does. Hence the linear
combination u'Y,, = >, u; X" may take at least two different values when n = (N +k;)(m — 1),
which is a contradiction. Consequently, the covariance matrix cannot be singular when all k; > 0.
O

Proof of Theorem 3.4: This follows from Theorem 3.2; we refer to [12] for details. O

7 Example of Theorem 3.4 when m =3 and k =4

We consider the case when we want to evaluate o7 in Theorem 3.4 in the case of a random ternary
search tree (m = 3).

We use the construction of the Pélya urn in Example 5.1, which gives an urn with the following 6
different (living) types:

1. An empty node.

2. A node with one key.

3. A node with two keys and three external children.

4. A tree with a root holding two keys and one child holding one key, plus two external children.

5. A tree with a root holding two keys and two children holding one key each, plus one external
child.

6. A tree with a root holding two keys and one child holding two keys, plus two external children
of the root and three external childen of the leaf.
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O ® =S
elele

Type 1 Type 2 Type 3

\ . o,
00 OO0 800

Type 4 Type 5 Type 6

Fig. 1: The different types for counting the number of the fringe subtrees with four keys in a ternary search
tree.

See Figure 1 for an illustration of these types.

The activities of the types are 1,2,3,4,5,5. We can easily describe the intensity matrix, first
noting that if we draw a type k for k < 3 it is replaced by one of type k + 1. If we draw a type 4 it is
replaced by one of type 5 with probability 1/2 and one of type 6 with probability 1/2. If we draw a
type 5 it is replaced by three of type 2 with probability 1/5, and one each of the types 1, 2 and 3 with
probability 4/5; see Figure 2 for an illustration. Finally if we draw a type 6 it is replaced by one each
of the types 1, 2 and 3 with probability 2/5, and two of type 1 and one of type 4 with probability 3/5.

L \ 4/5 Q @ @
O©®O OlO0,

Type 5 Type 1+Type2+Type3
\ J OJ0JO)
\\\‘
OO
Type 5 3 Type 2

Fig. 2: The two possibilities for adding a key to a node in a tree of type 5 of a ternary search tree.

Thus, we get the intensity matrix A in (4.1) as

(7.1)

coocor~—
coo N O
cowwoo
M R OO
(=TS NP N
GO W N oo
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The eigenvalues are, by direct calculation or by Theorem 6.2,
1,-3,—-4,—4,-5,-5. (71.2)

(We know already that \; = 1, as was noted in Section 6 as a consequence of Remark 4.2.)

Furthermore, by Remark 4.2, the left eigenvector uy is u; = a = (1,2,3,4,5,5). The right
eigenvector vy, with the normalization (4.2), is v; = (3/25,1/10,2/25,3/50,1/50,1/50). Note
that 1 = vy in Theorem 4.1, since A\; = 1. Hence, the asymptotic mean in (3.6) for X, 4 is
(ps + pe)n = 5¢. (However, to get the asymptotic expectation in (3.6) for arbitrary & and m we
could instead use branching processes, see [11].)

To calculate the variance Ui, we calculate the covariance matrix 3 in Theorem 4.1 by Theorem
4.1(ii); thus we first calculate B;, B and X5 in in (4.3)—(4.5). Since A is diagonalisable, there is also
an alternative way to calculate X, see Remark 4.2; see also [12, Theorem 4.1(iii)] and [13, Lemma
5.3].

To calculate B in (4.4) we need to calculate B; = E(&;£)) in (4.3). We only describe how to
get the matrix By since the other cases are analogous. We get By = % “b b + % - bably, where
by = (0,3,0,0,—1,0)" and by = (1,1,1,0,—1,0)’; see Figure 2. Now we can use Mathematica to
evaluate the integral in (4.5), which yields ¥;. Finally, ¥ = X; by Theorem 4.1 with ¢ = 1. The
result is given in (7.3).

20017 117371 44311 2143 28289 28289
259875 10395000 5197500 945000 5197500 5197500
117371 7379 34927 3907 166037 166037
10395000 83160 5197500 236250 20790000 20790000
44311 34927 159241 4747 84709 84709
5197500 5197500 2598750 236250 10395000 10395000

Y= . (7.3)
2143 3907 4747 39227 13309 13309
945000 236250 236250 945000 1890000 1890000
28280 166037 84709 13309 22613 6749
5197500 20790000 10395000 1890000 1299375 2598750
_ 282890 166037 84709  _ 13309 6749 22613
5197500 20790000 10395000 1890000 2598750 1299375

However to calculate ai, we only need the submatrix

22613 6749

055 05,6 1299375 2598750
A = = . (7.4)
orr o 6749 22613
6,5 6,6 2598750 1299375

Summing the o; ; in (7.4), which is equivalent to calculating (1,1)A(1,1)’, we find
38477
1299375

Note that we can use this urn to calculate the asymptotic variance for the total number of leaves
in the random ternary search tree, which was evaluated in [10, Theorem 4.1]. We get

2 _
oy =

89
1,1,1,2,1)2(0,1,1,1,2,1) = —.
(07 b b b) ) ) (07 ) ) ) b ) 2100
‘We could also use this urn to evaluate
39227
2 1 by 1 = .
03 (050707 7070) (O7Oa0a 7070) 9450005 (7 5)
131
2 _ 1 1 = — .
02 (0:07170707 )2(07()’ 70:071) 2100’ (7 6)
8
0% =(0,1,0,1,2,0)%(0, 1,0, 1,2,0)’ = — 7.7

75
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We study a suffix tree built from a sequence generated by a diank source. Such sources are more realistic
probabilistic models for text generation, data compressioolecular applications, and so forth. We prove that the
average size of such a suffix tree is asymptotically equitaie the average size of a trie built overindependent

sequences from the same Markovian source. This equivaieocdy known for memoryless sources. We then derive
a formula for the size of a trie under Markovian model to coetplthe analysis for suffix trees. We accomplish our
goal by applying some novel techniques of analytic combiried on words also known as analytic pattern matching.

Keywords: Suffix tree, Markov sources, digital trees, size, pattertchiag, number of occurrences.

1 Introduction

Suffix trees are the most popular data structures on wordsy fiilnd myriad of applications in computer
science and telecommunications, most notably in algostiom strings, data compressions (Lempel-
Ziv'77 scheme), and codes. Despite this, little is still Wmoabout their typical behaviors for general
probabilistic models (see [5, 1, 3]).

A suffix tree is atrie (a digital tree; see [9]) built from the suffixes of a singlergy. In Figure 1 we
show the suffix tree constructed for the first four suffixeshef $tringX’ = 0101101110. More precisely,
we actually build a suffix tree on the firgt infinite suffixes of a stringX as shown in Figure 1. We
shall call it simply a suffix tree which we study in this papBuch a tree consists of internal (branching)
nodes and external node storing the suffixes. Our goal isdtyasthe number of internal nodes called
also thesizeof a suffix tree built from a sequencé generated by a Markov source. We accomplish it
by employing powerful technigues of analytic combinatsram words known also analytic pattern
matching[9].

In recent years there has been a resurgence of interestarithigic and combinatorial problems on
words due to a number of novel applications in computer seigtelecommunications, and most notably
in molecular biology. A few possible applications are listeelow. The reader is referred to our recent

TW. Szpankowski is also with the Faculty of Electronics, Telmmunications and Informatics, Gdahsk University oftifesi-
ogy, Poland. His work was supported by NSF Center for Sciefideformation (CSol) Grant CCF-0939370, and in addition by
NSF Grants CCF-1524312, and NIH Grant 1U01CA198941-01 tleed®NCN grant, grant UMO-2013/09/B/ST6/02258.
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SQ 54

51 Ss |
|

Fig. 1. Suffix tree built from the first five suffixes of = 0101101110, i.e. 0101101110, 101101110, 01101110,
1101110.

book [9] for more details. In computer science and molechlalogy many algorithms depend on a
solution to the following problem: given a wortd and a set of arbitrary+ 1 suffixesSy, ... ,Sp1 of X,
what is the longest common prefix of these suffixes. In codiegty (e.g., prefix codes) one asks for the
shortest prefix of a suffi¥; which is not a prefix of any other suffixég, 1 < j < n of a given sequence
X (cf. [14]). In data compression schemes, the following fgobis of prime interest: for a given "data
base” sequence of length find the longest prefix of thé: + 1)st suffixS,,+1 which is not a prefix of any
other suffixesS; (1 < i < n) of the data base sequence. And last but not least, in malesetjuences
comparison (e.g., finding homology between DNA sequences),may search for the longest run of a
given motif, a unique sequence, the longest alignment, lrmdamber of common subwords [9]. These,
and several other problems on words, can be efficiently dadvel analyzed by a clever manipulation of
a data structure known assaffix tree In literature other names have been also coined for thiststre,
and among these we mention here position trees, subwos] tiieected acyclic graphstc

The extension of suffix tree analysis to Markov sources iseggignificant, especially when the suffix
tree is used for natural languages. Indeed, Markov sourtésite memory approximate very well
realistic texts. For example, the following quote is getetedby a memoryless source with the letter
statistic of theDeclaration of Independence

esdehTe,a; psseCed vcenseusirh vra f uetaiapgnuev n cdigilnitipahhr nijue n S ueef,ru
s,k smodpztrnno.eeteespfg mtet tr i aur oiyr

which should be compared to the following quote generateal l\arkov source of order 3 trained on the
same text:

We hat Government of Governments long that their right olsallare these rights, it, and or
themselves and are disposed according Men, der.
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In this paper we analyze the average number of internal n¢sies) of a suffix tree built fromn
(infinite) suffixes of a string generated by a Markov sourcthvpiositive transition probabilities. We
first prove in Theorem 1 that the average size of a suffix trekeuMarkovian model is asymptotically
equivalent to the size ofaie that is built fromn independentlgenerated strings, each string emitted by
the corresponding Markovian source. To accomplish thisstwdy another quantity, namely the number
of occurrences of a given patteanin a string of lengthn generated by a Markovian source. We use its
properties to establish our asymptotic equivalence betwa#ix trees and tries. Finally, we compare the
average size of suffix trees to trie size under Markovian rh@ge Theorem 2), which — to the best of our
knowledge — is only partially known [2].

In fact, there is extensive literature on tries [9] and vergrse one on suffix trees. An analysis of the
depth in a Markovian trie has been presented earlier in [A2igorous analysis of the depth of suffix tree
was first presented in [5] for memoryless sources, and thismdgd in [3] to Markov sources. We should
point out that depth grows lik€(log n) which makes the analysis manageable. In fact, height ang fill
level for suffix tree — which are also of logarithmic growth ens analyzed in [15] (see also [1, 14]). But
the average size grows like(n) and is harder to study. For memoryless sources it was arthigZé 1]
for tries and in [5] for suffix trees. We also know that somegpagters of suffix trees (e.g., profile) cannot
be inferred from tries, see [4]. Markov sources add additiéevel of complications in the analysis of
suffix trees as well documented in [1]. In fact, the average sff tries under general dynamic sources
was analyzed in [2], however, specifications to Markov sesitequires extra care, especially for the so
called rational Markov sources.

The proof of the convergence of the average size of the soéféxtd the average size of the trie borrows
many fundamental elements of the depth analysis in [3], farmle the terny,, (w) (see next section),
but the extension of the depth analysis to the size analggisime the introduction of a new terd, (w)
which has non trivial properties. The analysis of average ef the trie in a Markovian model has been
made by several author before but surprisingly we could ndtdiclear statement about the periodic case.
This is the reason why we have to present a sketched proaf here

2 Main Results

We consider a stationary source generating a sequence bbéydrawn from a finite alphabet.

We first derive a formula for the average size of a suffix treeims of the number of pattern occur-
rences. Letv be a word overd. We denote by),, (w) the number of occurrences of woxdin a sequence
of lengthn generated by a Markov source with the transition mdiix\We observe [5] that the average
sizes,, of a suffix tree built over a sequence of lengtis

$n=Y_ P(On(w)>2). 1)

weA*

In fact, (1) holds for any probabilistic source. We compane ithe average sizg, of trie built overn
independent Markov sequencesNf (w) is the number of words which begin within a trie build with
n words, we have

th=Y_ P(Ny(w)>2). 2

weA*

Let P(w) be the probability of observing in a Markov sequencéy,,(w) is a Bernoulli(n, P(w)) and
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random variable,, can be written as

ta= D 1=(1=Pw)" —nP(w)(l - Pw)"" ©)

weA*

We specifically consider a Markovian source. We assume lleasource is stationary and ergodic.
We will consider a Markovian process of order 1 with a positikansition matrixP = [P(a|b)]a,pca.
Extensions to higher order Markov is possible since a Mag«source of order is simply a Markovian
source of order 1 over the alphab4t. Notice that contrary to previous analysis we don't assumag¢ t
P(alb) > 0 for all (a,b) € A2, since we allow that some transition may be forbiden and sother
mandatory (while keeping the source ergodic).

Our main result of the paper is formulated next,

Theorem 1 Consider a suffix tree built over suffixes of a sequence of lengtlyenerated by a Markov
source with a positive state transition matix There exists > 0 such that

Sp —t, = 0(n'7°) (4)
for large n.

In order to apply Theorem 1 one needs to estimate the aveiagefsa trie under Markovian model.
This seems to be unknown except for some general dynamice®(R]. In fact, analysis of tries under
Markovian sources is quite challenging (see [6]). But we cfier the following result for the average
size of a trie under Markovian assumptions. A sketch of tleefis presented in Section 4.

Theorem 2 Consider a trie built over independent sequences generated by a Markov source with pos
itive transition probabilities. For(a, b, c) € A3 define

P(alb) P(c|a)
abc = 1 Y TR
o = o8 | D ©)
Then:
(aperiodic caself not all {qy.} are commensurable, then
t, = % + o(n)
whereh = =%, m.P(bla)log P(bla) is the entropy rate of the underlying Markov source with

a € A, denoting the stationary probability.
(periodic caself all {aq.} are commensurable, then

tn=7(1+Q(n)) +0(n'™)

n
h

whereQ(n) is a periodic function and some> 0.
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Remark We recall that a set of real numbers are commensurable (atsarkas “rationally related”)
when their ratios are rational numbers. We observe that #ffda, b) € A2, thea,,. are commensurable
for onec € A, thena,,. are commensurable for all valuescFurthermore in the aperiodic case tife)
term can have a growth rate arbitrary close to ordatepending on source settings as shown in [7] in the
memoryless case.

In the rest of this section, we present a road map of the pro¢d)o For this we will make use
of ordinary generating functions. Let ¢ .A* be a word of lengthk. We also defineVy(z,w) =
> ns0 P(On(w) = 0)2" andNy (z,w) = 3. P(On(w) = 1)2" for z € C. We know from [9] that

No(z,w) = gz((z))
2P P(w
Ni(z,w) = DZ;((Z))

whereS,, (z) is the autocorrelation polynomial of wotd and D, () is defined as follows

Dy(2) = Su(2)(1 = 2) + 2FP(w) (1 4+ Fu(2)(1 — 2)), (6)

The memoryless case considéfs(z) = 0. The addition of a non zer&,(z) is a significant change
from the analysis in the memoryless case. In fact it captimegorrelations between characters in the
sequence and leads to non trivial developments. Hele) for w € A* — {¢} is a function that depends
on the Markov parameters of the source. It also depends anthefirst and last character af, say
respectively: andb for (a,b) € A? as described below.

Let P be the transition matrix of the Markov source andte its stationary vector with, its coefficient
at symbola € A. The vectorl is the vector with all coefficients equal to 1 ahds the identity matrix.
Assuming that. € A (resp.b) is the first (resp. last) symbol af, we have [13, 9]

Fw(z):ﬂi (P -ren@—:P+re1)] ) 7

where[A],,, indicates the(a, b) coefficient of the matrixA, and® represents the tensor product. An

alternative way to expreds, (z) is
Fu(2) = “(es(P—m@1) (I— 2P+ m21) Ley) ®)

Ta
wheree,. for ¢ € A is the vector with a 1 at the position corresponding to synataoid all other coeffi-
cients are 0. Heréx, y) represents the scalar productoéndy.
Let us define two important quantities:
dn(w) = P(On(w) =0) — (1= P(w))",
tn(w) = P(On(w)=1) —nP(w)(1 - Pw))" ™,
and their corresponding generating functions

Ap(z) = Y dp(w)z"

n>0

Qu(z) = an(w)z".

n>0
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Observe that, — s, = >, c4- dn(w) + go(w). Thus we need to estimatk, (w) andg, (w) for all
w e A*.

We denoteB3;, the set of words of lengtk that do not overlap with themselves over more thg@
symbols (see [9, 5, 3] for more precise definition). To be iseee € A* — B, if there existj > k/2 and
v e Al and(ug,uz) € A7 such thatw = u;v = vus. This set plays a fundamental role in the analysis
and it is already proven in [3] that

> P(w)=0(})

weAF—By,

whered; is the largest coefficient in the Markovian transition ma®i. Since the authors of [3] only con-
sider strictly positive matri» we have); < 1. Anyhow in the present paper we allow some coefficients
to be equal to 1 or O, as long the source is ergodic. Theréfoneay be equal to 1. To cope with this
minor problem we define

: log P(w)
p = exp|lim sup ——=
k,awe Ak k
5 log P(w)
= exp [ lim —— .
9 P k,weA*, P(w)#0 k

These quantities exist and are smaller than 1 sié®a finite alphabet. From now we set= , /p which
replaces the parametér in the previous statements.

Now we are in the position to present two crucial lemmas, @dow the next section, from which
Theorem 1 follows.

Lemmal There exist < 1 suchthaty’ . .. g.(w) = O(n®).

Lemma2 There exists a sequené®, (w), for w € A* such for alll > ¢ > 0 we have
e (i) for w € By: d,(w) = O((nP(w))ké*) + R, (w);
e (i) for w € A% — By dp(w) = O((nP(w))) + Ry (w),

whereR, (w) issuchthad . ,. R.(w) = O(1).

Remark: The sequencé, (w) is the main new element which makes the difference betweealtfiix
tree depth analysis done in [3] and the suffix tree size aisalybe later was done in [9] for the memory-
less case. The sequenBg(w) reflects the impact of the Markovian source on the analysmnticular
is a consequence of the introduction of a non zero fundiip(x).

Proof of Theorem 1. We already know via Lemma 1 that there exists. 1 such tha® 4. ¢.(w) =
O(n®). Let nowd") = >k 2owes, (dn(w) — Ry (w)) and since for alk > 0 observe that

dﬁf) — Z Z O(nEPE(w)k(Sk) = ZO(”Ek(pg5)k)7
k

k weByg
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hence it converges for afl > 0. Also letd'?) = >k 2owear g, (dn(w) — Ry(w)). Observe that

dP = > Y 0@ P (w)P(w))

k weAk—By

> 3 otV

k weAk—

ZO 5q8 1 7

which converges for alt such thatig*~! < 1 (takee < 1 close enough to 1) and 8(n¢). Finally
4 + d + e 4e Ba(w) is alsoO(nf) for & > 0 sincey", 4. Rn(w) is finitely bounded. This
completes the proof of Theorem 1. a

3 Proof of Lemmas

In this section we prove Lemma 1 and Lemma 2. In the proof of in@am we shall use some facts from
[3], however, our proof follows the pattern matching apptodeveloped in [9].

3.1 Proof of Lemma 1
The resultis in fact already provenin [3]. Define

Zk z

Qu(z) = P(w) (DQ( ) A-(- P(w))2)2> ' ©

w

In[3] one define),, (1) = <

> wea- @n(w) anditis proven there th&,, (1) = O(n~°) for somes > 0.

3.2 Proof of Lemma 2

First we have the following simple lemma. The largest eigdune of P is 1, letA;, \o, ... be a sequence
of other eigenvalues in the decreasing order of their madulu

Lemma 3 Uniformly for allw € A* we findF,(2) = O(7=57 Mlz‘)

Proof: By the spectral representation®fwe know thatP = 7®@1+5 ", Aiu; ®¢; whereu; (resp.¢;)
are the corresponding right (resp. left) eigenvectorsattdve can introduce the matricBs= 7« ® 1 and
R =), ( \iu; ®¢,; whose spectral radius|is, | and satisfies the orthogonal prope®/D = DR = 0.
We have LeM(z) = P —w® 1)I—2(P+ 7 ®1))"' we haveM(z) = R(1 — zR)~L. Since
R* = O(JM]z) R(I - zR)~" is defined for allz such thatz| < 3 and isO(;—5), and so is
1 1
Fy(2) = [M(2)]a,b-
O

The next lemma is important.
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Lemma4 For z such that\; z| < 1 we have for all integers

Y. Pw)Fu(z) = O(\). (10)

we Ak+1

Proof: The functionF,(z) depends only on the first and last symbolofConsidering a pair of symbols
(a,b) € A2 the sum of the probabilities of the words of lendth- 1 starting witha and ending wittb,
> awbeart1 P(w), equalsr, (e, P*e,). Easy algebra leads to

Y P)Fu(z) = > (eaM(2)es)(esPe,) (11)
we AR+ (a,b)€A?
= trace(M(z)P"). (12)
But sinceP* = D + R* andM(z)D = 0 andR* = O(|\;|*), we conclude the proof

O

We now follow a parallel approach to the approach developpgR] and in [5, 9].

The generating functiot,,(2) = 3, - dn(w)2" becomes
_ Pw)z (1+(1—2)F,(2) 1

Aulz) = 1—2 ( Dy (2) 1—z+Pw)z /)’ (13)

We have . p
y4
inlw) = g5z A2

integrated on any loop encircling the origin in the defimtaomain ofd,, (z). Extending the result in [5],
the authors of [3] show that there exigts> 1 such that the functio®,,(z) has a single root in the disk
of radiusp. Let A,, be such a root. We have via the residue formula

dp(w) = RegA,(2), Aw)A," — (1 — P(w))" + dy(w, p), (14)

where Re§f(z), A) denotes the residue of functigifz) on complex numbeA and

1 dz
n 5 - 3= Aw . 1
dn(w,p) = 5 fz_p ()2 (15)

e have () (1 + (1= Au)Fu(Au))
Pw)(1+ (1 —Ay)Fy(Ay
ReqA,(2), Ay) = 1= 4,)Cy (16)
whereC,, = D!, (A,). But sinceD,,(A,,) = 0 we can write
—k
Reg A, (2), Ay) = AL Sw(Aw) (17)

Cuw



Average Size of a Suffix Tree for Markov Sources 9

We now consider asymptotic expansion4f, andC,, as it is described in [9], in Lemma 8.1.8 and
Theorem 8.2.2. Although the expansions were presenteddararyless case, but for Markov source we
simply replaceS,, (1) by S, (1) + P(w)F,(1). We find

P(w
Aw = 1457 .
k—Fy e
+Pw)? (S - S +O(Pw)?) (18)
Co = =Su())+ Pw) (k= Fu(1) - 25:5)
+O(P(w)?)
Notice that these expansions in the Markov model first apgakiar[3].
From now follow the proof of Theorem 8.2.2 in [9]. We define thaction
—k
) = F 20 g (1 p(a))e. (19
More precisely we define the function
0w (x) = 6y () — 5,,(0)e™*
which has a Mellin transforr;, (s)I'(s) = [, 6., (z)2*~1dz defined for allR(s) € (—1,0) with
* A;ksw Aw —s —s
s) = 22 (106 4,) 7 1] 41— [log(1 — P(w)] . (20)

Whenw € By with the expansion ofl,, and sinceS,,(1) = 1 + O(§*) and S/, (1) = O(ké*), we find
that similarly as shown in [9]

55(s) = O(|s|kd"™) P(w)' 2. (21)
Therefore, by the reverse Mellin transform, for Al £ > 0:
B 1 r—e+41i00
o(n,w) = — or(s)T(s)n"%ds
2im —e—100
= O(n'*P(w)' k%) (22)

Whenw € A* — B, we don't have the,, (1) = 1+ O(6*). But it is shown in [3] that there exists > 0
such that for alw € A*: S,,(z) > « for all z such thafz| < p. Therefore we get

§(n,w) = O(n* ¢ P(w)*~9).

We set
R, (w) = dy(0)e™" + dp(w, p). (23)

We first investigate the quantity, (0). We need to prove that . ,. d.,(0) converges. For this, noticing
that
Pw)

Sw(Aw) = Sw(l) + Sw(].)

Sy(1) +O(P(w)?)
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we obtain
—k w !
AB) - ZO ()4 5o ) o) (24
Th
- P 5,(1) )
dy(0) = 50 ) F,(1)+ Su(l) + O(P(w))*). (25)

Without the termF,, (1) we would have the same expression as in [9] whose sumwerd* converges.
Therefore we need to prove that the spim _ 4. Plw) F, (1) converges. It is clear that the sum

Sw(l)” W
P(w
Z}j@ﬁm
k weAk—By

converges since

Y Plw)=0(@")
we Ak —By,
and £, (1) is uniformly bounded. Now we consider the other part

Plw
zz@ﬁm

k weBy

We know thatS,, (1) = 1 + O(8%), therefore

P
> ﬂqu) = Y Pw)F,(1)+ O(s"). (26)
Sw(1) :
wEBy, weBk
But
Y. PF,(1)= Y PwF,(1)+0("),
weBk weAk
and we know by Lemma 4 tha€ , _ ,« P(w)F,(1) = O(\}). Thus the suny>, >, c 4 %Fw(l)
converges.

The second and last effort concentrates on the 1w, p). We proceed as in the proof of Theorem
8.2.2in [9]. We first havel, (w, p) = O(P(w)p~™) which isO(n® P(w)) without any condition onw.
The issue is now to work om € By. In this case we hav§,,(z) = 1 + O(6*) and therefore

1 [ P(w) 1 1 dz
dn ) = 5._ -
(w, p) 2im ] 1—2z (Dw(z) 1—2+ zP(w)> Zntl
1 Fy(z) dz

— 9P .
+ 2im (w) Dy (z) 27!

(27)

We notice that the function

P(w) I 1
1—2 \Dwp(z) 1—2z+2zP(w)
is O(P(w)§*)+O(P(w)?), therefore the first integral 8( P(w)3* p~™). The second functiof (w) £z

w(2)
is equal toP(w) F,, (2) + O(P(w)&*). We already know tha}_

wen, P(w)Fy(2) = O(\}), thus the se-
ries converges and the lemma is proven.
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4 Sketch of the Proof of Theorem 2

Leta € A. We denote by, , the average size of a trie overindependent Markovian sequences, all
starting with the same symbal Then forn > 2

et X3 (1) -
a€A k=0
and similarly forb € A
tap=1+> > (Z) P(alb)* (1 = P(alb))" *tar, (29)
a€A k=0

where we recalP(a[b) is the element of matri®R. LetT'(z) = 3, toZre = andTy(z) = 3, tanZre
be the familiar Poisson transforms. Using (28) and (29) wek fin

T(z) = 1—(1+2)e "+ Y Ta(ma2), (30)
ac€A

Ty(z) = 1-(1+2)e*+ > Tu(P(ab)2). (31)
acA

Using dePoissonization arguments (see [8]) we shall obtair T'(n) + O(%T(n)). Thus we need to
study7'(z) for largez in a cone around the real axis. For this we apply the Mellingfarm that we
describe next. In fact the convergence between the questtjtiand 7, could also be derived by the
application of the Rice method on the Mellin transform, sitite later as an explicit form.

Let nowT(z) be the vector consisting df,(z) for everya € A. Itis not hard to see that its Mellin
transform

T*(s) = /OOO T(2)z* 'dz
is defined for-1 > R(s) > —2 (sinceT(z) = O(z%) whenz — 0), and
T"(s) = —(1+ s)I'(s)1 4+ P(s)T*(s) (32)
whereP(s) is the matrix consisting aP(a|b)~* if P(a|b) > 0 and 0 otherwise. This identity leads to
T*(s) = —(1+s)I'(s)(I—P(s))"'1
wherel is the identity matrix. Similarly the Mellin transforffi*(s) of T'(z) satisfies
T*(s) = —(1+ $)T(s) + (m(s), T*(s)). (33)

wherer(s) is the vector composed af; *.
The inverse Mellin transform df*(s) is defined as

c+i0o
T(n) = —/ T*(s)n" °ds, —1>c>—2. (34)

c—100
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In order to find asymptotic behavior @f(z) asz — oo we need to study the poles & (s) for —2 <
R(s). As discussed in [6, 9] this is equivalent to analyzing thiepofT*(s). Since(1 + s)I'(s) has no
pole on—2 < R(s) < 0 we must consider poles ¢I — P(s))~!. In other words (see [6, 9]) we need
to find s for which the eigenvalue of largest modulés) of P(s) is equal to 1. It is easy to see that
AM—1) = 1 sinceP(—1) = P. The residue at = —1 of n~*(I — P(s))"'1 is equal to}:1 whereh is
the entropy rate of the Markovian source.

As explained in [6] in the periodic case there are multipleiga of s such that\(s) = 1 and®(s) =
—1. Since these poles are regularly spaced on theJas = 0, they contribute to the oscillating terms
(function@ in Theorem 2) in the asymptotic expansiorntof Furthermore, the location of zerosx(fs) =
1 in the periodic case tells us that there existsich tha{I — P(s)) has no pole for-1 < R(s) < —1+4¢
leading to the error terr®(n' ).

In the aperiodic case there is only one pole on theliig) = —1, thus the oscillating term disappears.
However, zeros oh(s) = 1 can lie arbitrarily close to the lin®(s) = 1, therefore the error term is just
o(n).
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Bootstrap percolation on a graph with infection thresholdg N is an infection process, which starts from a set
of initially infected vertices and in each step every vengih at leastr infected neighbours becomes infected.
We consider bootstrap percolation on the binomial randoaplyé(n, p), which was investigated among others by
Janson, tuczak, Turova and Valier (2012). We improve thesults by strengthening the probability bounds for the
number of infected vertices at the end of the process.

Keywords: Random graph, Bootstrap percolation, Martingale

1 Introduction

Bootstrap percolation on a graph with infection threshoklN is a deterministic infection process which
evolves in rounds. In each round every vertex has exactlyobhgo possible states: it is either infected
or uninfected. We denote the set of initially infected wat by A(0). In each round of the process
every uninfected vertex becomes infected if it has at leastnfected neighbours, otherwise it remains
uninfected. Once a vertex has become infected, it remafiested forever. The final infected set is
denoted byA .

Bootstrap percolation was introduced by Chalupa, Leattd,Reich [CLR79] in the context of mag-
netic disordered systems. Since then bootstrap percolptimcesses (and extensions) have been used to
describe several complex phenomena: from neuronal 3ctMini10, ELP] to the dynamics of the Ising
model at zero temperature [FSS02].

In the context of social networks, bootstrap percolatioovjates a prototype model for the spread of
ideas. In this setting infected vertices represent indigld who have already adopted a new belief and a
person adopts a new belief if at leasdf his acquaintances have already adopted it.

On thed-dimensional gridn]¢ bootstrap percolation has been studied by Balogh, BaioBaminil-
Copin, and Morris [BBDCM12], when the initial infected seintains every vertex independently with
probabilityp. For the size of the final infection set they showed the entsteof a sharp threshold. More
precisely, they established the threshold probahilitysuch that ifp < (1 —¢)p., then the probability that
every vertex inn]¢ becomes infected tends to 0,7as-+ oo, while if p > (1 + £)p., then the probability
that every vertex irn]? becomes infected tends to onejas: oo.

TSupported by Austrian Science Fund (FWF): P26826, W1230.
*Supported by Austrian Science Fund (FWF): P26826.
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Bootstrap percolation has also been studied for severdbrargraph models. For instance Amini and
Fountoulakis [AF14] considered the Chung-Lu model [CLOZjere the vertex weights follow a power
law degree distribution and the presence of an ddge} is proportional to the product of the weights of
u andv. Taking into account that in this model a linear fractiontod tertices have degree less thraand
thus at most a linear fraction of the vertices can becomeieaék the authors proved the size of the final
infected setd ; exhibits a phase transition.

Janson, tuczak, Turova, and Vallier [JLTV12] analysed btvap percolation on the binomial random
graphG(n, p), a graph with vertex sét| := {1,2,...,n} where every edge appears independently with
probabilityp = p(n), and the set of initially infected vertice$(0) is chosen uniformly at random from
the vertex sets of size. Forr > 2 andp satisfying bottp = w(n=') andp = o(n~'/7), they showed,
among other results, that with probability tending to one as oo either only a few additional vertices
are infected or almost every vertex becomes infected. litiaddhey determined, depending on the
number of initially infected vertices, the probability ofth of these events up to an additive term tending
to zero as — co.

The main contributions of this paper are threefold. Firsistvengthen this result by showing exponen-
tial tail bounds. Second we introduce a martingale in ordefetermine the number of infected vertices
during the early stages of the process. Finally in the sujiead regime we show that the subgraph
spanned by the vertices with— 1 infected neighbours grows large enough to contain a gianpoment.
The infection of just one vertex in this giant component ketdevery vertex in the component becoming
infected and we show that this in fact happens.

Main Results. Throughoutthe paper we assume that 2 and that bothy = w(n=!) andp = o(n=1/")

hold. Set
o\ VD)
to = < . > .
np"

Let#(¢) = P[Bin(t,p) > r] and define

In addition denote by, the smallest valuewhere this minimum is reached. Similarly to [JLTV12] it can
be shown that

te= (14 o00)((r =D/ (mp"NY"Y and a. = (1+0(1))(1 — 1/r)t,.

Theorem 1 Let wy be any function satisfying the conditiongy = w(y/a;) and wy < a. — r.
If |JA(0)| = a. — wo, then with probability at least

we havgAy| < t..

Theorem 2 Let wy be any function satisfying the conditions = w(y/a;) andwy < to — a.
If |A(0)| = a. 4+ wo, then with probability at least

w3 Qe + wo
1 —exp _Wfo — exp B
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we havgAf| = (1 + o(1))n.

Proof Technique. When the number of infected vertices is small (at nigstwe introduce a martingale
to show that the number of infected vertices is concentratednd its expectation witexponentially
high probability. The martingale resembles the one intoeduin [JLTV12], however the maximal one
step difference in our martingale is significantly smalled ¢hus provides a tighter concentration bound
(Lemma7).

In the subcritical regime, the expected number of infectices is less that < ¢, and therefore the
martingale argument alone implies the result (Section 4).

In the supercritical regime, this is not enough as the nurobénfected vertices will reach, with
exponentially high probability. In fact, at least+ a. vertices become infected (Lemma 8). Now take a
subset of the infected vertices with sizeand consider the vertices with at least 1 neighbours in this
set. The size of this set is roughty~! (Lemma 9) and the subgraph spanned by these vertices is also
a binomial random grap!G (rp~!,p). Since the seminal work of Erdés and Rényi [ER60], it is\kno
that this graph has with probability+ o(1) a linear sized giant component. More recently, Bollobas
and Riordan [BR] showed that this happens with exponentidjh probability (Theorem 5). Should any
vertex in the giant component have an additional infecteghimur, then every vertex in the giant will
become infected eventually. We show that this happens wjghreentially high probability.

Thus we havé)(p~—1!) infected vertices. After this, the process ends in two séegkthis can be shown
by two simple applications of the Chernoff bound (Lemmasid &1).

2 Preliminaries
We will use the following form of the Chernoff bound.

Theorem 3 [CLO6] Let X ~ Bin(n, p), i.e. a binomial random variable with parameterandp. Then
forany\ > 0

A2 A2
_ < )\l < S — — > < —_— ] .
PX —EX) < A}exp( 2E(X)> and P[X E(X)A]exp( 2(E(X)+)\/3)>
Let My, M1, ..., M; be a sequence of random variables and denot& @iy the filter generated by

Mo, ..., M;. We sayMy, ..., M}, forms a martingale if for ever§ < i < k we haveE(|M;|) < oo and
foreveryl <i<k
E[M;|F(i —1)] = M;—.

The following concentration bound on martingales due tor@ghand Lu [CLO6] will prove to be vital.

Theorem 4 [CLO6] For mg € R let My = mq, M1, ..., M, be amartingale whose conditional variance
and differences satisfy the following: for eathk ¢ < k,

° Var[Mi|Mi_17 c 7‘2\4()] < 0'22,
o |M; — M,;_1| < m for some positiven.

Then for any\ > 0, we have
/\2

P[My — My > N <exp | — -
2 (21:1 o +m)‘/3)
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We will also need the following Theorem on the appearancegéat component iz (n, p) by Bol-
lobas and Riordan [BR].

Theorem 5 [BR] Let ¢ > 1 be a constant independent®fand lete > 0 independent ofi. Then with
probability 1 — exp(—£(n)) the binomial random grapltz(n, ¢c/n) has a component of size at least
(1 —¢)pn, wherep € (0, 1) is the unique positive solution df— p = exp(—cp).

3 Setup: Martingale

In order to analyse the bootstrap percolation(®m, p) we will use the following reformulation due to
Scalia-Tomba [ST85] as in [JLTV12]. Roughly speaking thegraine the infected vertices one by one
and determine the vertices which have at leasighbours in the set of previously examined vertices. The
set of examined vertices until stéjs denoted byZ (¢) and the set of infected vertices By¢). Formally

let A(0) be the set of initially infected vertices of sizeand without the loss of generality we may assume
thatA(0) = {1, ...,a}. SetZ(0) = 0. Foreachstepe N, if A(t—1)\Z(t—1) # 0, then letU; = {u:},
whereu; is a vertex inA(t — 1)\ Z (¢ — 1) selected according to an arbitrary rule, otherwisd et (.
SetZ(t) :== Z(t — 1) UU;. Now fort > 0 and each € [n —a] := {1,...,n — a} let X(¢,4) be the
indicator random variable for the event that the vertex i has at least neighbours inZ(¢) and set

A(t) = A0)U{a+i: X(t,i)=1,i € [n—a]}.

The process stops whenr= n.

Clearly Z(t) C A(t). LetT denote the smallest value obuch thatA(t) = Z(¢). Note thatt < T'
implies that|Z(t)| = ¢ and thusT is also the smallestsuch thajA(¢)| = ¢. Since|A(t)| < n for every
natural numbe® < t < n we have thal’ < n. Note further thatA(T') = Ay.

In order to have a better control on the maximal number ofisestwhich can become infected in a
single step, we refine the process by dividing every steprimtimds, in such a way that in each round
exactly one vertex € [n]\A(0) is examined (regardless whether it was examined in eadiends or
not). Thus each step < ¢ < n consists ofn — a rounds and round of stept is denoted by(t, 7). We
denote the step followingt, i) by (¢,4) + 1 and the preceding step If¥, i) — 1. Also the ordering of the
rounds is given by the lexicographical order i(e,.) < (t,4) if eitherr < t or7 =t and¢ < 1.

In round: of stept we examine if vertex + ¢ has at least neighbours inZ(t) and if it has we add it
to the set of infected vertices. Formally fgr:) > (1,1)

A1) +1) = A(O)Ufa+j:j<i,X(t,))=1}U{a+j:j>i, X(t—1,5)=1}.

Clearly we haveA(t) = A(t,n — a). For consistency defing(0,n — a) := A(0).
Define a functionr : N — [0, 1] by

PBin(T,p) >r], fort>T

m(t) == { P[Bin(t,p) > r], fort<T

and note thatr(¢) is a random variable.
For(t,7) > (0,n — a), define the random variable

, LX) —n(t) TS X(t—1,5) —7(t—1
M =3 (1])7r(t)()+_z_+1 (1}?@1() . W

Jj=1
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We will denote byF (¢, ) the filter generated by/ (0,n — a), ..., M (¢, 1).
Lemma6 The sequence of random variable&0,n — a), ..., M(n,n — a) forms a martingale.

Proof: Fix 1 <t < mnandl < i < n —a. Foreveryr < t, we can express from (1) the number of
infected vertices in step:

n—a

|A(T)| = a+ ZX(T, L) Dot M(r,n—a)(1 —7(r)) + (n —a)n(7). (2)

Recall thatr(t) = P[Bin(¢,p) > r]. We will denote byT” the smallest value of which satisfies
a+M(t,n—a)(l1—7a(t))+ (n—a)n(t) = t. Becauser(t) = 7(t) whent < T, we havel' = T". Given
the filter 7((¢,7) — 1) one can establish if + M (7,n —a)(1 — 7 (7)) + (n — a)7 () = 7 for somer < t.
Therefore, it can be determined whether the e¥&nt ¢ or¢ > 7’ holds. In particular, ifl” < ¢, then
the exact value dI” can be determined.

For eachr < ¢, sincer(7) depends only on the value @f = 7”, we can also determine the value of
7(7), i.e.E[n(r)|F((t,i) — 1)] = n(r) for 7 < 1.

Note thatX (0,:) = 0 for everyl < i <n — a and that for every1,1) < (7,:) < (¢,4) we can easily
compute from (1)

X(r) —m(r) X -1, —m(r-1)
1—n(r) 1—m(r—1) '

Therefore, based on the filté#((¢,7) — 1), the value ofX (, ) can be determined for evefy, .) < (t,1).
Next we shall show that

M(7,0) = M((r,0) = 1) = ©)

X(t,i) — n(t) ‘ E[X(t,0)| F((t,i) = V)] —m(t) _ X(t—1,4) —n(t—1)
E [ 1—7(t) F(&9) 1)] N 1—7(t) B 1—7(t—1) - @
To this end, observe that X (¢t — 1,7) = 1, then we haveX (¢,47) = 1 with probability 1 and in this case
both sides of equation (4) equal 1.

Now assume thaX (¢t — 1,7) = 0. Whent > T, we haveX (¢,7) = X (¢,7 — 1) = 0 with probability
1 and by the definition of(t) we haver(t) = n(t — 1) = #(T"). Evaluating both sides of equation (4)
givesus—7(T)/(1 — «(T)). Whent < T andX ((¢,:) — 1) = 0, we haver(t) = 7(¢) and thus

PIX(1,1) = O1F((t,4) ~ 1)] = 7 1;;@1) —1- ”(1’5)_;2;(:)1)
Therefore in this case
X (t,i) — 7(t) , R 1-#() At)—a(t—1)  #(t—1)
E[ 1—7(t) f((t’z)l)} T TSRO I—A (-1 IRt =1) 1=t -1)

and thus (4) holds. According to (3) we have that
B[M(t,i) — M((t,i) — 1)|F((t,4) — 1)]

B X(t,i) — m(t) o _X(tfl)fﬂ'(tfl) @
e[ Hg A -] - SRR
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Lemma?7 Lett € {0,...,n}andX € R* be given.

| A2(1—7(t)?
P{ /\ M(T,Z)>)\] = 1—exp <m>

(0,n—a)<(7,i)<(t,n—a)

and

, (A - #(t)°
]P’[ /\ M(T,z)<)\] 21—exp<—m>.

(0,n—a)<(7,1)<(t,n—a)

Proof: We will only show the bound on the probability thisf(r, i) < A for each(r,i) < (¢,n —a). The
other case follows simply from the fact that if the randomiaflesM (0,n — a), ..., M(t,n — a) form

a martingale, ther-M (0,n — a),...,—M(t,n — a) is also a martingale and they both have the same
conditional variance and maximal difference. In order tovghhat the bounds hold for each round, we
introduce the following martingale:

s M(7,i) if M((r,i) —1) < X
M(ri) = { M((r,i) —1) otherwise

Similarly to M (t, i) we denote the filter generated BY(0, n — a), ..., M (t,7) with F(t, ). Note that if
there exists a roungr, i) such thatM (r,4) > X, then we haveV/(r',i') > X for every (i) > (7,4).
ThereforeM (t,n — a) < X implies that for everyr, i) < (t,n — a) we haveM (r,i) < \.

By (3) and sincer(7) < 7(7) with probability 1, we have

#(7) Ar-1) | _#r-1) } 1

700 1=20-0 " T—f0=-1J 171

|M(T,L) —M((T,L) -1 < max{

Note thatM (0,7 — a) = 0. SinceVar[M (7, )| F((r,i) — 1)] = 0if M((r,1) — 1) > A and
Var[M (r,4)| F((r,i) — 1)] = Var[M (r,4)| F((r,i) — 1)]

otherwise, Theorem 4 implies that

~ )\2
RUen -0 2 < o (5 ==y
where o
S<> Z Var[M (7, 4)|F((r,i) — 1)]. (5)
Note that
Var[M (r,1)|F((r,i) — 1)] = Var { 1)(7(7;(@2) ‘ F((r,3) — 1)]

IN

1 . .
mVar[X(T,z)\}"((T,z) - 1. (6)
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Recall thatX (7 — 1,7) = 1 implies X (7,7) = 1 and thatr > T implies X (,7) = X (7 — 1,4). In
both of these cases we have

FOZEE-D) () — 7 (t — 1)

Var[X (7,4)| F((r,i) — 1)] =0 < =70 (7
Now assume < T andX (7 — 1,4) = 0. SinceX (¢, ¢) is an indicator random variable, we have
. , . _ w(r)—a(r—1) #(r)—7(r—1)

Var[X (7,4)| F((1,4) — 1)] < E[X(7,1)|F((r,i) — 1)] = Ty < =70 (8)

Putting (5)-(8) together, we obtain
— #(r) —7(r —1) n(#(r) — #(r — 1)) n#(t)
S22 TaRr X G 0P S G- F0F
]

The previous lemma allows us to analyse the process in theéfsteps. This will be used in the proofs
of Theorems 1 and 2.

4 Proof of Theorem 1

We want to investigate the number of infected vertices a¢ timBy the definition ofa. andt., we have

. onaw(t) —t  te—na(te)
a. = —min - = _ .
t<ty 1 — 7T(t) 1-— T&'(tc)

©)
By the definition ofM (¢, ), we have

|A(t.) @4t (I —=7(te))M(te,n —a) + (n —a)mw(t.).

Sincer(t) < #(t) anda = a. — wp, we obtain

|A(te)| < a+ M(te,n —a) + (n — a)7(t.)
= (ac — wo)(1 — 7(te)) + n#t(te) + M(te,n — a)

Oy, —ni(te) + ni(te) — wo(l — 7(te)) + M(te,n — a)

#(te)<#(to)
< tC—OJ()(l —’ﬁ'(to)) +M(tc,n—a). (10)

Usingnp = w(1) andty = (r!/(np"))*/ "=V, we have

w0 (() ) =0 ((m)" ) e )
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Furthermore,

to
. . t , (1 top”
o) = PlBincto, ) = 11 = 3 ()1 - 0 @14 o) B
j=r '
r—1

= (140 ty = (14 0(1) 2 "= o 1p) L o(1). (12)

Applying Lemma 7 with\ = wp/2, we have that with probability at least

2
“o

2
“o
— _ >1— e Vi
! eXp( 8((1+0(1))nﬁ(tc)+wo/6)> =1 e"p( 10to>
M(t.,n —a) < wp/2. This together with (10) implies

|A(te)] < te— (14 0(1))wo + wo/2 < te.

Thereforel’ < t. and thugA;| =T < t..

5 Proof of Theorem 2

Before proving Theorem 2 we begin with an observationAdr,), the set of infected vertices after the
firstty steps.

Lemma8 Let wy be any function satisfying the conditiony = w(y/a:) andwy < to — ac.
If |JA(0)| = a. + wo, then with probability at least

w3
1—exp —9 Bt

we havel > ¢ and\A(to)\ >ty + (1 + 0(1))ac + (JJO/2.

Proof: By the definition ofa,., for everyt < ¢, we have

t —na(t)

Ae > 1_77%(75) (13)

Assume thaf\/ (¢,7) > —wq/2 foreveryt < toandl < i < n—a. First we will show by induction that
if M (t,4) satisfies this lower bound, th&n > ¢,. ClearlyT > 0. Now assume that for some< ¢; — 1

we have thaf” > ¢ — 1. Thereforer(t) = 7(t). Fort < t, we haver(t) < 7 (o) @ o(1) and thus

A0 B a+ 1 - n(t)Mt,n —a) + (n—a)r(t)
M(t,i)>—wo/2 . )
> (1= #(0) (e + wo) + n(t) — (14 0(1))wo /2

(13)
> t4 (14 o0(1))wo/2.
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Thereforg A(t)| > t which together witll" > ¢ — 1 impliesT > ¢.
Also note that

|A(to)| B a+ M(to,n — a)(1 — 7(to)) + (n — a)#(to)
(122) (1+o(1))ac + (1 +o(1))to + (1 + o(1))wo /2. (14)

Lett; := ((r — 1)!/np")/ "=V Thent; < t, and so

tl — nfr(tl)
e > —— ) (15)
Also
to
P _ to) t—j A1) tip"
#(t) = PBiln.p) 2 1) = ()= @ o
B t§71p7' B tl
= (1+0(1)) i ty=(1+ 0(1))7%. (16)
From this and (15)
. (1 +Ao(1))t1/r — (14 0(1)) <1 _ 1) t = Q(to), (17)
1-— 7T(t1) r
which together with (14) angy < t, implies
|A(to)] = to + (1 + o(1))ae + wo/2.
Lemma 7 with\ = wy/2 implies the result.
O

We will need to establish the size of the giant componentérstt of vertices which have at least 1
neighbours inZ(ty). For this we first need to determine the number of verticeslwhave at least — 1
neighbours inZ (o).

Lemma9 Let A C [n] with |A] = o(n). Conditional onT' > t,, A(to) and Z(to), with probability
1 —exp(—Q(p~1)) we have that the number of verticedi\ (Z(to) U A) with at leastr — 1 neighbours
in Z(to) is at least3rp~1 /4.

Proof: Let X, be the indicator random variable that a vertexc [n]\(Z(ty) U A) has at least — 1
neighbours inZ(to) and setX := >, .\ (z(to)ua) Xv- Clearly

PX, =1Jv € A(to)] = 1.
Note that ifX,, = 1 andv & A(to), thenv has exactly: — 1 neighboursinZ(ty) and thus

P[X, = L|v & A(to)] > P[X, = 1,v & A(to)] = (Tf_o 1)pm(1 e

a to r
2 (14 o(1) o™ = (14 o(1)
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Since the set of random variablg¥, |v € [n]\(Z(ty)UA)} are mutually independent; stochastically
dominates the binomial random variable = Bin(n — to — |A], (1 + o(1))r/np). Because, = o(n)
and|A| = o(n), we have R

E[X] = (1+o(1))rp™"

and Theorem 3 implies

P[X — E(X) < —(1+ o(1))rp~' /4] < exp <_(1 + 0(1))3’"222)21> < exp (-p_l> :

In the following two lemmas we look at the number of verticathvat leastr neighbours in a set of
orderp~! and set of orden. Estimating the probability that a vertex has at leastighbours in such sets
differs significantly and are discussed separately.

Lemma10 LetU, W C [n] in G(n,p) satisfy|U| = p~!/2 and|W| = o(n). With probability at least
1 — exp(—Q(n)) the number of vertices im]\(U U W) with at leastr neighbours inU is at least

n/(27rl\/e).

Proof: LetY, be the indicator random variable that a vertex [n]\(U U W) has at least neighbours
inUandset” =3, ..\ wuw) Yo We have that

PlY, =1]=1- Z:O (pj/2)pj(1 /2
=1-(1 _p)pl/zg (p;/2) (1%)3'
—1-(1+ o<1>>e1/2;i: ‘Qﬁ{jpj
1 (14 o) -

Clearly1 > P[Y, = 1] > 1/(2"rly/e). Setn := P[Y, = 1] — 1/(2"rly/e) and note that
n = Q(1). Furthermore the set of random variab{&$|v € [n]\ (U U W)} are mutually independent and
[[n\(U UW)| = (14 o(1))n. Therefore, by Theorem 3 we have

P[Y < n/(2"rlVe)] < exp ((1 + 0(1))77 Z > = exp(—Q(n)).
O

Lemmall LetU, W C [n]in G(n, p) satisfy|U| = n/(2"r!y/e). Then with probabilityexp(—Q(p~1))
all but at mostp—! vertices in[n]\ (U U W) have at least neighbours inJ.
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Proof: Let B, be the indicator random variable that a vertex [n]\ (U U W) has less than neighbours
inU and setB := }_, .\ (wuw) Bu- Sincenp = w(1), we have

r—1

PIB,=1]=) (%zﬂ(l P)' < exp(=|Ulp); '

J=0

Since|[n]\(U UW)| < n andnp = w(1), we have
E[B] < exp(—|U[p)n(np)" " = exp(=Q(np))n"p" " = o(p~1).

Note that the set of random variablgB,, |v € [n]\(U U W)} are mutually independent and therefore,
by Theorem 3 we have
P[B>p '] <exp(-Q(p")).

]

Proof of Theorem 2: According to Lemma 8 with probability at least— exp(—w?/(9.5t0)) we have
that|A(t)| > ¢ for everyt < to andA(tg) > to + (1 + o(1))a. + wo/2. Therefore the process runs for at
leastt steps and there exists a setC |A(tp)\Z(to)| of sizea./2 + wp/2.

Lemma 9 implies that conditional ofi(¢y) andZ (¢, ) with probability at least —exp(—Q(p~1)) there
is a set of vertices ifn]\(Z(ty) U A) with size at leassrp—!/4 where every vertex in the set has at least
r — 1 neighbours inZ (¢y) and select a subsgt of these vertices of size exactlyp—! /4. Note that until
this point every event depends only on edges with one et ).

According to Theorem 5, with probability — exp(—Q(p~!)) there is a se/ ¢ W such that the
vertices inU form a connected component ajid > (1 — ¢)pp~! for arbitrarye > 0 independent of:,
wherep is the unique solution of — p = exp(—3pr/4). Since

p> Z pr/ > exp(—3pr/4)

when0 < p < 1/2, we havep > 1/2 and thus we have thal7| > p~!/2. Also this event depends only
on the edges with both endpointstihand thus it is independent of the previous events.

Note that if a vertex im4 is connected to a vertex i, then every vertex iV will become infected.
The probability that no vertex id is connected to any vertex i is

(1- p)IU\(ac+w)/2 < exp(—(ac +w)/4).

This event depends on edges betwdesndU and thus it is independent of the previous events.

Now takeU’ C U such thatU’| = p~!/2 and denote the set of vertices]ir]\ (W U AU Z(t,)) which
have at least neighbours irU’ with B. Since|lW U AU Z(to)| = o(n) by Lemma 10 with probability
1 —exp(—Q(n)) we have thatB| > n/(2"r!\/e). Note thatB C |Ay|. This event depends only on edges
betweerlV" and[n]\(U UW U AU Z(t,)) and thus it is independent of the previous events.

Finally let B’ C B with |B’| = n/(2"r!/e) and consider the set of vertices[itf}]\(BUU U Z(ty) UA)
which contain at least neighbours inB’. Note that all of these vertices will be infected. By Lemma 11
we have with probability — exp(—Q(p~1)) that all but at mosp~—? vertices in[n]\(BUU U Z(to) U A)
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will become infected. Similarly as before this event depgeoly on edges which we haven’t considered
previously and thus it is independent of the previous eveRéeall thatB U U U Z(ty) UA C Ay and
thus|Ay| = (1 4+ o(1))n.

Sincep~! = w(ty) andn = w(p~!), we have that the probability that almost every vertex bezom

infected is at least
_ w3 . ac + wo
—exp|——7—— | —exp|\——m—— | .
P 10t P 4
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In this paper, we introduce the notion g@fquasiadditivity of arithmetic functions, as well as théated concept
of g-quasimultiplicativity, which generalises strogeadditivity and -multiplicativity, respectively. We shothat
there are many natural examples for these concepts, whickharacterised by functional equations of the form
f(@ a4 b) = f(a) + f(b) or f(¢"T"a +b) = f(a)f(b) forall b < ¢" and a fixed parameter. In addition to
some elementary properties g¢fjuasiadditive ang-quasimultiplicative functions, we prove characterisasi of ¢-
quasiadditivity and;-quasimultiplicativity for the special class gfregular functions. The final main result provides
a general central limit theorem that includes both classicd new examples as corollaries.

Keywords: g-additive functiong-quasiadditive functiorng-regular function, central limit theorem

1 Introduction

Arithmetic functions based on the digital expansion in stwas; have a long history (see, e.g., [3-8,11])
The notion of aj-additivefunction is due to [11]: an arithmetic function (defined omnegative integers)
is calledg-additive if

fld*a+b) = f(d"a) + f(b)

whenevel < b < ¢*. A stronger version of this conceptstrong(or completé g-additivity: a function
f is said to be strongly-additive if we even have

f(d"a+b) = f(a) + f(b)

whenever) < b < ¢*. The class of (stronglyy-multiplicative functions is defined in an analogous
fashion. Loosely speaking, (strongrdditivity of a function means that it can be evaluated Baliing
up the baserexpansion. Typical examples of stronghadditive functions are the-ary sum of digits and
the number of occurrences of a specified nonzero digit.
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§The authors were also supported by the Karl Popper Kollegd#fing—Simulation—Optimization” funded by the Alpen-Aair
Universitat Klagenfurt and by the Carinthian Economic Potion Fund (KWF). Part of this paper was written while theset
author was a Karl Popper Fellow at the Mathematics Institut€lagenfurt. He would like to thank the institute for thesmitality
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There are, however, many simple and natural functions basdtieq-ary expansion that are ngt
additive. A very basic example of this kind ds®ck countsthe number of occurrences of a certain block
of digits in theg-ary expansion. This and other examples provide the mativédr the present paper, in
which we define and study a larger class of functions with camaiple properties.

Definition. An arithmetic function (a function defined on the set of ngyat&ve integers) is calleg-
quasiadditivef there exists some nonnegative integesuch that

F(@" " a+b) = f(a) + f(b) (1)
wheneveb < b < ¢". Likewise, f is said to bej-quasimultiplicativef it satisfies the identity
f(@™*a+b) = f(a)f(b) )

for some fixed nonnegative integewheneved < b < ¢*.

We remark that the special cage= 0 is exactly strongz-additivity, so strictly speaking the term
“strongly ¢-quasiadditive function” might be more appropriate. Hoeregince we are not considering a
weaker version (for which natural examples seem to be muetehto find), we do not make a distinction.
As a further caveat, we remark that the term “quasiaddjtiliais also been used in [1] for a related, but
slightly weaker condition.

In the following section, we present a variety of exampleg-gliasiadditive ang-quasimultiplicative
functions. In Section 3, we give some general propertiesioli unctions. Since most of our examples
also belong to the related classgefegular functions, we discuss the connection in Sectidfirially, we
prove a general central limit theorem fpiquasiadditive and -multiplicative functions that contaboth
old and new examples as special cases.

2 Examples of g-quasiadditive and ¢-quasimultiplicative functions

Let us now back up the abstract concepg-afuasiadditivity by some concrete examples.

Block counts

As mentioned in the introduction, the number of occurreméesfixed nonzero digit is a typical example
of a g-additive function. However, the number of occurrences givan blockB = €;¢s - - - €0 Of digits
in the expansion of a nonnegative integewhich we denote byz(n), does not representgadditive
function. The reason is simple: tigeary expansion of*«a + b is obtained by joining the expansionsof
andb, so occurrences dB in a and occurrences dp in b are counted by (a) + c(b), but occurrences
that involve digits of botlu andb are not.
However, if B is a block different fron0 - - - 0, thencg is g-quasiadditive: note that the representation

of ¢**ta + b is of the form

alaz---aM00~~~0b1b2---b,j

expansion oft £ zeros expansion ob
wheneven < b < ¢*, so occurrences of the blogkhave to belong to eitheror b only. This implies that
cp(¢"a +b) = cp(a) + cp(b), with one small caveat: if the block starts and/or ends wiseguence
of zeros, then the count needs to be adjusted by assuminggited dxpansion of a nonnegative integer
to be padded with zeros on the left and on the right.
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For example, leB be the block)101 in base2. The binary representations4f9 and22 are111010101
and10110, respectively, so we hawe; (469) = 2 andcp(22) = 1 (note the occurrence 6fL01 at the
beginning ofl0110 if we assume the expansion to be padded with zeros), as well as

cp(240150) = cp (27 - 469 + 22) = cp(469) + c5(22) = 3.
Indeed, the blockB occurs three times in the expansior2df 150, which is111010101000010110.

The number of runs and the Gray code

The number of ones in the Gray code of a nonnegative integehich we denote byigray(n), is also
equal to the number of runs (maximal sequences of conseddtwtical digits) in the binary representa-
tions ofn (counting the number of runs in the representatiof @$0); the sequence defined byray (1)

is A0O05811 in Sloane’s On-Line Encyclopedia of Integer Semes [17]. An analysis of its expected
value is performed in [10]. The functiolgray is 2-quasiadditive up to some minor modification: set
f(n) = hgrav(n) if nis even andf(n) = heray(n) + 1 if nis odd. The new functiorf can be inter-
preted as the total number of occurrences of the two blétlesd10 in the binary expansion (considering
binary expansions to be padded with zeros at both ends)esargument of the previous example applies
again and shows thdtis 2-quasiadditive.

The nonadjacent form and its Hamming weight

The nonadjacent form (NAF) of a nonnegative integer is thigum base2? representation with digits
0,1, —1 (~1is usually represented asn this context) and the additional requirement that theag mot
be two adjacent nonzero digits, see [18]. For example, thE dER7 is 100101. It is well known that the
NAF always has minimum Hamming weight (i.e., the number gfzeyo digits) among all possible binary
representations with this particular digit set, althougimay not be unique with this property (compare,
e.g., [18] with [15]).

The Hamming weighbnar of the nonadjacent form has been analysed in some deta(l,3and it
is also an example of 2=quasiadditive function. It is not difficult to see thajar is characterised by the
recursionshNAF(Qn) = hNAF(n), hNAF(4n + 1) = hNAF(n) +1, hNAF(4n - 1) = hNAF(TL) +1 together
with the initial valuehnar (0) = 0. The identity

hnar(282a 4 b) = hnar(a) + hnar(b)
can be proved by induction. In Section 4, this example wilgbaeralised and put into a larger context.

The number of optimal {0, 1, —1}-representations

As mentioned above, the NAF may not be the only representaifiitn minimum Hamming weight among
all possible binary representations with digitd, —1. The number of optimal representations of a given
nonnegative integet is therefore a quantity of interest in its own right. Its @@ over intervals of the
form [0, N') was studied by Grabner and Heuberger [12], who also prowsdiie numberopr(n) of
optimal representations afcan be obtained in the following way:

Lemma 1 (Grabner—Heuberger [12]Let sequences; (i = 1,2,...,5) be given recursively by

ul(O) = UQ(O) == U5(0) = 1, ul(l) = ’LL2(1) = 1, U3(1) = U4(1) = U5(1) = 0,



4 Sara Kropf, Stephan Wagner

and
u1(2n) = ui(n), u1(2n + 1) = ua(n) + ua(n + 1),
uz(2n) = ui(n), uz(2n + 1) = ug(n),
uz(2n) = uz(n), uz(2n+1) =0,
ug(2n) = ui(n), ug(2n + 1) = us(n + 1),
us(2n) = uq(n), us(2n+1) = 0.

The numberopt(n) of optimal representations efis equal tou; (n).
A straightforward calculation shows that

u1(8n) =u2(8n) =--- =us(8n) = u1(8n + 1) = u2(8n + 1) = uy(n),

uz(8n+1) =us(8n+1) = us(8n+1) =0. @)

This gives us the following result (see the full version ataxtended abstract for a detailed proof):

Lemma 2. The number of optimdl0, 1, —1}-representations of a nonnegative integer &-quasimulti-
plicative function. Specifically, for any three nonnegaiivtegersz, b, k with b < 2*, we have

ropT (2830 4 b) = ropt(a)ropT ().
In Section 4, we will show that this is also an instance of aerg®neral phenomenon.

The run length transform and cellular automata

Therun length transfornof a sequence is defined in a recent paper of Sloane [19]:dsiedon the binary
representation, but could in principle also be generalisaither bases. Given a sequengess, . . ., its
run length transform is obtained by the rule

t(n) = H Siy

i€L(n)

whereL(n) is the multiset of run lengths of (lengths of blocks of consecutive ones in the binary rep-
resentation). For example, the binary expansiondf0 is 11101110110, so the multisetZ(n) of run
lengths would bg3, 3, 2}, giving t(1910) = sos3.

A typical example is obtained for the sequence of Jacobsthalbers given by the formuls, =
%(2’“r2 — (=1)™). The associated run length transforyn(sequence A071053 in the OEIS [17]) counts
the number of odd coefficients in the expansior{bf- = + z2)", and it can also be interpreted as the
number of active cells at the-th generation of a certain cellular automaton. Furthenmgdas stemming
from cellular automata can be found in Sloane’s paper [19].

The argument that provegquasiadditivity of block counts also applies here, anctedlit is easy to
see that the identity

t(28 a4 b) = t(a)t(b),

where0 < b < 2*, holds for the run length transform of any sequence, meahiagany such transform
is 2-quasimultiplicative. In fact, it is not difficult to show &h every2-quasimultiplicative function with
parameter = 1 is the run length transform of some sequence.
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3 Elementary properties

Now that we have gathered some motivating examples for theegiis ofg-quasiadditivity and;-quasi-
multiplicativity, let us present some simple results abfoutctions with these properties. First of all, let
us state an obvious relation betwegguasiadditive ang-quasimultiplicative functions:

Proposition 3. If a function f is ¢-quasiadditive, then the function defined fy») = /(™ for some
positive constant is ¢g-quasimultiplicative. Conversely, ffis a g-quasimultiplicative function that only
takes positive values, then the function defineg () = log, f(n) for some positive constant# 1 is
g-quasiadditive.

The next proposition deals with the parametar the definition of ag-quasiadditive function:

Proposition 4. If the arithmetic functiory satisfiesf (¢**"a+b) = f(a) + f(b) for some fixed nonnega-
tive integerr whenevef < b < ¢*, then it also satisfieg(¢"*+*a + b) = f(a) + f(b) for all nonnegative
integerss > r whenevef < b < ¢*.

Proof. If a,b are nonnegative integers with< b < ¢*, then clearly als® < b < ¢***~"if s > r, and
thus
F(@*a+b) = (¥ a4+ b) = f(a) + f(b).

O

Corollary 5. If two arithmetic functionsf and g are ¢g-quasiadditive functions, then so is any linear
combinationx f + B¢ of the two.

Proof. In view of the previous proposition, we may assume the patamén (1) to be the same for both
functions. The statement follows immediately. O

Finally, we observe that-quasiadditive ang-quasimultiplicative functions can be computed by break-
ing theg-ary expansion into pieces. A detailed proof can be fountefull version:

Lemma6. If fis ag-quasiadditive {-quasimultiplicative) function, then
e f(0) =0 (f(0) =1, respectively, unlespis identically0),
e f(ga) = f(a) for all nonnegative integers.

Proposition 7. Suppose that the functiofis ¢-quasiadditive with parameter, i.e., f(¢**"a + b) =
f(a) + f(b) wheneveO < b < ¢*. Going from left to right, split thg-ary expansion of. into blocks
by inserting breaks after each run efor more zeros. If these blocks are thy@ary representations of
ni,na,...,ns then we have

f(n) = f(n1) + f(n2) + -+ f(ne).

Moreover, ifm; is the greatest divisor of; which are not divisible by fori =1, ..., ¢, then

f(n) = f(ma) + f(mz2) + -+ f(me).

Analogous statements hold fgiguasimultiplicative functions, with sums replaced bydarcts.
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Proof. This is obtained by a straightforward induction 6together with the fact thaf(¢"a) = f(a),
which follows from the previous lemma. O

Examplel. Recall that the Hamming weight of the NAF (which is the minmmtdamming weight of
a{0,1, —1}-representation) i8-quasiadditive with parameter= 2. To determinéwyar(314 159 265),
we split the binary representation, whichli#010101110011011000010100001, into blocks by inserting
breaks after each run of at least two zeros:

100/101011100]110110000/1010000]1.

The numbersi, ns, ..., ng in the statement of the proposition are ndyd48, 432, 80, 1 respectively,
and the numbersi,, mao, ..., my are thereforel,87,27,5,1. Now we use the valuebyar(l) = 1,
hNAF(5) = 2, hNAF(27) =3 anthAF(87) = 4 to obtain

hnar(314 159 265) = 2hnar(1) + Anar(5) + Anar(27) + Anar(87) = 11.

Example2. In the same way, we consider the number of optimal repreensaropr, Which is 2-
quasimultiplicative with parameter= 3. Consider for instance the binary representatio20df280 974,
namely1100001011010001010010001110. We split into blocks:

110000/101101000|101001000|1110.

The four blocks correspond to the numbég8s= 16 - 3, 360 = 8 - 45, 328 = 8 - 41 and14 = 2 - 7. Since
TQPT(S) =2, TOPT(45) =35, ’T'OPT(4].) =1 andTopT(7) =1,we ObtairTl“opT(204 280 974) = 10.

4 ¢-Regular functions

In this section, we introducgregular functions and examine the connection to our casc&ee [2] for
more background og-regular sequences.

A function f is g-regularif it can be expressed gs= u! f for a vectoru and a vector-valued function
f, and there are matricéd;, 0 < i < ¢, satisfying

flqn+i) = M;f(n) (4)

for0 <i<gq,gn+i>0. We setv = £(0).
Equivalently, a functiory is g-regular if and only iff can be written as

L
f(n) =u' [] Ma,v (5)
=0

whereny, - - - ng is theg-ary expansion of.

The notion ofg-regular functions is a generalisationg@fdditive and;-multiplicative functions. How-
ever, we emphasise thatguasiadditive ang-quasimultiplicative functions are not necessagisegular:
ag-regular sequence can always be bounde@py°) for a constant, see [2, Thm. 16.3.1]. In our setting
however, the values ¢f(n) can be chosen arbitrarily for thosevhoseg-ary expansion does not contain
0". Therefore g-quasiadditive or -multiplicative function can grow arhily fast.



g-Quasiadditive Functions 7

We call (u, (M;)o<i<q, v) alinear representatiorf the g-regular functionf. Such a linear represen-
tation is calledzero-insensitivef Myv = v, meaning that in (5), leading zeros in th&ry expansion of
n do not change anything. We call a linear representatiorimalif the dimension of the matrice¥/; is
minimal among all linear representationsjof

Following [9], everyg-regular function has a zero-insensitive minimal linegresentation.

4.1 When is a g-regular function g-quasimultiplicative?

We now give a characterisation @fregular functions that arg-quasimultiplicative. Proofs of the results
in this and the following subsection can be found in the felision.

Theorem 8. Let f be ag-regular sequence with zero-insensitive minimal linegresentatior(5). Then
the following two assertions are equivalent:

e The sequencé is g-quasimultiplicative with parameter.
o My = vul,

Example3 (The number of optim&l0, 1, —1}-representations)The number of optima{0, 1, —1}-repre-
sentations as described in Section 22sragular sequence by Lemma 1. A minimal zero-insensitivesr
representation for the vectéu; (n), us(n), us(n),us(n + 1), us(n + 1), us(n + 1))* is given by

100 00 0 010010
100000 001000
010000 000000

Mo=1g 1001 0l M=]ooo010 0l
00000 1 000100
000000 000O0T10

ut =(1,0,0,0,0,0)andv = (1,1,1,1,0,0)*.
As M = vul, this sequence i2-quasimultiplicative with parameteér which is the same result as in
Lemma 2.

Remark. The condition on the minimality of the linear representaiio Theorem 8 is necessary as illus-
trated by the following example:

Consider the sequengén) = 2°2(") wheres,(n) is the binary sum of digits function. This sequence
is 2-regular an®-(quasi-)multiplicative with parameter= 0. A minimal linear representation is given
by My =1, M; = 2,v = 1andu = 1. As stated in Theorem 8, we ha¥é? = vu’ = 1.

If we use the zero-insensitive non-minimal linear représ@gon defined byM, = ((1) 123), M, =
(3%),v=(1,0)" andu’ = (1,0) instead, we haveank M = 2 for all » > 0. ThusM{ # vu'.

4.2 When is a ¢-regular function g-quasiadditive?

The characterisation @fregular functions that are algequasiadditive is somewhat more complicated.
Again, we consider a zero-insensitive (but not necessanifymal) linear representation. We lEtbe the
smallest vector space such that all vectors of the fafi],., M,,, lie in the affine subspace’ + U*

(U is used as a shorthand foe? : = € U}). Such a vector space must exist, siméds a vector of this
form (corresponding to the empty product, whére- §). Likewise, letV be the smallest vector space
such that all vectors of the fori{ ;. ; M, v lie in the affine subspace+ V.
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Theorem 9. Let f be ag-regular sequence with zero-insensitive linear represgéan (5). The sequence
f is g-quasiadditive with parameterif and only if all of the following statements hold:

o ulv =0,

e U'is orthogonal to(M — v, i.e.,z' (M — v = ' M{v — z'v =0forall € U,
e Vis orthogonal tou! (M} — I),i.e.,u’ (M — Iy = u'Mjy —u'y =0forally € V,
o U'M[V =0,ie,z'MJy=0forallz € Uandy € V.

Exampled. For the Hamming weight of the nonadjacent form, a zero-isisign (and also minimal) linear
representation for the vect®inar(n), hnar(n + 1), Anar(2n + 1), 1)t is

M(): y M1:

SO = O =
o O OO
OO = O
— =0 O
o O OO
O = = O
o O O
— -0 O

u! = (1,0,0,0) andv = (0,1,1,1)*.

The three vectorsy; = u!M; — u!, wy = u!M? — u' andwz = u’ M MoM; — u® are linearly
independent. If we el be the vector space spanned by those three, it is easilyeeettifat)/, and M,
map the affine subspaeé + W to itself, soU = W is spanned by these vectors.

Similarly, the three vectordf;v — v, M2v — v andM; MoMjv — v spanV.

The first condition of Theorem 9 is obviously true. We only &iaw verify the other three conditions
with r» = 2 for the basis vectors df andV, which is done easily. Thusyar is a2-regular sequence that
is also2-quasiadditive, as was also proved in Section 2.

Finding the vector spacd$ andV is not trivial. But in a certain special case gfegular functions,
we can give a sufficient condition fgradditivity, which is easier to check. Thegaegular functions are
output sums of transducers as defined in [14]: a transduaesfirms the-ary expansion of an integer
(read from the least significant to the most significant Jlidgterministically into an output sequence and
leads to a state. The output sum is then the sum of this output sequence tegeith the final output of
the states. This defines the value of theregular function evaluated at The functionhyar discussed
in the example above, as well as many other examples, campieEsented in this way.

Proposition 10. The output sum of a connected transduceraditive with parameter if the following
conditions are satisfied:

e The transducer has the reset sequeficgoing to the initial state, i.e., readingzeros always leads
to the initial state of the transducer.

e For every state, the output sum along the path of the reseteseg)” equals the final output of this
state.

o Additional zeros at the end of the input sequence do not ahtregoutput sum.
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5 A central limit theorem for g-quasiadditive and -multiplicative
functions

In this section, we prove a central limit theorem fequasimultiplicative functions taking only positive
values. By Proposition 3, this also implies a central lirn&drem forg-quasiadditive functions.

To this end, we define a generating function: febe ag-quasimultiplicative function with positive
values, letM;, be the set of all nonnegative integers less tfa(i.e., those positive integers whogary
expansion needs at mastigits), and set

Fz,t)=> 2" > f(n).

k>0 neMy

The decomposition of Proposition 7 now translates direittlgn alternative representation Bz, ¢):
let B be the set of all positive integers not divisible dywhoseg-ary representation does not contain the
block0", let¢(n) denote the length of theary representation of, and define the functioB(z, t) by

B(z,t) =Y 2™ f(n)".

neB

We remark that in the special case where 2 andr = 1, this simplifies greatly to

B(x,t) =Y akf(2F—1)". (6)

k>1
Proposition 11. The generating functiof'(x, t) can be expressed as

1 1
1—z 1— {£=B(x,t)

. 1+(14+z4+ - +2" YHB(a,t
D R e o

F(x,t) =

Proof. The first factor stands for the initial sequence of leadingzethe second factor for a (possibly
empty) sequence of blocks consisting of an elemerf ahdr or more zeros, and the last factor for the
final part, which may be empty or an element®fvith up tor — 1 zeros (possibly none) added at the
end. O

Under suitable assumptions on the growth af-quasiadditive og-quasimultiplicative function, we
can exploit the expression of Proposition 11 to prove a egtimit theorem in the following steps (full
proofs can again be found in the full version).

Definition. We say that a functiofi hasat most polynomial growtti f(n) = O(n¢) andf(n) = Q(n~°)
for afixedc > 0. We say thaif hasat most logarithmic growtfif f(n) = O(logn).

Note that our definition of at most polynomial growth is slightifferent than usual: the extra condition
f(n) = Q(n~°) ensures that the absolute valud®f f(n) does not grow too fast.

Lemma 12. Assume that the positivg;quasimultiplicative functiorf has at most polynomial growth.
There exist positive constant@nde such that

e B(zx,t) has radius of convergenggt) > %Whenevem < 4.
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e For|t| < g, the equation: + 2" B(z,t) = 1 has a complex solution(t) with |a(t)| < p(t) and no
other solutions with modulus (1 + €)|«(t)].

e Thus the generating functioR'(z, t) has a simple pole at(t) and no further singularities of
modulus< (1 + €)]a(t)].

e Finally, « is an analytic function of for |t| < 6.

Lemma 13. Assume that the positive;quasimultiplicative functiorf has at most polynomial growth.
With § ande as in the previous lemma, we have, uniformly,in

[J:k]F(z,t) = k(t) - a(t)™" (1 +0((1+ e)fk))

for some functiom. Botha andx are analytic functions of for |¢| < §, andk(t) # 0 in this region.
Theorem 14. Assume that the positive,quasimultiplicative functiorf has at most polynomial growth.

Let N, be a randomly chosen integer {0, 1,...,¢* — 1}. The random variabld.; = log f(N}) has
meanuk + O(1) and variancer?k + O(1), where the two constants are given by

Bi(1/q,0
p= 20700
q
and

0.2 — _Bt(l/q70)2q74r+1(q _ 1)71 + QBt(l/q, 0)2q73r+1(q _ 1)71 _ Bt(l/q’0)2q74r(q _ 1)71
—4rBy(1/¢,0)°¢™"" + Bu(1/,0)¢™*" — 2B,(1/q,0)B1o(1/¢,0)¢" 1. (7)

If f is not the constant functiofi = 1, theno? # 0 and the normalised random variable., —
uk)/(ovk) converges weakly to a standard Gaussian distribution.

Corollary 15. Assume that the-quasiadditive functiorf has at most logarithmic growth.

Let N; be a randomly chosen integer {9, 1,...,¢"* — 1}. The random variabld;, = f(N;) has
meanjk + O(1) and variances?k + O(1), where the two constanfs and oare given by the same
formulas as in Theorem 14, witB(z, ¢t) replaced by

B(z,t) = Z 2t ef ()t
neB

If  is not the constant functiofi = 0, then the normalised random variabié, — jik)/(6Vk)
converges weakly to a standard Gaussian distribution.

Remark.By means of the Cramér-Wold device (and Corollary 5), we alstain joint normal distribution
of tuples ofg-quasiadditive functions.

We now revisit the examples discussed in Section 2 and $tateotrresponding central limit theorems.
Some of them are well known while others are new. We also deomumerical values for the constants
in mean and variance.

Example5 (see also [8, 16]) The number of block€101 occurring in the binary expansion afis a
2-quasiadditive function of at most logarithmic growth. Bhay Corollary 15, the standardised random

. . . L [ | A2 17
variable is asymptotically normally distributed, the ctamgs beingi = 1z andé® = .
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Example6 (see also [13,20])The Hamming weight of the nonadjacent form2igjuasiadditive with

at most logarithmic growth (as the length of the NAFrofs logarithmic). Thus by Corollary 15, the
standardised random variable is asymptotically normasiyriduted. The associated constants are %
ands? = =.

Example7 (see Section 2)The number of optima{0, 1, —1}-representations i2-quasimultiplicative.
As it is always greater or equal toand2-regular, it has at most polynomial growth. Thus Theorem 14
implies that the standardised logarithm of this randomaldei is asymptotically normally distributed with
numerical constants given hy~ 0.060829, 02 ~ 0.038212.

Example8 (see Section 2)Suppose that the sequenge s, . . . satisfiess,, > 1 ands,, = O(c") for a
constantt > 1. The run length transforrt(n) of s,, is 2-quasimultiplicative. Ass,, > 1 for all n, we

havet(n) > 1 for all n as well. Furthermore, there exists a constarstuch thats,, < Ac™ for all n, and
the sum of all run lengths is bounded by the length of the ieapansion, thus

tin)= [ si< [ (Ac) < (Ac)tiosam.

ieL(n) i€L(n)

Consequentlyt(n) is positive and has at most polynomial growth. By Theoremaiglpbtain an asymp-
totic normal distribution for the standardised randomafalélog t (V). The constantg ando? in mean
and variance are given by
w= Z(log 5;)2 2
1>1

and

o’ = Z(IOg s)7 (272 - (20 —1)27 ) - Z (log s;)(log s;) (i 4 j — 1)27973,
i21 j>i>1

These formulas can be derived from those given in TheorenyIfidans of the representation (6), and
the terms can also be interpreted easily: wWidtet(n) = >, Xi(n) log s;, whereX;(n) is the number
of runs of lengthi in the binary representation af The coefficients in the two formulas stem from mean,
variance and covariances of thg(n).

In the special case tha}, is the Jacobsthal sequeneg & 1(2"+2 — (—1)"), see Section 2), we have
the numerical valueg ~ 0.429947, 0% ~ 0.121137.
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Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures
and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel net-
works. For both models we obtain limiting distribution results for the degree of the poles and the length of a random
source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths.
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1 Introduction

Series-parallel networks are two-terminal graphs, i.e., they have two distinguished vertices called the
source and the sink, that can be constructed recursively by applying two simple composition operations,
namely the parallel composition (where the sources and the sinks of two series-parallel networks are
merged) and the series composition (where the sink of one series-parallel network is merged with the
source of another series-parallel network). Here we will always consider series-parallel networks as di-
graphs with edges oriented in direction from the north-pole, the source, towards the south-pole, the sink.
Such graphs can be used to model the flow in a bipolar network, e.g., of current in an electric circuit
or goods from the producer to a market. Furthermore series-parallel networks and series-parallel graphs
(i.e., graphs which are series-parallel networks when some two of its vertices are regarded as source and
sink; see, e.g., [2] for exact definitions and alternative characterizations) are of interest in computational
complexity theory, since some in general NP-complete graph problems are solvable in linear time on
series-parallel graphs (e.g., finding a maximum independent set).

Recently there occurred several studies concerning the typical behaviour of structural quantities (as,
e.g., node-degrees, see [6]) in series-parallel graphs and networks under a uniform model of randomness,
i.e., where all series-parallel graphs of a certain size (counted by the number of edges) are equally likely.
In contrast to these uniform models, Mahmoud [11, 12] introduced two interesting growth models for
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series-parallel networks, which are generated by starting with a single directed arc from the source to
the sink and iteratively carrying out serial and parallel edge-duplications according to a stochastic growth
rule; we call them uniform Bernoulli edge-duplication rule (“Bernoulli model” for short) and uniform
binary saturation edge-duplication rule (“binary model” for short). A formal description of these models
is given in Section 2. Using the defining stochastic growth rules and a description via Pélya-Eggenberger
urn models (see, e.g., [10]), several quantities for series-parallel networks (as the number of nodes of small
degree and the degree of the source for the Bernoulli model, and the length of a random source-to-sink
path for the binary model) are treated in [11, 12].

The aim of this work is to give an alternative description of these growth models for series-parallel
networks by encoding the growth of them via recursive tree structures, to be precise, via edge-coloured
recursive trees and so-called bucket-recursive trees (see [9] and references therein). The advantage of
such a modelling is that these objects allow not only a stochastic description (the tree evolution process
which reflects the growth rule of the series-parallel network), but also a combinatorial one (as certain
increasingly labelled trees or bucket trees), which gives rise to a top-down decomposition of the structure.
An important observation is that indeed various interesting quantities for series-parallel networks can be
studied by considering certain parameters in the corresponding recursive tree model and making use of the
combinatorial decomposition. We focus here on the quantities degree D,, of the source and/or sink, length
L,, of arandom source-to-sink path and the number P, of source-to-sink paths in a random series-parallel
network of size n, but mention that also other quantities (as, e.g., the number of ancestors, node-degrees,
or the number of paths through a random or the j-th edge) could be treated in a similar way. We obtain
limiting distribution results for D,, and L,, (thus answering questions left open in [11, 12]), whereas for
the r.v. P,, (whose distributional treatment seems to be considerably more involved) we are able to give
asymptotic results for the expectation.

Mathematically, an analytic combinatorics treatment of the quantities of interest leads to studies of first
and second order non-linear differential equations. In this context we want to mention that another model
of series-parallel networks called increasing diamonds has been introduced recently in [1]. A treatment
of quantities in such networks inherently also yields a study of second order non-linear differential equa-
tions; however, the definition as well as the structure of increasing diamonds is quite different from the
models treated here as can be seen also by comparing the behaviour of typical graph parameters (e.g.,
the number of source-to-sink paths P, in increasing diamonds is trivially bounded by n, whereas in the
models studied here the expected number of paths grows exponentially). We mention that the analysis of
the structures considered here has further relations to other objects; e.g., it holds that the Mittag-Leffler
limiting distributions occurring in Theorem 3.1 & 3.2 also appear in other combinatorial contexts as in
certain triangular balanced urn models (see [8]) or implicitly in the recent study of an extra clustering
model for animal grouping [5] (after scaling, as continuous part of the characterization given in [5, Theo-
rem 2], since it is possible to simplify some of the representations given there). Also the characterizations
of the limiting distribution for D,, and L,, of binary series-parallel networks via the sequence of r-th
integer moments satisfies a recurrence relation of “convolution type” similar to ones occurring in [3],
for which asymptotic studies have been carried out. Furthermore, the described top-down decomposition
of the combinatorial objects makes these structures amenable to other methods, in particular, it seems
that the contraction method, see, e.g., [13, 14], allows an alternative characterization of limiting distribu-
tions occurring in the analysis of binary series-parallel networks. Moreover, the combinatorial approach
presented is flexible enough to allow also a study of series-parallel networks generated by modifications
of the edge-duplication rules, in particular, one could treat also a Bernoulli model with a “preferential
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edge-duplication rule”, or a b-ary saturation model by encoding the growth process via other recursive
tree structures (edge-coloured plane increasing trees and bucket-recursive trees with bucket size b > 2,
respectively); the authors plan to comment on that in a journal version of this work.

2 Series-parallel networks and description via recursive tree struc-
tures

2.1 Bernoulli model

In the Bernoulli model in step 1 one starts with a single edge labelled 1 connecting the source and the
sink, and in step n, with n > 1, one of the n — 1 edges of the already generated series-parallel network is
chosen uniformly at random, let us assume it is edge j = (z, y); then either with probability p,0 < p < 1,
this edge is doubled in a parallel way", i.e., an additional edge (z,y) labelled n is inserted into the graph
(let us say, right to edge e), or otherwise, thus with probability ¢ = 1 — p, this edge is doubled in a serial
way, i.e., edge (z,y) is replaced by the series of edges (z, z) and (2, y), with z a new node, where (z, 2)
gets the label j and (z, y) will be labelled by n.

The growth of series-parallel networks corresponds to the growth of random recursive trees, where one
starts in step 1 with a node labelled 1, and in step n one of the n — 1 nodes is chosen uniformly at random
and node n is attached to it as a new child. Thus, a doubling of edge j in step n when generating the series-
parallel network corresponds in the recursive tree to an attachment of node n to node j. Additionally, in
order to keep the information about the kind of duplication of the chosen edge, the edge incident to n
is coloured either blue encoding a parallel doubling, or coloured red encoding a serial doubling. Such
combinatorial objects of edge-coloured recursive trees can be described via the formal equation

T=Z2"+«SET(B-T+R-T),

with B and R markers (see [7]). Of course, one has to keep track of the number of blue and red edges to
get the correct probability model according to

#blue edges of T |, #red edges of T'

p q

T, ’

P{T € T, is chosen} =

where 7, = {T' € T : T has order n} and T,, := |T,,| = (n—1)!. Throughout this work the term order of
a tree 1" shall denote the number of labels contained in 1", which, of course, for recursive trees coincides
with the number of nodes of T'. Then, each edge-coloured recursive tree of order n and the corresponding
series-parallel network of size n occur with the same probability. An example for a series-parallel network
grown via the Bernoulli model and the corresponding edge-coloured recursive tree is given in Figure 1.

2.2 Binary model

In the binary model again in step 1 one starts with a single edge labelled 1 connecting the source and the
sink, and in step n, with n > 1 one of the n — 1 edges of the already generated series-parallel network is
chosen uniformly at random; let us assume it is edge j = (z,y); but now whether edge ; is doubled in a
parallel or serial way is already determined by the out-degree of node x: if node x has out-degree 1 then

@ In the original work [11] the rdles of p and q are switched, but we find it catchier to use p for the probability of a parallel doubling.
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Fig. 1: Growth of a series-parallel network under the Bernoulli model and of the corresponding edge-coloured recur-
sive tree. In the resulting graph the degree of the source is 4, the length of the leftmost source-to-sink path is 2 and
there are 5 different source-to-sink paths.

we carry out a parallel doubling by inserting an additional edge (z, y) labelled n into the graph right to
edge j, but otherwise, i.e., if node = has out-degree 2 and is thus already saturated, then we carry out a
serial doubling by replacing edge (x,y) by the edges (z, z) and (z,y), with z a new node, where (z, )
gets the label j and (z, y) will be labelled by n.

It turns out that the growth model for binary series-parallel networks corresponds with the growth model
for bucket-recursive trees of maximal bucket size 2, i.e., where nodes in the tree can hold up to two labels:
in step 1 one starts with the root node containing label 1, and in step n one of the n — 1 labels in the
tree is chosen uniformly at random, let us assume it is label j, and attracts the new label n. If the node
x containing label j is saturated, i.e., it contains already two labels, then a new node containing label n
will be attached to x as a new child, otherwise, label n will be inserted into node z, then containing the
labels j and n. As has been pointed out in [9] such random bucket-recursive trees can also be described
in a combinatorial way by extending the notion of increasing trees: namely a bucket-recursive tree is
either a node labelled 1 or it consists of the root node labelled (1, 2), where two (possibly empty) forests
of (suitably relabelled) bucket-recursive trees are attached to the root as a left forest and a right forest.
A formal description of the family B of bucket-recursive trees (of bucket size at most 2) is in modern
notation given as follows:

B=2"4 2" % (2" « (SET(B) « SET(B))).

It follows from this formal description that there are T,, = (n — 1)! different bucket-recursive trees with
n labels, i.e., of order n, and furthermore it has been shown in [9] that this combinatorial description
(assuming the uniform model, where each of these trees occurs with the same probability) indeed corre-
sponds to the stochastic description of random bucket-recursive trees of order n given before. An example
for a binary series-parallel network and the corresponding bucket-recursive tree is given in Figure 2.

In our analysis of binary series-parallel networks the following link between the decomposition of a
bucket-recursive tree T into its root (1,2) and the left forest (consisting of the trees TI[L], e ,TZ[L]) and

the right forest (consisting of the trees Tl[R], cee TT[R]), and the subblock-structure of the corresponding
binary network G is important: G' consists of a left half GI* and a right half G[% (which share the
source and the sink), where G (L] is formed by a series of blocks (i.e., maximal 2-connected components)
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Fig. 2: Growth of a binary series-parallel network and of the corresponding bucket-recursive tree. In the resulting
graph the degree of the sink is 2, the length of the leftmost source-to-sink path is 2 and there are 3 different source-
to-sink paths.
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Fig. 3: Decomposition of a bucket recursive tree 7" into its root and the left and right forest, respectively, and the
subblock-structure of the corresponding binary network.

consisting of the edge labelled 1 followed by binary networks corresponding to TZ[L], Te[f]p e TI[L},

and Gf! is formed by a series of blocks consisting of the edge labelled 2 followed by binary networks
[R] [R] TlEL.

corresponding to T-, T, ..., T7"; see Figure 3 for an example.

3 Uniform Bernoulli edge-duplication growth model
3.1 Degree of the source

Let D,, = D,(p) denote the r.v. measuring the degree of the source in a random series-parallel network
of size n for the Bernoulli model, with 0 < p < 1. A first analysis of this quantity has been given in [11],
where the exact distribution of D,, as well as exact and asymptotic results for the expectation E(D,,) could
be obtained. However, questions concerning the limiting behaviour of D,, and the asymptotic behaviour
of higher moments of D,, have not been touched; in this context we remark that the explicit results for the
probabilities P{D,, = m} as obtained in [11] and restated in (6) are not easily amenable for asymptotic
studies, because of large cancellations of the alternating summands in the corresponding formula. We
will reconsider this problem by applying the combinatorial approach introduced in Section 2, and in order
to get limiting distribution results we apply methods from analytic combinatorics. As has been already
remarked in [11] the degree of the sink is equally distributed as D,, due to symmetry reasons, although a
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simple justification of this fact via direct “symmetry arguments” does not seem to be completely trivial (the
insertion process itself is a priori not symmetric w.r.t. the poles, since edges are always inserted towards
the sink); however, it is not difficult to show this equality by establishing and treating a recurrence for the
distribution of the sink, which is here omitted.

When considering the description of the growth process of these series-parallel networks via edge-
coloured recursive trees it is apparent that the degree of the source in such a graph corresponds to
the order of the maximal subtree containing the root node and only blue edges, i.e., we have to count
the number of nodes in the recursive tree that can be reached from the root node by taking only blue
edges; for simplicity we denote this maximal subtree by “blue subtree”. Thus, in the recursive tree
model, D,, measures the order of the blue subtree in a random edge-coloured recursive tree of order
n. To treat D,, we introduce the r.v. D,, ;;, whose distribution is given as the conditional distribution
D, | {the tree has exactly k blue edges}, and the trivariate generating function

n

F(z,u,v) = Z Z ZT" <n ; 1>P{Dn7k = m}%ukvm, )
n k m '

with T,, = (n — 1)! the number of recursive trees of order n. Thus T, ("gl)IP{Dmk = m} counts the
number of edge-coloured recursive trees of order n with exactly k blue edges, where the blue subtree

has order m. Additionally we introduce the auxiliary function N (z,u) = >, 3, T, (", ") &ru”

H% log (%) , i.e., the exponential generating function of the number of edge-coloured recursive

trees of order n with exactly k blue edges.

The decomposition of a recursive tree into its root node and the set of branches attached to it immedi-
ately can be translated into a differential equation for F'(z, u,v), where we only have to take into account
that the order of the blue subtree in the whole tree is one (due to the root node) plus the orders of the
blue subtrees of the branches which are connected to the root node by a blue edge (i.e., only branches
which are connected to the root node by a blue edge will contribute). Namely, with F' := F(z,u,v) and
N := N(z,u), we get the first order separable differential equation

F'=v. etV 2

with initial condition F'(0,u,v) = 0. Throughout this work, the notation f” for (multivariate) functions
f(z,...) shall always denote the derivative w.r.t. the variable z. The exact solution of (2) can be obtained
by standard means and is given as follows:

1 1
F =—1 - .
(z,u,v) uog<1v+v(1z<1+u))m> 3)

Since we are only interested in the distribution of D,, we will actually consider the generating function

F(z,v) = Z Z T,P{D, = m}%um = Z Z]P’{Dn = m}%vm. 4)

n

According to the definition of the conditional r.v. D, j it holds that P{D,, = m} = Z;é P{D, =
m} ("gl)pkq”_l_k, which, after simple computations, gives the relation F'(z,v) = %F(qz, E,v). Thus
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we obtain the following explicit formula for F”’(z, v), which has been obtained already in [11] by using a
description of D,, via urn models:

Tol—2)+(1—v) 1z

F'(z,v) (5)
Extracting coefficients from (5) immediately yields the explicit result for the probability distribution of
D,,, with1 < m < n, stated in [11]:

PDn = m} = " ) = 5 e [ G ) O

o 7 n—1

In order to describe the limiting distribution behaviour of D,, we first study the integer moments. To
do this we introduce F'(z,w) := F(z,1 + w), since we get for its derivative the relation F’(z,w) =
S, 3 E(DR)2 e, with E(DR) = E(Dy, - (D, — 1) -+ (D, — 7 + 1)) the r-th factorial moment of
D,,. Plugging v = 1+ w into (5), extracting coefficients and applying Stirling’s formula for the factorials
easily gives the following explicit and asymptotic result for the r-th factorial moments of D,,, with r > 1:

r—1 .
-1 . 1)—-1 1.n™P
E(DE) =r> (") (-1t n+pli+l) o
o 7 n—1 Lirp+1)
from which we further deduce

()~ rn ®

Thus, the r-th integer moments of the suitably scaled r.v. D,, converge to the integer moments of a so-
called Mittag-Leffler distribution D = D(p) with parameter p (see, e.g., [8]), which, by an application of
the theorem of Fréchet and Shohat, indeed characterizes the limiting distribution of D,,.

From the explicit formula (5) it is also possible to characterize the density function f(z) of D (We
remark that alternatively we can obtain f(x) from the moment generating function M (z) = E(eP?) =
> orso E(DT) ZT—T and applying the inverse Laplace transform.). Namely, it holds

P(D, = m} = [-" o™ F(2,0) = — f a-Qa-mm=, ®)

" omi 2M(1—z)l-p

where we have to choose as contour a positively oriented simple closed curve around the origin, which
lies in the domain of analyticity of the integrand. To evaluate the integral asymptotically (and uniformly)
for m = O(nP*°), § > 0 and n — oo one can adapt the considerations done in [15] for the particular
instance p = % After straightforward computations one obtains the following asymptotic equivalent of
these probabilities, which determines the density function f(x) of the limiting distribution D:

11 —tmap (=7
P{D,=m}~— — | S " g
nP 2mi Jy (—t)17P

with % a Hankel contour starting from e2™*

collected in the following theorem.

00, passing around 0 and terminating at +o0o. The results are
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Theorem 3.1. The degree D,, of the source or the sink in a randomly chosen series-parallel network of

size n generated by the Bernoulli model converges after scaling, for n — oo, in distribution to a Mittag-

d
Leffler distribution D = D(p) with parameter p: Dy (VL D, where D is characterized by the sequence

np
of its r-th integer moments:
7!
T'(rp+1)’

as well as by its density function f(z) (with H a Hankel contour):

E(DT) = fOV’I“ 2 07

1 e—t—z(=t)? J 0
f(%)—%/;m t7 f0r$> .

We remark that after simple manipulations we can also write f(z) as the following real integral:

1 o 5
flz) = — e~ WP —wweos(m) gin (rp — zw sin(np))dw, for z > 0.
™ Jo

We further remark that for the particular instance p = % one can evaluate the Hankel integral above and

22
obtains that the limiting distribution D is characterized by the density function f(z) = ﬁ e T, > 0.

Thus, f(z) is the density function of a so-called half-normal distribution with parameter o = V2.

3.2 Length of a random path from source to sink

We consider the length L,, = L, (p) (measured by the number of edges) of a random path from the source
to the sink in a randomly chosen series-parallel network of size n for the Bernoulli model. In this context,
the following definition of a random source-to-sink path seems natural: we start at the source and walk
along outgoing edges, such that whenever we reach a node of out-degree d, d > 1, we choose one of these
outgoing edges uniformly at random, until we arrive at the sink.

The following two observations are very helpful in the analysis of this parameter. First it holds that
the length L,, of a random path is distributed as the length LL{“ I of the leftmost source-to-sink path in a
random series-parallel network of size n; the meaning of the leftmost path is, that whenever we reach a
node of out-degree d, we choose the first (i.e., leftmost) outgoing edge. Unfortunately, so far we do not see
a simple symmetry argument to show this fact (such an argument easily shows that the rightmost path has
the same distribution as the leftmost path, but it does not seem to explain the general situation). However,
we are able to show this in a somehow indirect manner: namely, it is possible to establish a more involved
distributional recurrence for the length of a random path L,, and show that the explicit solution for the
probability distribution of the length of the leftmost path L%L] is indeed the solution of the recurrence for
L,,. These computations will be given in the journal version of this work, here we have to omit them.

Second we use that the length of the leftmost source-to-sink path in a series-parallel network has the
following simple description in the corresponding edge-coloured recursive tree: namely, an edge is lying
on the leftmost source-to-sink path if and only if the corresponding node in the recursive tree can be
reached from the root by using only red edges (i.e., edges that correspond to serial edges). This means
that the length ¢ of the leftmost source-to-sink path corresponds in the edge-coloured recursive tree model
to the order of the maximal subtree containing the root node and only red edges. If we switch the colours
red and blue in the tree we obtain an edge-coloured recursive tree where the maximal blue subtree has the
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same order, i.e., where the source-degree of the corresponding series-parallel network is ¢. But switching

colours in the tree model corresponds to switching the probabilities p and ¢ = 1 — p for generating a

parallel and a serial edge, respectively, in the series-parallel network. Thus it simply holds LL{“ ] (p) @

D,,(1 — p), where D,, denotes the source-degree in a random series-parallel network of size n.
Combining these considerations and the results for D,, obtained in Section 3.1 we obtain the following
theorem.

Theorem 3.2. The length L,, of a random path from the source to the sink in a randomly chosen series-
parallel network of size n generated by the Bernoulli model has the following probability distribution:

Bl —m) =S (m; 1) (—1ynit (j e ”), for1<m<n,

n—1
=0

Moreover, Ly, has, for n — oo, the following limiting distribution behaviour: nffp (v)% L, where the

limiting distribution L is a Mittag-Leffler distribution with parameter 1 — p, i.e., L is characterized by the
sequence of its r-th integer moments:

|
E(L") = T = , forr >0,

(r(l=p)+1)

as well as by its density function g(x) (with H a Hankel contour):

1 e—t—z(—t)l_pd 0
i — — dt

3.3 Number of paths from source to sink

Let P, = P, (p) denote the r.v. measuring the number of different paths from the source to the sink in a
randomly chosen series-parallel network of size n for the Bernoulli model. Again we use the description
of the growth of the graphs via edge-labelled recursive trees, but in contrast to the previous studies of
parameters, here it seems advantageous to use an alternative decomposition of recursive trees with respect
to the edge connecting nodes 1 and 2, which allows to establish a stochastic recurrence for the r.v. P,.
Namely, it is not difficult to show (see, e.g., [4]) that when starting with a random recursive tree 1" of
order n > 2 and removing the edge 1 — 2, both resulting trees 7’ and 7" are (after an order-preserving
relabelling) again random recursive trees of smaller orders; moreover, if U,, denotes the order of the
resulting tree T rooted at the former label 2 (and thus n — U, gives the order of the tree 7" rooted at
the original root of the tree 7'), it holds that U,, follows a discrete uniform distribution on the integers
{1,...,n =1}, ie, P{U, = k} = ﬁ for 1 < k < n — 1. Depending on the colour of the edge
1 — 2 in the edge-labelled recursive tree, it corresponds to a parallel edge (colour blue, which occurs with
probability p) or a serial edge (colour red, which occurs with probability ¢ = 1 — p) in the series-parallel
network: if it is a parallel edge then the number of source-to-sink paths in the corresponding substructures
have to be added, whereas for a serial edge they have to be multiplied in order to obtain the total number
of source-to-sink paths in the whole graph. Thus P, satisfies the following stochastic recurrence:

P L1y (P + Py ) + Yooy (Pl - Py ), forn>2, Pi=1, (9)

n
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where B,, and U, are independent of each other and independent of (P,), (P),) and (P)'), and where
(P!) and (P)) are independent copies of (P,). Here B,, is the indicator variable of the event that 1 — 2
is a blue edge in the recursive tree, thus B,, is a Bernoulli distributed r.v. with success probability p, i.e.,
P{B,, = 1} = p. Furthermore, the r.v. U,, measuring the order of the subtree rooted at 2, is uniformly
distributed on {1,2,...,n — 1}, ie, P{U, =k} = L5, for1 <k <n-—1.

Starting with (9) and taking the expectations yields after simple manipulations the following recurrence:

9 -1 1— n—1
E(P,) = nf’l STE(P) + n—_zi STE(POE(Pi), n22  EMP)=1  (10)
k=1 k=1

To treat this recurrence we introduce the generating function E(z) := > o, E(P,)z" "', which gives
the following non-linear first order differential equation of Bernoulli type:

2

B +(1-p) (E(z))%, E(0) =1 (11)

E'(z) =

Equation (11) can be treated by a standard technique for Bernoulli type differential equations and leads
to the following solution, where we have to distinguish whether p = % or not:

1-2p forp # 1
_ ) Tpa——pia 2
EB(z) = forp=1. (12)

2
2(1—2)—(1—=2) log(i) ’

From the formula (12) for the generating function E(z) one can easily deduce explicit results for the
expected value E(P,) = [2" '] E(z), which, however, due to alternating signs of the summands are not
easily amenable for asymptotic considerations. Instead, in order to obtain the asymptotic behaviour of
E(P,) we consider the formulz for the generating function E(z) stated in (12) and describe the structure
of the singularities: for 0 < p < 1 the dominant singularity at = = p < 1 is annihilating the denominator;
there E(z) has a simple pole, which due to singularity analysis [7] yields the main term of E(P,), i.e.,
the asymptotically exponential growth behaviour; the (algebraic or logarithmic) singularity at z = 1 de-
termines the second and higher order terms in the asymptotic behaviour of E( P, ), which differ according
to the ranges 0 < p < % p= % and % < p < 1. This yields the following theorem.

Theorem 3.3. The expectation E(P,,) of the number of paths P,, from source to sink in a random series-
parallel network of size n generated by the Bernoulli model is given by the following explicit formula:

k
n—1 n4j—1((2p—1)j—1\ x~n—1 (k 1
B(P,) = 4 Dm0 C T T () (52) forp# 1,
n K
Z;é (_2? 'Bk(—HSJM _Hr(i)lv _2H’5L:3217 v — (k= 1)!H,§’i)1), forp = %7
where By, (x1, %3, . .., xx) denotes the k-th complete Bell polynomial and where HS™ := > ]1

denote the m-th order harmonic numbers (see [16]).
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The asymptotic behaviour of B(P,,) is, for n — oo, given as follows:

1
E(P,) = —— - o + Ry(n),

I-p
1 1 1 . 1 1
whereap:ﬁ,forp#i, and ap:176*2:hjn; R ,forpzi7
1- (%)™ Pl ()T
L=2p 9y 2(2p—1 1 1 1
and R,(n) = ————n2*~1 £ 02~ for0<p< =, Ry(n)=— O(—=—), forp= =,
p(n) T ) ( ). fi p<g By oz (logzn)f P=5
2p—1 1
Ry,(n) =— lp—p + O(nl_Qp),fori <p<l.

4 Uniform binary saturation edge-duplication growth model
4.1 Length of a random path from source to sink

We are interested in the length of a typical source-to-sink path in a series-parallel network of size n. Again,
it is natural to start at the source of the graph and move along outgoing edges, in a way that whenever
we have the choice of two outgoing edges we use one of them uniformly at random to enter a new node,
until we finally end at the sink. Let us denote by L,, the length of such a random source-to-sink path in
a random series-parallel network of size n for the binary model. Due to symmetry reasons it holds that

L, @ LLL], where LLLL] denotes the length of the leftmost source-to-sink path in a random series-parallel

network of size n, i.e., the source-to-sink path, where in each node we choose the left outgoing edge to
enter the next node.

In order to analyse LLL] we use the description of the growth of series-parallel networks via bucket-
recursive trees: the length of the left path is equal to 1 (coming from the root node of the tree, i.e.,
stemming from the edge 1 in the graph) plus the sum of the lengths of the left paths in the subtrees
contained in the left forest (which correspond to the blocks of the left part of the graph). When we
introduce the generating function

F(z,v):= Z Z T,P{L, = m}z—fvm = Z Z P{L, = m}Z—nvm7 (13)
n>1m>0 s n>1m>0 n

then the above description yields the following differential equation:

F'(z,v) = vel (30N (2) — ILeF(Z’”)7 F(0,v) =0, F'(0,v)=mv, (14)

—z
where N (z) = log 11 is the exponential generating function of the number T, = (n — 1)! of bucket-
recursive trees of order n. In order to compute the expectation we consider E(z) := 2 F(z,v) ‘v:l =

2721 E(L,) % which satisfies the following linear second order differential equation of Eulerian type:

1 1
E// — 7E -
The explicit solution can be obtained by a standard technique and is given as follows:

~3++6 1 3—-V5 155
BE =0 (1—-2"% 25 (=2 !

E(0) =0, E'(0)=1.
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Extracting coefficients and applying Stirling’s formula immediately yields the following explicit and
asymptotic result for the expectation:

|

E(Ln)=n<3+ﬁ<n+ég—é)_‘a—ﬁ(n—f—;» 14VE 2T

—_— _—. (15)
2v/5 n 2v/5 2V5 (Y31
In order to characterize the limiting distribution of L,, we will compute iteratively the asymptotic be-
haviour of all its integer moments. To this aim it is advantageous to consider G(z,v) = F'(z,v).
Differentiating (14) shows that G(z, v) satisfies the following differential equation:

1
G"(z,v) = G'(2,v)G(z,v) + 176"(2,@), G(0,v) =v, G'(0,v) =v. (16)
-z
Introducing M, (z) := 2-G(z,v)| _, = 3, E(Ln)z""", differentiating (16) r times w.r.t. v and
evaluating at v = 1 yields -
MY(2) = ——M!(2) + —— My () + Ro(2)
" 1—2"" (1—2)2" e

with R,(2) = Y521 (7) M (2)M,_x(2). Thus M, (z) satisfies for each r an Eulerian differential equa-
tion, where the inhomogeneous part R,.(z) depends on the functions My (z), with k& < r. The asymptotic
behaviour of M,.(z) around the dominant singularity z = 1 can be established inductively, namely it
holds:

Cr

M, (z) ~ (1= oyt

with ¢ = ‘/52’1 , and where the constants ¢, satisfy a certain recurrence of “convolution type”. Singular-

ity analysis and an application of the theorem of Fréchet and Shohat shows then the following limiting
distribution result.

Theorem 4.1. The length L,, of a random path from the source to the sink in a random series-parallel
network of size n generated by the binary model satisfies, for n — oo, the following limiting distribution
behaviour, with ¢ = %

L
=LA
n®

where the limiting distribution L is characterized by its sequence of r-th integer moments via

E(L) = 5 s
CTre+1) T

. sati o 1 r—1.7 cE
and where the sequence C, satlfﬁes the recurrence ¢, = DD+ w1 (ko + 1)Ekér_y, for
3+¢
=

r>2 withég =1and ¢, =
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4.2 Degree of the sink

Whereas the (out-)degree of the source of a binary series-parallel network is two (if the graph has at
least two edges), typically the (in-)degree of the sink is quite large, as will follow from our treatments.
Let us denote by D,, the degree of the sink in a random series-parallel network of size n for the binary
model. For a binary series-parallel network, the value of this parameter can be determined recursively
by adding the degrees of the sinks in the last block of each half of the graph; in the case that a half only
consists of one edge then the contribution of this half is of course 1. When considering the corresponding
bucket-recursive tree this means that the degree of the sink can be computed recursively by adding the
contributions of the left and the right forest attached to the root, where the contribution of a forest is either
given by 1 in case that the forest is empty (then the corresponding root node contributes to the degree of
the sink) or it is the contribution of the first tree in the forest (which corresponds to the last block), see
Figure 3. Introducing the generating functions

F(z,v) = Z Z T,P{D, = m}%vm, A(z,v) == Z Z T,P{D, = m}%:tvm, (17)

n>1m2>0 n>0m>0

with D,, denoting the corresponding quantity for the left or right forest and T, = n! counting the num-
ber of forests of order n, the combinatorial decomposition of bucket-recursive trees yields the following
system of differential equations:

F'(z,v) = (A(z,v))Q, A(z,v) = % - F'(z,0). (18)

From system (18) the following non-linear differential equation for F'(z, v) can be obtained:

F(z0) = < 2 ) F (2,0),  F(0,0) = 0, (0, 0)v, F"(0,0) = 02,
—Z

which, by considering E(z) := %F (z, v)|U:1 and solving an Eulerian differential equation, allows to
compute an exact and asymptotic expression for the expectation; namely it holds

— 1+2\/§<n+n\i§1—2> ﬂ2—1<n—\/§—2> N 1+2ﬁ;l;/;;

However, for asymptotic studies of higher moments it seems to be advantageous to consider the fol-
lowing second order non-linear differential equation for A(z, v), which follows immediately from (18):

E(D,,)

(19)

n—1

1 1 2
A (z,v) = :A/(z,v) + :(A(z,v)) . A(0,v)=v, A'(0,v) =v. (20)
Introducing the functions M, (z) := 8‘97214(,27 v)|v:1 and differentiating (20) r times, one obtains that
M, (z) satisfies for r > 1 the following second order Eulerian differential equation:

W1(2) = T ) + oo

M,(z) + R,(z), (21)
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with R,(2) == & ’,;: () M;,(2)M,_j(z). From (21) one can inductively show that the local be-
haviour of the functions ]\Z/T(z) around the (unique) dominant singularity z = 1 is given as follows:

~ Cyr

M, (z) ~ >1,

(1—zvao-n' "=

where the constants ¢, are determined recursively. Actually we are interested in the functions M, (z) :==
%,;F(zmﬂ L, = D>t E(D5)Z-, which are, due to (18), related to M, (z) via M/(z) = (1 —
z2)M'(z) — M/(z). Singularity analysis as well as the theorem of Fréchet and Shohat show then the
following limiting distribution result.

v=1

Theorem 4.2. The degree D,, of the sink in a random series-parallel network of size n generated by the
binary model satisfies, for n — oo, the following limiting distribution behaviour:

D (a)
VA — D,

where the limiting distribution D is characterized by its sequence of r-th integer moments via

rl(r(v2 —1) +1)é, -0

IR E TR

where the sequence ¢, satisfies the recurrence ¢, =

and &, = 1;\/;.

m ZZ;} 6kET7k,f0r7" Z 2, with 60 =1

4.3 Number of paths from source to sink

As for the Bernoulli model we are interested in results concerning the number of different paths from the
source to the sink in a series-parallel network and denote by P,, the number of source-to-sink paths in a
random series-parallel network of size n for the binary model. In order to study P, it seems advantageous
to start with a stochastic recurrence for this random variable obtained by decomposing the bucket-recursive
tree into the root node and the left and right forest (of bucket-recursive trees) attached to the root node.
As auxiliary r.v. we introduce @,,, which denotes the number of source-to-sink paths in the series-parallel
network corresponding to a forest (i.e., a set) of bucket-recursive trees, where each tree in the forest
corresponds to a subblock in the left or right half of the graph. By decomposing the forest into its leftmost
tree and the remaining set of trees and taking into account that the number of source-to-sink paths in the
forest is the product of the number of source-to-sink paths in the leftmost tree and the corresponding paths
in the remaining forest, we obtain the following system of stochastic recurrences:

P YO, +Q ., forn>2, WDy, forn > 1, 22)

with Py =0, P, = 1, Qo = 1, and where the r.v. U,, and V,, are independent of each other and independent
of (Pn), (P, (Qn), (Qr), (Qn)" and (Q.,)". Furthermore, they are distributed as follows:

1 1
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Introducing E,, := E(P,) and E, = E(Q,), the stochastic recurrence above yields the following system
of equations for E,, and F,, (with Ey =0, F4, = 1 and Ey = 1):

2

E =
" opn—1

n72~ ~ 1 n B
;)Ek, n>2, En=ﬁ;EkEn7k, n>1.

Introducing F(2) := 3., o, En,2" ! and E(z) := 3, -, En2" one obtains that F(2) satisfies the fol-
lowing non-linear second order differential equation:

1

E'(2) = 17E’(z) +E(2)E'(2), E(0)=1, E'(0)=2. (23)
—z

Differential equation (23) is not explicitly solvable; furthermore, the so-called Frobenius method to deter-

mine a singular expansion fails for F(z). However, it is possible to apply the so-called Psi-series method

in the setting introduced in [3], i.e., assuming a logarithmic Psi-series expansion of E(z) when z lies near

the (unique) dominant singularity p on the positive real axis. This yields the following result.

Theorem 4.3. The expectation E(P,,) of the number P,, of paths from source to sink in a random series-
parallel network of size n generated by the binary model has, for n — oo, the following asymptotic
behaviour, with p ~ 0.89 .. .:

sk = - (1 ey o))
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Abstract. In this paper, we study tree—like tableaux, combinatorigécts which exhibit a natural tree structure and
are connected to the partially asymmetric simple exclupimtess (PASEP). There was a conjecture made on the
total number of corners in tree—like tableaux and the tatatlper of corners in symmetric tree—like tableaux. In this
paper, we prove the first conjecture leaving the proof of #@sd conjecture to the full version of this paper. Our
proofs are based on the bijection with permutation tablemuype—B permutation tableaux and consequently, we
also prove results for these tableaux.

Keywords: Tree—like tableaux, permutation tableaux, type—B pertiartdableaux

1 Introduction

Tree—like tableaux are relatively new objects which wetteontuced in Aval et al. (2013). They are

in bijection with permutation tableaux and alternativeléalox but are interesting in their own right as
they exhibit a natural tree structure (see Aval et al. (2R1Bhey also provide another avenue in which
to study the partially asymmetric simple exclusion prod@ssSEP), an important model from statistical

mechanics. See Aval et al. (2013) and Laborde Zubieta (9@@baore details on the connection between
tree—like tableaux and the PASEP. See also Burstein (2@fieel and Nadeau (2009), Corteel and
Williams (2007b), Corteel and Williams (2007a), Nadeaul(PQ Steingrimsson and Williams (2007) and
Viennot (2008) for more details on permutation and altévedableaux.

In Laborde Zubieta (2015a), the expected number of occugeders in tree—like tableaux and the
number of occupied corners in symmetric tree—like tableere computed (see Section 2 for definitions).
In addition, it was conjectured (see Conjectures 4.1 andmlaborde Zubieta (2015a)) that the total
number of corners in tree—like tableaux of sizis n! x % and the total number of corners in symmetric
tree—like tableaux of sizen + 1is 2" x n! x 4213,

We have proven both conjectures and in this paper, we wigrethe proof of the first conjecture
(note that Laborde Zubieta (2015b) was able to prove thedinsiecture independently using a different
method). The proof of the second conjecture will be givernafull version of this paper Hitczenko and
Lohss (2015). Our proofs are based on the bijection with péation tableaux or type—B permutation
tableaux and consequently, we also have results for théseatax (see Theorems 4 and 11 below for
precise statements).

TPartially supported by a grant from Simons Foundation (g#208766)
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The rest of the paper is organized as follows. In the nextaeete introduce the necessary definitions
and notation. Section 3 contains the proof of the conjedturtree—like tableaux. Section 4 develops the
tools necessary to prove the second conjecture for synmumetg—like tableaux. The proof then follows
similarly to the proof of the first conjecture and will be l&dtthe full version of this paper Hitczenko and
Lohss (2015).

2 Preliminaries

A Ferrers diagram F, is a left—aligned sequence of cells with weakly decreasovgs. Thehalf-
perimeterof F' is the number of rows plus the number of columns. Boeler edgesf a Ferrers diagram
are the edges of the southeast border, and the number ofrteatges is equal to the half-perimeter. We
will occasionally refer to a border edge as a step (south st)wa shifted Ferrers diagranis a diagram
obtained from a Ferrers diagram withcolumns by adding: rows above it of lengths, (k — 1),...,1,
respectively. The half—perimeter of the shifted Ferreagidim is the same as the original Ferrers diagram
(and similarly, the border edges are the same). The righdtoells of added rows are calleliagonal
cells

Let us recall the following two definitions introduced in Awt al. (2013) and Steingrimsson and
Williams (2007), respectively.

Definition 1 A tree—like tableau of size is a Ferrers diagram of half-perimeter + 1 with some cells
(called pointed cells) filled with a point according to thdéldaving rules:

1. The cell in the first column and first row is always pointéis(point is known as the root point).
2. Every row and every column contains at least one pointid ce
3. For every pointed cell, all the cells above are empty otfadi cells to the left are empty.

Definition 2 A permutation tableau of sizeis a Ferrers diagram of half—perimeterfilled with 0’s and
1's according to the following rules:

1. There is at least onkin every column.
2. Thereis nd@ with a1 above it and a to the left of it simultaneously.

We will also need a notion of type—B tableaux originally éduced in Lam and Williams (2008). Our
definition follows a more explicit description given in (Geel and Kim, 2011, Section 4).

Definition 3 A type—B permutation tableau of sizeis a shifted Ferrers diagram of half-perimeter
filled with 0’s and1’s according to the following rules:

1. There is at least onkin every column.
2. There is n@ with a1 above it and a to the right of it simultaneously.

3. If one of the diagonal cells containg)gcalled a diagonab), then all the cells in that row are.
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(i) (ii) (iii)

ofe] To . o[tJoJol1]1] 1]

. . 00 00

. 01 0l1]1]
° ° ° 0 011

. 1] 0o
- 1
[ ]

Fig. 1: (i) A tree—like tableau of sizé3. (ii) A permutation tableau of siz&2. (iii) A type-B permutation tableau of
size6.

Let 7,, be the set of all tree—like tableaux of sizeP,, denote the set of all permutation tableaux of
sizen, andBB,, denote the set of all type—B permutation tableaux of sizn addition to these tableaux,
we are also interested symmetric tree—like tableapa subset of tree—like tableaux which are symmetric
about their main diagonal (see (Aval et al., 2013, Secti@y fdr more details). As noticed in Aval et al.
(2013), the size of a symmetric tree—like tableaux must lik add thus, we lef,?}"} denote the set of
all symmetric tree—like tableaux of si2e + 1. It is a well—known fact thatP,,| = n! and|B,,| = 2™n!.
Consequently}7,| = n! and|7,,”/| = 2"n! since by Aval et al. (2013), there are bijections between
these objects. We let,, € {7, 7;‘2’;’3, Pn, B} be any of the four sets of tableaux defined above.

In permutation tableaux and type—B permutation tableaursaicted0 is a0 which has al above
it in the same column. Amnrestricted rowis a row which does not contain any restrictésl (and for
type—B permutation tableaux, also does not contain a delggn We letU,, (T") denote the number of
unrestricted rows in a tabledu of sizen. It is also convenient to denote a topmash a column byl
and a right-most restrictetlby 0.

Cornersof a Ferrers diagram (or the associated tableau) are theiggbhich both the right and bottom
edges are border edges (i.e. a south step followed by a vegst st tree—like tableaux (symmetric or
not) occupied cornerare corners that contain a point.

Our proofs will rely on techniques developed in Corteel aitd2énko (2007) (see also Hitczenko and
Janson (2010)). These two papers used probabilistic layggaiad we adopt it here, too. Thus, instead of
talking about the number of corners in tableaux wéPlgbe a probability distribution of&’,, defined by

1

TeX,, 1)

and we consider a random varialdlg on the probability spacet,,, P,,) defined by
C,(T)=Fk ifandonlyifT hask corners T € X,, k>0.

For convenience, lef}, indicate that thé*" step (border edge) is south a¥id, indicate that the:*” step
is west. Thus,

n—1

Cn = lek,wk+17 (2)
k=1
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wherel 4 is the indicator random variable of the eveht

A tableau chosen from,, according to the probability measuPg is usually referred to as a random
tableau of sizex andC,, is referred to as the number of corners in a random tableaaefis We letE,,
denote the expected value with respect to the medsurt c(X,,) denotes the total number of cornersin
tableaux inX,, then, in view of (1), we have the following simple relation:

o(X)
]Encn =
|

or, equivalently, c¢(X,) = |X,| E,C,. 3)

3 Corners in Tree-Like Tableaux

The main result of this section is the proof of the first cohjee of Laborde Zubieta.
Theorem 1 (see (Laborde Zubieta, 2015a, Conjecture 4.1)) #0r 2 we have

4
c(Tn) =nl x n—6¢— .

To prove this, we will use the bijection between tree—likeléaux and permutation tableaux. According
to Proposition 1.3 of Aval et al. (2013), there exists a li@tbetween permutation tableaux and tree—
like tableaux which transforms a tree—like tableau of shiape a permutation tableau of shapéwhich

is obtained fromF' by removing the SW-most edge fromand the cells of the left-most column (see
Figure 2).

olo|o|e 111|

— 0{0
° 0]1
A

Fig. 2: An example of the bijection between permutation tableauktese—like tableaux of size

The number of corners i is the same as the number of cornergnif the last edge of” is horizontal
and it is one more than the number of cornergnif the last edge of” is vertical. Furthermore, as is
clear from a recursive construction described in (Cortedltitczenko, 2007, Section 2), any permutation
tableau of sizex whose last edge is vertical is obtained as the unique extedia permutation tableau
of sizen — 1. Therefore, there arg — 1)! such tableaux and we have a simple relation

(Tn) = c(Pn) + {P € Pn: Sn}| = c(Pn) + (n = 1)L (4)

Thus, it suffices to determine the number of corners in peation tableaux of size. Since|P,,| = n!,
Equation (3) becomes
c(Pp) =nlE,Cp. 5)

In order to determine the number of corners in permutatibletaux, we first have the following result.
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Theorem 2 For permutation tableaux of size, the probability of having a corner with border edges
andk + 1is given by

n—k+1 (n—k)?
Pn (IS’“’W’““) B n Can—1)

Proof: The theorem can be proven by using techniques developedriteel@nd Hitczenko (2007).
Specifically, itk + 1 < n — 1 thenIs, w,_, is a random variable oR,,_; (denoted by7,_; in Corteel
and Hitczenko (2007) and Hitczenko and Janson (2010)). #&iogiship between the measuresignand
P.—1 was derived in Corteel and Hitczenko (2007) and is given kg (€orteel and Hitczenko, 2007,
Equation (7)) and (Hitczenko and Janson, 2010, Section @atan (2.1))),

1
Ean,1 = EEn71(2Un_an71) (6)
whereX,,_1 is any random variable defined ¢, _;.
Therefore,
1
]PTL (IS;Q,W;,,,H) - IE?L (IS)C,W),H,l) - EEH—l (2U"V71[S)C,Wk+1)

1
= ~E.E 2V Is, Wisr | Fn—2) ,

whereF,, s is aoc—subalgebra of#,,_; obtained by grouping into one set all tableauxfp_; that are
obtained by extending the same tablea®jn » (we refer to (Hitczenko and Janson, 2010, Section 2) for
a detailed explanation). Now, if+1 < n — 2 then/s, w,_, is measurable with respect to thealgebra
Fn—2. Thus by the properties of conditional expectation the abisv

1
En (Isywiy) = ~Ep 115, i, E 2V | Fua) -

By (Corteel and Hitczenko, 2007, Equation (4)), the coodiil distribution o/, givenU,,_; is given
by
LU, |Fn-1) =1+ Bin(U,_1),
whereBin(m) denotes a binomial random variable with parameterand1/2. By this result and the
fact thatEaPn(m) = (231)™,

1

1
EEnfljsk,Wk_HE (2Un71 |‘Fn72)

ESNIRY RN o (21+Bin(Un,—2) ‘]:n72)
n

Up—2
2 3
= E]En*lISk;Wk-ﬁ—l (5)

2
= ——E, I Un=2 7
nln = 1) 215, W13 (7

where the last step follows from (6). Iteratifig — 1) — (k + 1) times, we obtain

2.3..... (n—k—1)
nn—1)----- (k+2)

Err1ls, iy, (n— k)7 (8)
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Thus, we need to compute
Ek+1ISk,Wk+1 (n - kj)UlH—l )

for1 <k <n—1(notethat + 1 = n givesE, Is, , w, which is exactly the summand omitted earlier
by the restrictiork + 1 < n — 1). This can be computed as follows. First, by the tower prgpefrthe
conditional expectation and the fact thfatis Fr—measurable, we obtain

Ek+1lsk7Wk+1 (n - k)UkJrl = Ek+1ISkE(IWk+1 (n - k)Uk+l |]:/€)
And now
E(Iw,,, (n — k)71 | Fi) = E((n — k)74 Fi) = E(Isy,, (n — k)VH+1 | Fy)

because the two indicators are complementary. The firstitonal expectation on the right-hand side,
by a computation similar to (7) (see also (Hitczenko anddaj®010, Equation (2.2))) is

n—k—i—l)U’c

5 (10)

(n—k)E ((n — )V |]—"k) =(n—k) (

To compute the second conditional expectation, note th#tt@setSy1, Ux+1 = 1 + Uy, So that

E(Isk+1 (TL - k>Uk+1 |}—k) (n - k)1+Uk]E(ISk+1 |]:k)

(TL - k)lJrUk]P(ISkJrl ‘}—k)

1
= (n - k')1+Uk ﬁ

where the last equation follows from the fact that for evealeéauP < P only one of its2U+(")
extensions to a tableau iR;41 has Sk, (see Corteel and Hitczenko (2007); Hitczenko and Janson
(2010) for more details and further explanation). Comlgnirith (10) yields

w487 o (2 5) (54

and thus (9) equals
Uk _ Uk:
(n — k)Egs1 (Isk ((71_];“) _ <n2 k> ))

The expression inside the expectation is a random variabf®,cs0 that we can use the same argument
as above (based on (Corteel and Hitczenko, 2007, Equation &Jitczenko and Janson, 2010, Equa-
tion (2.1))) to reduce the size by one and obtain that theesgion above is

n—=k U U,
B, ((n—kJrl) E_(n—k) k).
Furthermore, on the sél,, Uy, = Ux—1 + 1 so that the above is
n—k

w1 B (= ke )0 = ) B, P
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which, by the same argument as above, equals

n—k _ 1+Uk-1 1+ Uk—1 1
P <((n k+1) (n—F) ) Uit )

After reducing the size one more time we obtain

n—k _ 1+Uk—1 1+ Uk-1

e (Ek_l (n—k+1) Ey_1 (n — k) ) . (11)
As computed in (Hitczenko and Janson, 2010, Equation (204)& positive integetn the generating
function ofU,,, is given by
I(z+m)

L'(z)m!

(There is an obvious omission in (2.4) there; the n in the third expression should ber n — 1.) Using
this withm = k — 1 andz = n — k£ + 1 and then withe = n — k we obtain

Un _
E..z =

14Uk -1 (n B 1)!
By ((nfk+1) +U ):(nfknLl)m (12)
and ( 2!
Bior (0 =0 ) = (=) CETES Ik (13)
Combining Equations (8), (11), (12), and (13),
By, (ISkvVVkH) =
m—k-DIWk+1)! n—-k [((n—k+1)(n-1) (n—k)(n—2)!
n! ’k(k+1)< (k—1D!(n—k) (k—l)!(n—k—l)!>
n—k+1 (n—k)?
- n Cn(n—1)
and the conclusion follows. |

The relationship between permutation tableaux and tlestdbleaux given by (4) allows us to deduce
the following corollary to Theorem 6.

Corollary 3 For tree—like tableaux of size, n > 2, the probability of having a corner with border edges
k andk + 1 is given by

nokil Ry
]Pn (IS/«,WA-,H) = {l n n(n—1) 5 y ;

n

=n.
Finally, we establish the following result which, when cdrrdd with (4) and (5), completes the proof
of Theorem 1.
Theorem 4 For permutation tableaux of sizewe have
n+4 1

En Cn = .
6 n
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Proof: In view of (2) we are interested in

n—1 n—1
E, (Z ]Slmwk+l) = ZETI (IsleVkH) .
k=1 k=1

Therefore, the result is obtained by summing the expre$siom Theorem 2 fronk = 1 ton — 1. O

To conclude this section, note that Theorem 1 could also teiredd by summing the expression from
Corollary 3 fromk = 1 to n.

4 Corners in Symmetric Tree-Like Tableaux

The main result of this section concerns the second comgofiLaborde Zubieta.
Theorem 5 (see (Laborde Zubieta, 2015a, Conjecture 4.2)) #0¢ 2 we have

sum " in+ 13
c(Toll1) = 2" x nl x TR
As in Section 3, we will use a bijection between symmetrie-tiike tableaux and type—B permutation

ym

tableaux to relate the cornersf,’}"; to the corners of3,,. In Section 2.2 of Aval et al. (2013), it was
mentioned that there exists such a bijection; however, taildevere given. Thus, we give a description
of one such bijection which will be useful to us (see Figure 3)

°
°

|)—‘OO|—l|
=

Fig. 3: An example of the bijectiorf’as defined in Lemma 6 between type—B permutation tableauk@bsand
symmetric tree—like tableaux of size.

Lemma 6 ConsiderF : 7Y, — B, defined by the following rules,
1. Replace the topmost point in each column Witfs.
2. Replace the leftmost points in each row wigis
3. Fillin the remaining cells according to the rules of tyfepermutation tableaux.
4. Remove the cells above the diagonal.
5. Remove the first column.

andF~!: B, — T, defined by:
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1. Add a column and point all cells except those in a restrictav.
2. Replace albg’s with points unless thdiy, is in the same row as a diagon@l
3. Replace all non-diagonal;'s with points.

4. Delete the remaining numbers, add a pointed box in the mgfe-hand corner (the root point),
and then add the boxes necessary to make the tableau symmetri

ThenF is a bijection betweeff;,”!", and3,,.

Proof: The details of this proof are straightforward and will beeagivin the full version of this paper
Hitczenko and Lohss (2015). O

As mentioned earlier, Lemma 6 will allow us to relate the evsof symmetric tree—like tableaux to the
corners of type—B permutation tableaux. To carry out theutations for type—B permutation tableaux
we will develop techniques similar to those developed int&@drand Hitczenko (2007) for permutation
tableaux. First, we briefly describe an extension procefiurB—-type tableaux that mimics a construction
given in (Corteel and Hitczenko, 2007, Section 2). Fix & 5,1 and letU,,—; = U,,—1(B) be the
number of unrestricted rows if. We can extend the size @ to n by inserting a new row or a new
column. The details of this insertion will be left for the lfukrsion of this paper. However, {f,, is the
number of unrestricted rows in the extended table&iyxs= 1, ..., U, _1+1, the (conditional) probability
thatU,, = U,_1 + 1 is given by inserting a row,

1

P(Un = Un-1+ 1|Fa-1) = P(SulFa-1) = 57

(14)
(Here, analogously to permutation tableaux (see the priobifieorem 4 above or (Hitczenko and Janson,
2010, Section 2)),,—; is ac—subalgebra o8,, obtained by grouping together all tableauxdyp that are
obtained as the extension of the same tableau #8qm.) The (conditional) probability of the remaining
cases is given by inserting a column,

1 Un—l Un,—l 1 Un,—l
< () () - =00

fork=1,...,U,—1. This agrees with (14) whelh= U, ;. Thus,
L(U,|Fn-1) =1+ Bin(Up-1),

where the left-hand side means the conditional distributibl,, givenU,,_; andBin(m) denotes a
binomial random variable with parametersand1/2. Note that this is the same relationship as for
permutation tableaux (see (Hitczenko and Janson, 201@&tegu2.2)) or (Corteel and Hitczenko, 2007,
Equation 4)).

As in the case of permutation tableaux, the uniform meaByrmen 53,, induces a measure (still denoted
by P,,) onB,,_; via a mappind3,, — B,,_; that assigns to an’ € B,, the unique tableau of size— 1
whose extension i8’. These two measures @, are not identical, but the relationship between them



10 P. Hitczenko and A. Lohss

can be easily calculated (see (Corteel and Hitczenko, 288atjon 2) or (Hitczenko and Janson, 2010,
Section 2) for more details and calculations for permutetidleaux). Namely,

P,.(B) = 2Un—1<B>+1|i§—‘1|Pn,1(B), BeB, .

nl
This relationship implies that for any random variallleon 3,,_1,
E, X — 2‘%?'En_l(QU"H(B"*l)X). (15)
This allows us to provide a direct proof of the following wkHown fact,
Proposition 7 For all n > 0, |B,| = 2"n!.

Proof: By considering all the extensions of a type—-B permutatidnetau of sizen — 1, we have the
following relationship,
|Bn| - Z 2Un71(B)+1.

BeB, -1
Thus,
‘Bn‘ = |B7L71|En71 (2Un_1+1)
Q‘anl |En71E (21+Bin(U7,,72) |Un72)

3 Un72
2. 2(By s [Bs (5)

2B, 3\ Ur2
- v e (e ()

= 22.21|B, o|E, 23V

Iteratingn times,

|Bn| = 23 - 3! |Bn73|En734Un_3 = 2n—1(n - 1)!|81|E1’RU1
2™n!,
where the final equality holds becau#g| = 2 andU; = 1. O

Given Proposition 7, (15) reads
1
E,X = ~E,_;(2U—(Br-t) X)), (16)
n

This is exactly the same expression as (Corteel and Hiteztl07, Equation (7)) which means that the
relationship betweeR,, andE,,_; is the same regardless of whether we are considé&tjngr 5,,. Thus,
any computation folB—type tableaux based on (16) will lead to the same expressidhe analogous
computation for permutation tableaux based on (CorteeHitudenko, 2007, Equation (7)).

Now we have the tools necessary to obtain a relationship degtveorners in symmetric tree—like
tableaux and type—B permutation tableaux which is analsgm#).
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Lemma 8 The number of corners in symmetric tree—like tableaux ismghwy,

o(Tl) = 2¢(Bn)+2"(n—1)1+2"""nl. (17)
Proof: The bijection described in Lemma 6 leads to the followingtiehship,
c(Toll1) = 2¢(By) +2{B € By : Sp}|+|{B € B, : Wi}l (18)
The result is then obtained by the extension process descabove. The details will be given in the full
version of this paper Hitczenko and Lohss (2015). O

It follows from Lemma 8 that to prove Theorem 5, it suffices &tetmine the number of corners in
type—B permutation tableaux of size Since|B,,| = 2"n!, Equation (3) becomes
c(Br) = 2" E,C,,. (29)
In order to determine the number of corners in type—B pertinutaableaux, we first have the following
result.

Theorem 9 For type—B permutation tableaux of sizg the probability of having a corner with border
edgest andk + 1 is given by
n—k+1 (n — k)2

2n dn(n —1)

P (Ingp=5,Mpsr=w) =

Proof: The proofis similar to the proof of Theorem 2, using the téghas developed in this section for
type—B permutation tableaux. The details will be given ia thll version of this paper Hitczenko and
Lohss (2015). O

The relationship between permutation tableaux and tleetdbleaux given by (17) allows us to deduce
the following corollary to Theorem 9.

Corollary 10 For symmetric tree—like tableaux of si2e + 1, n > 2, the probability of having a corner
with border edge$ andk + 1 is given by

o k=1
k (k—1)% B
n ~ In(n—1) k=2,...n,

P (Isi wiir) = % . E=n+1
2n—k+2 2n—k+1
n2n+ - (47;1(n—1)) k:n+272n
; k=2n+1.

2n
Finally, we establish the following result which, when cdréd with (17) and (19), completes the proof
of Theorem 5.

Theorem 11 For type—B permutation tableaux of sizeve have

dn + 7 1
E,.C, = - —.
¢ 24 2n
Proof: The result is obtained by summing the expression from The&&omk = 1ton — 1. o

To conclude this section, note that Theorem 5 could also beireddl by summing the expression from
Corollary 10 fromk = 1 to 2n + 1.



12 P. Hitczenko and A. Lohss

References

J.-C. Aval, A. Boussicault, and P. Nadeau. Tree-like talpte&lectron. J. Combin.20(4):Paper 34, 24,
2013.

A. Burstein. On some properties of permutation tableaAnn. Comh.11(3-4):355-368, 2007.

S. Corteel and P. Hitczenko. Expected values of statistiggesmutation tableaux. 12007 Conference
on Analysis of Algorithms, AofA ODiscrete Math. Theor. Comput. Sci. Proc., AH, pages 329-33
Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2007.

S. Corteel and J. S. Kim. Combinatorics on permutation tableof type A and type B.European J.
Combin, 32(4):563-579, 2011.

S. Corteel and P. Nadeau. Bijections for permutation table&uropean J. Combin.30(1):295-310,
2009.

S. Corteel and L. K. Williams. Tableaux combinatorics foe gisymmetric exclusion procesAdv. in
Appl. Math, 39(3):293-310, 2007a.

S. Corteel and L. K. Williams. A Markov chain on permutatiavisich projects to the PASEMnt. Math.
Res. Not. IMRN(17):Art. ID rnm055, 27, 2007b.

P. Hitczenko and S. Janson. Asymptotic normality of siaisbn permutation tableaux. Wilgorith-
mic probability and combinatoricvolume 520 ofContemp. Math.pages 83—-104. Amer. Math. Soc.,
Providence, RI, 2010.

P. Hitczenko and A. Lohss. Corners in tree—like tableaug52@r Xi v: 1511. 04989v1.

P. Laborde Zubieta. Occupied corners in tree—like table&@&minaire Lotharingien de Combinatojre
74, 2015a. Article B74b.

P. Laborde Zubieta. Personal communication, 2015b.

T. Lam and L. Williams. Total positivity for cominuscule GiamanniansNew York J. Math.14:53-99,
2008.

P. Nadeau. The structure of alternative tableaux ombin. Theory Ser.,A18(5):1638-1660, 2011.

E. Steingrimsson and L. K. Williams. Permutation tableand permutation patternd. Combin. Theory
Ser. A 114(2):211-234, 2007.

X. Viennot. Alternative tableaux, permutations, and @altiasymmetric exclusion process, 2008. Slides
of a talk at the Isaac Newton Institute in Cambridge.



arxiv:1605.04239v1 [math.CO] 13 May 2016

Proceedings of the 27th International Conference on Prdlistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms
Krakbéw, Poland, 4-8 July 2016
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Abstract. An inequality for the variance of an additive function defiren random decomposable structures, called
assemblies, is established. The result generalizes ¢stmlbtained earlier in the cases of permutations and mggpin
of a finite set into itself. It is analogous to the Turan-Kius inequality for additive number-theoretic functions.

Keywords: Labeled decomposable structure, additive function, maspdiuran-Kubilius inequality.

We deal with additive functions defined on combinatorialstures such as permutations, mappings of
a finite set into itself, 2-regular graphs etc. If a structisreaken at random, such functions are sums of
dependent random variables; sometimes, they are cadlgarable statisticsTheir value distribution is a
complex problem. One of the useful tools in analysing it atineates of the variance. This is our main
objective. On the other hand, our interest has been higimhutited by the Turan-Kubilius inequality in
probabilistic number theory or by analogous inequalitiethe theory of additive arithmetical semigroups.

An assembly is a construction defined on a set by its partdioth some structure introduced in all
subsets, afterwards called components of the assemblyunfsshat given a subset of sizewe can
introduceg; < oo structures, then the number of assemblies spanned oversah (assemblies of the

ordern) equals
G(n) =nl! Z H (%)%é =:nlQ(n).

£(3)=n j=1

Heren € N, £(5) := 1s1 + -+ + ns, if §= (s1,...,s,) € Nj and the summation is over such vectors
satisfying/(s) = n. We will denote the class of assembliesgwand the set of assemblies of the order
by g, C G.

Let \; := g,/5!. In the past decades much attention was paid tddfyarithmic class defined by the
asymptotic conditionp’j\; ~ 6 for some positive constanfs © andp asj — oo (see [1]). Extensions
were initiated in the first author’s paper [2], where a caodit

0<0<pjr <O, j>1, (1)

was used. The lower bound excluded, for example, the cla8gefular graphs, however. Basing upon
the experience, in the present paper we confine ourselveslassof assemblies characterized by some
positive constantg, ©, 4, ', andngy > 1.
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Definition. We say that a class of assemblies is weakly logarithmic ifabhewing conditions are satis-
fied:

PN <0, j21; (2)
> PiN = 0n, 0> ng; 3)
Jj<n
nQ(n)p" >9'exp{2)\jpj}, n>1. 4
i<n

Letk;(o) > 0 be the number of components of sigé o € G, and1 < j < n. An additive function
h : G, — R is defined by a real two-dimensional arrfly; (k) }, wherej, k € N, jk < n, andh;(0) =0

forall j < n, by setting
o) = hj(k;(0). (5)
j=1

Apart from the most popular example of the number-of-congmt® functionw (o) = ki(o) + -+ +
kn (o), they appear in many algebraic and combinatorial probl€tadicular additive functions appear in
physical models as a part of Hamiltonians in the Bose gasyheo

Let E,,h and V,,h denote the expectation and the varianceéhof= h(o) with respect to uniform
probability measure. The problem is to estimate

1 2 2 2
V,h = —— E h(oc) —E,h)" =E,h* — (E,h

in terms of the values; (k) wherejk < n and parameters characterizing the class of assemblies.
In the sequel, le@ {7} (n) be defined by

- T T

L(s)= Lz<n
%5=

and< be an analog of the symbol(-).

Now, the results.
Theorem 1. Assume thag is weakly logarithmic and: : G,, — R is an arbitrary additive function.
Then

)? QU (n — jk)
V,h < j];n IO (6)

forn > 1.

Inequality (6) sharpens a bit Theorem 3 in [3] proved for dpiteary additive function defined on
weighted permutations under condition (1).

A completely additive functioh is defined by the array; (k) = a;k, wherea; € R andjk < n. For
such functions, inequality (6) takes a simpler form.
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Theorem 2. Assume thag is weakly logarithmic and: : G, — R is a completely additive function
defined viah;(s) = a;s wherejs < n. Then

Vah <Y Ajai%. @)

Jjsn

Inequality (7) for weighted permutations satisfying cdiudi (1) has a longer history (see [3])).
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Abstract. The density, denoted by(n, ), of permutations having no cycles of length less thanl in a symmetric
groupS,, is explored. New asymptotic formulas fe(n, r) are obtained using the saddle-point method when
r < nandn — oo.

Keywords: symmetric group, long cycles, Buchstab’s function, Dickiedunction, saddle-point method

The probability<(n, ) that a permutation sampled from the symmetric gr8ymniformly at random
has no cycles of length less thant 1, wherel < r < n andn — oo, is explored. New asymptotic
formulas valid in specified regions are obtained using thugllgapoint method. One of the results is
applied to show that estimate of the total variation distefioc permutations can be expressed only through
the functionv(n, r) which is a probability that a permutation sampled from $heuniformly at random
has no cycles of length greater than

To address the problem, we need recollect the followingtions. Buchstab's function(v) is defined
as a solution to difference-differential equation

(vw(v)) = w(v —1)

for v > 2 with the initial conditionw(v) = 1/v if 1 < v < 2. Dickman’s functiong(v) is the unique
continuous solution to the equation
vo'(v) +o(v—1)=0
for v > 1 with initial conditionp(v) = 1if 0 <v < 1.
The interest to the problem begins with the classical exaroptlerangements

w(n,1) = jio(,l,)jzewo(%)

J:
and the trivial case:(n,r) = 1/n if n/2 < r < n. There was a series of works concerning general
asymptotic formulas of the probabilit/(n, r) the strongest of which are presented here as Proposition 1
and Proposition 2.
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Proposition 1 For 1 < r < n, we have
—H+ 1
k(n,r) =e " wn/r)+ 0| = |-
T

See [6, Theorem 3].

Proposition 2 Letu = n/r. For1 <r <n/logn,

k(n,r) = ¢ Hr 40 ((U/e)“> .

r2

If > 3, we can replace by 1 in the error term.

See [12, Proposition 2]. Together these propositions gdeostronger estimates efn, ) than those in
[2], [3], [4]. New results are the following theorems:

Theorem 1 For y/nlogn < r < n, we have

n(n,r)—-eH%+vw(n/r)4c><éxﬁgr)>.

Proof. The resultis a corollary of Theorem 1 in [7]. Itis obtaineolfrthe probability generating function
using saddle-point method, the technique is elaboratéblljn

Theorem 2 For (logn)* < r < n, we have

Mmm:e4ﬂ+o<ﬂﬂﬁ>.

r

Proof. The saddle-point method is applied to the Cauchy’s integalesentation of(n,r), as in the
proof of Theorem 1. However, there are some other techniffeudties one must to overcome.

Theorem 3 For 5 < r < n, we have

k(n,r) =e "+ 0 (M> :

r

Proof. Quite the same technique to that used in the proof of Theorénemployed, just a different
approximation of the saddle point is taken and Corollary [Bbfs applied.

Theorem 1 and Theorem 2 (see also Corollary 2.3 in [5]) impmv Proposition 1 and Proposition 2.
Theorem 3 is of separate interest; as we see, it can be usdtuhiulas where both probabilitiegn, r)
andv(n,r) are involved. Here is an example.
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Letk; (o) equal the number of cycles of lengtin a permutatiow € S,,, k(o) = (k1(0), ka(0), ..., kn(0)),
andZ = (Z1,Zs, ..., Z,), WwhereZ; are Poisson random variables such #a; = 1/4, j € N. Thus,
if 5 <r < n,we have (see Lemma 3.1 on p. 69 of [1])

#{o k(o) e V}

dry(n,r) = sup py

~Pr(Z e V)‘

v(m,r) [k(n —m,r) —e

—H, 00 1 1 n—r—1
= 5 Z v(m,r) + §V(n,r) +0 <? v(m,r)v(n —m, r)) .

m=n—r m=0

Consequently, only results on the probability, ) are needed attempting to improve on the order of
notable estimate fafry (n, ) in [2].
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Thirty years ago, the Robin Hood collision resolution stggtwas introduced for open addressing hash tables, and
a recurrence equation was found for the distribution oféreh cost. Although this recurrence could not be solved
analytically, it allowed for numerical computations thegmarkably, suggested that the variance of the search cost
approached a value df883 when the table was full. Furthermore, by using a non-stahdegan-centered search
algorithm, this would imply that searches could be perfaiimeexpected constant time even in a full table.

In spite of the time elapsed since these observations wede,ma progress has been made in proving them. In this
paper we introduce a technigue to work around the intradialbif the recurrence equation by solving instead an
associated differential equation. While this does not jg®wan exact solution, it is sufficiently powerful to prove a
bound for the variance, and thus obtain a proof that the negi@f Robin Hood is bounded by a small constant for
load factors arbitrarily close to 1. As a corollary, thisyee that the mean-centered search algorithm runs in expecte
constant time.

We also use this technique to study the performance of RobaodHhash tables under a long sequence of insertions
and deletions, where deletions are implemented by marlements agleleted We prove that, in this case, the
variance is bounded bl/(1 — «) + O(1), wherea is the load factor.

To model the behavior of these hash tables, we use a unifiedagpthat can be applied also to study the First-
Come-First-Served and Last-Come-First-Served collisgmolution disciplines, both with and without deletions.

Keywords: Robin Hood Hashing, full tables, constant variance, cortstapected search time

1 Introduction

In 1986, Celiset al [3, 4] introduced the Robin Hood collision resolution stégt for open addressing
hash tables. Under this discipline, collisions are decidddvor of the element that is farthest from its
home location. While this does not change the expectedtseast, it turns out to have a dramatic effect

TSupported in part by NIC Chile
¥ This work has been partially supported by Project CSIC I+Dritinatoria Analitica y aplicaciones en criptografiameini-
caciones y recuperacion de la informacion”, fondos 22Q%56.



2 P.V Poblete and A. Viola

on itsvariance In effect, unlike other disciplines where the variancelteto infinity as the table becomes
full, the variance of Robin Hood seems to remain constart,vamy small. This fact, conjectured from
numerical computations, has not been proved in the yeace dinvas observed, and is the main focus
of our work. This problem has been hard to solve because #ighdition of the search cost obeys a
nonlinear recurrence equation for which no successfuldiretack has been found.

To show the kind of recurrence involved, we quote now TheoBenfrom [3] (our notation will be
slightly different):
Theorem 3.1 In the asymptotic model for an infinite Robin Hood hash tabth \@ad factora (o < 1),
the probabilityp; («) that a record is placed in théth or further position in its probe sequence is equal
to

1_
(@) =1, pia(a) =1 ( a“) (cxtm@im@). W

They then go on to define another functioiic) = a(p;(a) + - -+ + poo(@)), in terms of which the
variance can be expressed as

V(a):%Zri(a)—ﬁ—ln(lia)—ln (1foz). 2

«Q aZ
They show that; («)satisfies the following recurrence equation:
7"1'(0() — 7"1‘.:,.1(@) =1 e—m(a) (3)

with 71 (o) = —In(1 — «). By leaving the f«a)” implicit and using theA operator (defined aAr; =
ri+1 — ri), this can be rewritten a&r; = f(r;) wheref is the functionf (z) = —1 + e~ =.

This seemingly simpler equation has, nonetheless, sorfsaired unsolved.

In this paper, we will introduce a technique applicable toans of this form, and we will use it first
to prove a bound on the variance of Robin Hood hashing. Thewilvase it to study another recurrence
equation of the same type arising from the problem of hashittydeletions.

2 Modeling hashing algorithms

In this paper we will study the search cost of a random elemmeahash table, using thandom probing
model This is an open addressing hashing scheme in which colisioe resolved by additional probes
into the table. The sequence of these probes are considdredandom and depends only on the value of
the key. The difference with uniform probing is that posisanay be repeated in this sequence. We use
theasymptotic moddbr a hash table with load facter [9, 8, 4, 12], where we assume that the number
of keysn and the table sizex both tend to infinity, maintaining constant their ratic= n/m.

Each element has associated with it an infinite probe seguamtsisting of i.i.d. integers uniformly
distributed ovef0, ..., m—1}, representing the consecutive places of probes for thatezie The probe
sequence for elementis denoted by (z), ha(x), hs(x), .. .. Elements are inserted sequentially into the
table. If element is placed in positioth; (), then we say that elementhas age, as it requireg probes
to reach the element in case of a search. When an elendfrage; and an elemenj of agek compete
for the same slot/(;(z) = hi(y)), a collision resolution strategy is needed.

In the standard method, a collision is resolved in favor @f ilcumbent key, so the incoming key
continues probing to its next location. We call this a Ftstme-First-Served (FCFS) collision resolution
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discipline. Several authors [2, 1, 7] observed that a ¢oliisould be resolved in favor @inyof the keys
involved, and used this additional degree of freedom toahese the expected search time in the table.

Celis et al [3, 4] were the first to observe that collisions could be resdlhaving insteadariance
reductionas a goal. They defined the Robin Hood (RH) heuristic, in whgabh collision occurring
during an insertion is resolved in favor of the key that isHfast away from its home location (i.e., oldest
in terms ofage). Later, Poblete and Munro [14] defined the Last-Come-fSestved heuristic, where
collisions are resolved in favor of tiiecomingkey.

In both cases, the variance is reduced, and this can be usgzbénl up searches by replacing the
standard search algorithm bym@ean-centeredne that first searches in the vicinity of where we would
expect the element to hadeftedto, rather than in its initial probe location. Thigean-centeredpproach
was introduced in [3] (and called “organ-pipe search”) teesp up successful searches in the Robin
Hood heuristic, with expected cost bounded by the standarigtion of this random variable. Numerical
computations in [3] suggest that for full tables the var@n€the search cost for RH is constant, but no
formal proof is given.

In this paper we formally settle this conjecture, by provihgt this is in fact the case, and give an
explicit upper bound (although not as tight as the numeresuilts seem to suggest). As a consequence
we prove that the mean-centered searching algorithm ing8Jdonstant expected cost for full tables.

In section 4 we extend this approach to perform the analyfdimshing with deletions. Deletions in
open addressing hash tables are often handled by markirggliseasdeletedinstead ofempty because
otherwise the search algorithm might fail to find some of tegsk The space used by deleted cells
may be reused by subsequent insertions. Intuitively, betames should deteriorate as tables become
contaminated with deleted cells and, as Knuth[11] points muthe long run the average successful
search time should approach the avenagsucessfudearch time.

In this paper we analize the effect of a long sequence of tiossrand deletions in the asymptotic
regime @-full tables with0 < « < 1) and prove a bound for the variance of RH with deletions that i
close to numerical results.

There is an alternative algorithm designed to keep varidmeein the presence of deletions. This
method marks cells as deleted, but keeps the key value® (tledls are calletbmbstoneks In this paper
we do not study the algorithm with tombstones. We note th2} fierives equations for this algorithm,
but only obtains numerical solutions.

3 Analysis without deletions

To analyze the cost of searching for a random element, wenbBgpresenting a general framework,
based on the one used in [5]. This framework applies also t8F&hd LCFS, but in this paper we use
it to analyze RH, which has been a long standing open probfenstated before, we use the asymptotic
model for a hash table with load facterand random probing.

Under this model, if collisions are resolved without “longiahead” in the table, the cost of inserting a
random element is 1 plus a random variable that follows a g#oerdistribution with parametdr — «,
and therefore its expected costig1 — «), independently of the collision resolution discipline dse

Letp;(«) be the probability that a randomly chosen key hasiagken the table has load facter

Suppose we insert a new element. Depending on the inseiiBoipkhe used, a number of keys will
change locations and therefore increase their ages as equarece of the arrival of the new element. Let
us callt;(«) the expected number of probes made by keys ofialyging the course of the insertion. It is
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easy to see that

hio) =1, 3 t(a) = ——. @)

4 11—«
i>1
Before the insertion, the expected number of keys ofiagesmp; («). After the insertion, itis
1
(am + 1)p;(a+ E) = amp;(a) + t;(a) — tir1(a) (5)
If we write Ao = 1/m andg; (o) = ap;(a), this equation becomes

gi(a+ Aa) —gi(a)
Ao =ti(a) — tit1(a@) (6)

and, axAa — 0 (i.e.m — ),
9agi(@) = ti(a) — tiy1(a), (7

whered,, denotes a derivative with respectdtpand with the initial conditior; (0) = 0.
We introduce a notation that we will use throughout the paperany sequence we define itdail a;

as
a; = Z aj. (8)
J>i
Using this, equation (7) can be rewitten as
9ag;(a) = ti(). 9)

We note that this equation is valid for all three collisiosakition strategies, and it generalizes formula
(10) in [12], where it is proved only for RH.
The mean of the search cost can be obtained using the taflorgtas

_ 1_

pa = Pp(a) = P! (@) (10)
and the variance as )
o = 2Py () — pa — p2 = Eﬁl(a) — fta — 112, (11)

We note that we can already compute the expected searchvitbstit needing to know the exact form
of the functiont, (/). Taking tails in both sides of (9), we hadgyg,; («) = #;(«a).

Now settingi = 1 and using (10), we obtaif\, () = 7, and from this we obtain
1 1
a l—-«

independently of the collision resolution discipline used

The fact that the mean search cost is independent of theicolliesolution discipline used does not
necessarily carry over to higher moments or to the distiobutf the search cost. To compute them, we
need to know the; («) for the specific discipline.
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For RH, a key will be forced to try it§i + 1)st probe location or higher each time there is a collision
between an incoming key of ageor higher and another key in the table that is also of agehigher.
Therefore, and leaving thé&)” implicit, to simplify notation, we have:

tiv1 = ig; (13)
Together with equation (7) this impligs,g;, = (1 — G;)04;- Then, after integrating both sides of the
equation we havin —— = g, from where we obtaif, = 1 — e~%. Moreover, by expressingas the

1-9q;
difference of twag, we arrive at

Theorem 1 Under the asymptotic model for an infinite hash table withd@am probing, and Robin Hood
collision resolution discipline, the double tail of the pability distribution of the search cost of a random
element satisfies the recurrence ~
1 =q—1+e @ (14)

with the initial conditiong, = In . i

This is exactly equation (3) that we quoted from [3], but weadted it through a completely different
derivation. As we mentioned before, numerical computatiperformed in [4] indicate that as— 1, the
variance converges to a small constant, approximatelyl égaa883.

3.1 Bounding the variance of RH

Since we are interested in the behavior of the methad as 1, we will introduce a variablg defined as
f = 25, s0thaln = 1 — § — 1asf — oo. Now we rewrite equation (14) as

AG,=—1+e 5, (15)
with g, = In 3. This equation is of the form
A@‘ = f(@% (16)

wheref is the functionf(z) = —1+ e~*. This recurrence equation seems very hard to solve exaatly,
we will be able to obtain useful information about its sadutby studying instead the differential equation

Q'(z) = f(Q(x)) (17)
with the same initial conditio)(1) = In 8. The solution to this equation is
Q) =In(B—1+e" ) —z+1 (18)

Figure 1 compares the soluti@n (polygonal line) of recurrence equation (16) to the solutig(x)
(smooth line) of differential equation (17). This plot segts that) (i) is an upper bound fay;. This is
true, and will follow from the following lemma.

Lemmal Leta; satisfy the recurrence equatiaka; = f(a;), and A(x) satisfy the differential equation
A'(z) = f(A(z)), wheref : [0,4+00) — (—o0, 0] is a decreasing function. Then

Aty > a; = A(i+1) > a1 (19)

forall 7 > 1.
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Proof: We begin by noting that botlnand A are decreasing functions, becaysie negative. Reasoning
by contradiction, suppose tha{i) > a; but A(i + 1) < a;+1. Therefore, there exists ane (7,7 + 1)
such thatd(z) intersects the straight line joining poinsa;) and(i + 1, a;+1), as illustrated in Figure 2.
The slope of this line at is f(a;) and the slope ofl at pointxz is f(A(z)). At the intersection we must
havef(a;) > f(A(z)). Buta; > A(z) implies f(a;) < f(A(z)), a contradiction. O

Corollary 1
7, <Q() Vi>1 (20)

Using this, we can rewrite equation (11) to obtain the folligwpper bound for the variance:

02 < 237Q0) ~ o 12 (21)

i>1

To approximate the summation, we use Euler's summationdta il 0],

. o " By _ _
Y= [ Q@i+ Y. Q60 - Q4 (1) + R (22)
i>1 1 k=1
where theBj, are the Bernoulli numbers®, = 1,B; = —4,B; = §,B3 = 0,B; = —35,...). From
[10] Exercise 1.2.11.2-3, we know that for evenif QU™ (x) > 0 for = > 1 then

Bl < | 22Q ) (00) ~ Q1)) | 23

We note that, as — oo, all derivatives of) () tend to zero, because they all contain the fa¢i@p(z)),
by repeated differentiation of equation (17), and si@¢ec) = 0, we havef (Q(cc)) = f(0) = 0.

In our case, we will apply this formula withh = 2. We note thatQ(1) = §; = au, andQ’(1) =
f(Q)) = f£(3,) = AF, = —q, = —a. FurthermoreQ® (z) > 0 for x > 1 becaus&)’ (z) = f(Q(z))
is an increasing function. Therefore, we have

S0 = [ Qs+ 300) - QW+ R < [ QWi+ o+ ga (28

i>1

and therefore the bound for the variance can be written as
2 2 >~ 1 2
0o < — Qx)dx + 5 — g, (25)
(6] 1 3

Note that, until now, we have not made use of the specific fofthe functionQ(z). Using now
formulas (18) and (12), we obtain the following upper boumdthe variance:
Theorem 2 Under the asymptotic model for an infinieefull hash table with random probing and RH
collision resolution discipline, the variance of the sdamost of a random element satisfies (with=
1/(1 - )

, w1 Ing
0a§?+§+0<7>. (26)



8 P.V Poblete and A. Viola

O
This gives us an upper bound 86232 ... for the variance of Robin Hood Hashing. Although a
numerically computed value of approximatélg83 has been known for a long time, this is the first proof
that this variance is bounded by a small constantas 1. As Celiset al. observed, the fact that the
variance is very small can be used to carry out a more efficigan-centered searchf we call X the
random variable “search cost of a random key” the expectstofthis modified search B(E|X — pa])-
But Jensen’s inequality implies that

IE:|‘X - ,u'a‘ = IE:\/(‘X - ;uoc)2 < \/E(X - NQ)Q =0a (27)
so, themean valu®f the search cost of a mean-centered search is proporttiestandard deviatioof
the cost of a standard seach. Theorem 2 then implies thagghrgh algorithm runs in expected constant
time in a full table.

3.2 Bounding the tail of RH
We focus now on the tail of the distribution of the search ciost we study

‘ 1 B
> =D, = -0, = ——(Q..
PriX >d} =D = 4 510 (28)
We proved earlier that, < Q(i). By applyingf to both sides and recalling thais a decreasing function,
we havef(g;) > f(Q(3)). Using equations (16) and (17), we hak%g, = —g; > Q’(i), and therefore
. ﬁ 1/ - /8
>i}< ——"—Q'(1) = —F——.
Pr{X >i} < ﬁ—lQ(Y) T iio
If we take the upper bound as the tgﬂ% of a continuous probability function, its density function
would be
6622—1

p(z) = m7

which is symmetric around its mean (and mode) located at tiet p such thate*~! = g — 1, i.e.,
z=14+In(s-1).

As a consequence, by equation (29), the probability thaséfaech cost will exceed this amount by a
given number of stepk:

(29)

(30)

B 1 . 1
—lek+1 ek +1

Pr{X21+1n(ﬁ—1)+k:}gﬁ (31)
asf — oo.

Therefore, as the table becomes full, the mean moves toghewithout bound, but the distribution
remains tightly packed to the right of the mean, and the fitibathat the search cost exceeds the mean
by a given amount decreases exponentially with the distance

Finally, it is interesting to note that if we shift to the ldfte density function (30) so it is centered
around zero, we obtain P

eCL‘
141 -1 = 32
L+ (B-1)+2) = g7 o (32)
which, as8 — oo, converges tqﬁ or, equivalentlyﬁ, the density function of a Logistic(0,1)
distribution.
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4  Analysis with deletions

We assume a process where we first insert keys until the tabthes load factaer, and then we enter an
infinite cycle where we alternate one random insertion fedld by one random deletion.

If the distribution of the retrieval cost is given by(«) and a random element is inserted, the effect is
described by equation (5). If we then perform a random dwiethe following classical lemma[6] shows
that the distribution remains unchanged:

Lemma 2 Suppose a set containdalls of colorsl, 2, .. ., k, such that the probability that a ball chosen
at random is of colori is p;. Then, if one ball is chosen at random and discarded, &hgosteriori
probability that a random ball is of coloris still p;.

Proof: Call p the probability that a random ball is of colorfter the deletion. The expected number
of balls of color: afterwards ign — 1)p}, but that number can also be obtained as the expected number
beforenp;, minus the expected number of balls of caldost, i.e.,

(n—1)p; = npi —1-p;. (33)

The result follows. O

Therefore, equation (5) describes also the probabilityriigion after one insert-delete step. Now,
assume the process reaches a steady state. In that casestribettbn after the insert-delete must be
equal to the distribution before, i.g;(c + =) = p;(«), and replacing this in (5) we have

pi(a) = ti(a) — tiyi(@). (34)
and equivalently,
pi(a) = ti(a). (35)

These equations play the role that equation (7) did for tlse geithout deletions. Taking tails in both
sides of this equation and setting- 1, we can obtain the expected search gosts

1
1—a’

ua = 51 = El = (36)
confirming the prediction that the expected successfulkcbeawst should approach the expecteduc-
cessfukearch cost when deletions are allowed.

For RH, from (35) we gep; = #;, and combining this with (13) we obtain

1 af;?

P = I—o Piv1 = 1+CV]:?7;

(37)

We can use this recurrence to compute numerically the loligtoin for RH.

Figure 3 shows the value of the variance of RH as a functiofi ef 1/(1 — «), and from the plot
we may see that the variance is very clos@tdMoreover, Figure 4 shows the distribution of the search
cost for the three methods, far = 0.99. As proven in [13] it can be seen that FCFS and LCFS are
now identical and have very large dispersiof} (= ﬁ), while RH retains a much more concentrated
shape. We prove that this is indeed the case.
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Fig. 3: The variance of RH with deletions as a functionsof
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4.1 Bounding the variance of RH with deletions

We begin by rewriting the recurrence equation (37) as

=08-1, A7, =-——"= 38
=5 q 143, (38)
This equation is of the form\g;, = f(g,) for f(z) = — 145 and all the conditions required in section

3.1 are satisfied, so we can apply the exact same technigdehese. Solving the associated differential
equation

Q'(x) = f(Q(z)), Q()=p-1 (39)
we find the solution

Q(x) = W((8 1)), (40)

wherelV is Lambert’s function satisfying = W (z)e" (*). As a consequence, proceeding as in the proof
of Theorem 2, we obtain the following result:

Theorem 3 Under the asymptotic model for an infinieefull hash table with random probing and RH
collision resolution discipline, in the steady state of gsence of insert-delete operations, the variance
of the search cost of a random element satisfies (#ith1/(1 — «))

o2 < B+

1

Wl
—_

[
Q

O
This proves our earlier conjecture that the variance wagclese toﬁ.
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A tree functional is called additive if it satisfies a recaorsiof the formF(T') = Zle F(Bj) + f(T), where

B, ..., By are the branches of the tréeand f(T') is a toll function. We prove a general central limit theoremn f
additive functionals ofi-ary increasing trees under suitable assumptions on thieihaition. The same method also
applies to generalised plane-oriented increasing treBOEI's). One of our main applications is a log-normal law
that we prove for the size of the automorphism groupl-afry increasing trees, but many other examples (old and

new) are covered as well.

Keywords: additive tree functional, increasing trees, random treestral limit theorem, automorphisms

1 Introduction

In this paper, we are interested in functionals of rooteeltthat satisfy aadditiverelation, i.e. a recursion

of the form
k

F(T) =) F(B))+ f(T), 1)
j=1
whereBy, ..., By are the branches of the tréeand f(7T') is a so-called toll function, which often only

depends on specific features of the tree such as the sizerodtaegree, but can in principle be arbitrary.
The trees in our context will be labelled; it is assumed thattbll function only depends on the relative
order of the labels, not the labels themselves, so thatlisisveell-defined if the labels are not necessarily
1,2,...,n. Itis consistent with (1) to assume that we have the idetfit¢)) = f((©) for the tree

T = (© consisting only of a single labelled vertex. Important epées include

e the number of leaves, which corresponds to the toll function

F(T) = {1 e

0 otherwise

TThis material is based upon work supported financially by Nagional Research Foundation of South Africa under grant
number 96236.
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e the number of vertices of outdegregin which case one can simply take

1 ifthe root of T has outdegrek,
F(T) = . g
0 otherwise

e the internal path length, i.e., the sum of the distances fiteenroot to all vertices, which can be
obtained from the toll functiorf (7") = |T'| — 1.

e the log-product of the subtree sizes [11], also called thape functional” [6], corresponding to
f(T) =log|T],

e the logarithm of the size of the automorphism group: herés itot difficult to see that the toll
function is f(T") = log(R(T")), whereR(T) is the size of the symmetry group of the collection of
root branches.

Such functionals also arise frequently in the study of divasthd-conquer algorithms, e.g. quicksort [9].
An alternative viewpoint is based on the notionfidifige subtreesa fringe subtree of a tree is a subtree
induced by a vertex and all its descendants. If weA€T") denote the collection of all fringe subtrees of
atreeT, then it is easy to verify that

F(T)= Y f(S).

SEF(T)

In particular, the number of occurrences of a specific trea &gge subtree is an additive functional
(corresponding to the case that the toll functjois an indicator function), and every additive functional
can be obtained as a linear combination of such specialiturads.

There are several recent papers providing central limiréras for rather general additive tree func-
tionals [3,5, 6, 8, 10, 14]. Specifically, Holmgren and Jang] proved such a central limit theorem for
binary increasing trees (which are also equivalent to kisaarch trees) and recursive trees. Both are
instances of so-calleidcreasing treeslabelled trees with the additional property that the labetrease
along any path starting at the root.

Varieties of increasing trees were studied systematidal[iL] (see also [4, Section 1.3.3]). The ex-
ponential generating functio¥ (z) associated with a variety of increasing trees satisfiesfardiftial
equation of the characteristic shape

Y(z) =@(Y(z), Y(0)=0 )

for some function®(¢). Varieties of increasing trees for which a uniformly randtee with a given
number of vertices can also be generated by a growth proeessieen of particular interest. There are
three such types [12]:

e The variety of recursive trees is perhaps the most basiarinst these are simply labelled rooted
unordered trees (“unordered” meaning that the order ofdives does not matter) with the afore-
mentioned property that the labels increase along pathsnstat the root. Uniformly random
recursive trees can be obtained by the following growth @sec starting from a single vertex (the
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root, carrying label), the vertex labellea is attached in the-th step to one of the previous ver-
tices, chosen uniformly at random. As mentioned earlier ditder of children attached to a vertex
does not matter. To obtain a canonical representation, aneg. always make the newly added
vertex the rightmost child. In this example, the functibiis the exponential function. It is easy to
see that the generating functiontigz) = — log(1 — z), and for every positive integer, there are
(n — 1)! recursive trees.

e Plane-oriented recursive trees (PORTS) differ from reagargees in only one aspect: trees are
regarded as embedded in the plane, the order of branché&sisitdo account. The growth process
to generate uniformly random PORTSs follows a “prefererattdchment” rule: it is essentially the
same as for recursive trees, but the probability that theexdabelledn is attached to a specific
vertexv is proportional tal plus the current outdegree of Here, we haveb(t) = (1 —t)~ 1, so
the generating function i¥ (z) = 1 — /1 — 2z, and the number of plane oriented recursive trees
with n vertices is(2n — 3)!L.

Generalised plane oriented recursive trees (GPORTS) deéneld by introducing an additional
parameter: for some positive real numlerwe let the probability that the vertex labelledis
attached to a specific vertexbe proportional tax plus the current outdegree of An equivalent
description uses weighted PORTSs: to each P@RWe associate a weight based on its outdegrees.
If N;(T") is the number of vertices whose outdegreg, iwe set

v =1 (")

3> J

In choosing a random GPORT, the probability of a tree to besehas proportional to its weight.
In the exponential generating functi®df(z), each tree is also weighted with(7"). The function®
in (2) is now given byd(t) = (1 — )~ It follows thatY (z) = 1 — (1 — (o + 1)z)/0+*), the
total weight of all trees with vertices is]_[?;ll((a +1)5—1).

e Finally, we have the variety af-ary increasing trees, which will be the focus of this pagpesre,
every vertex hag possible places to which a child can be attached (for exanmpllee binary case,
there are left and right children). In the construction offamm d-ary increasing trees by a growth
process, we simply attach the vertex labeltetb one of the(d — 1)(n — 1) + 1 places available
in total, once again selected uniformly at random. Thersftite probability that the new vertex is
attached to an existing vertexs proportional tal minus the current outdegree @fin particular,
if v already hasl children, no further vertices can be attached to it). Héxe) = (1 + ¢)? and
Y (x) = (1 — (d—1)x)~%/(d=1) — 1. The total number of-ary increasing trees with vertices is

[T ((d = 1)j +1).
Remark 1 We remark that recursive trees amHary increasing trees can also be seen as weighted
PORTSs, with weights
w(T) = H cjvj(T)7
j>1

wherec; = l, for recursive trees (to factor out the different ways of onolg the branches) and; = (;i)
(to take thel possible points of attachment into account) respectively.
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In the following, we state and prove a central limit theoremddditive tree functionals of uniformly
randomd-ary increasing trees under certain technical conditiorthe toll function. As mentioned earlier,
binary increasing trees (as well as recursive trees) hagady) been covered in [8]. Since the approach
in [8] is based on representations of binary increasingstag® recursive trees that are not available
for other classes of increasing trees, and the generatimgiétn method of [14] requires the resulting
differential equations to be explicitly solvable, whichakso not the case, we use a different approach
based on moments, as in a paper of Fuchs [7] on the humbemngkfgubtrees of given size (which is
also an additive functional). Although we only discuss theecofd-ary increasing trees in (some) detail,
our method also applies to GPORTS, for which we only statectiteesponding result in the following
section.

This extended abstract only summarises the proof our mawrém and lists some interesting exam-
ples to which our result can be applied. Technical detaits@oofs of all intermediate lemmas will be
provided in the full version of this paper.

2 The general central limit theorem

Let us now formulate our main result. In the followindis fixed, andrl;, always denotes a randodrary
increasing tree of ordet (except for Theorem 2). We assume that the toll functidf’) satisfies the
following conditions:

(C1) f(T') is bounded,

(CZ)Z <ooandE|f(T)|—>OaSn—>oo
k>1

Under these assumptions, our central limit theorem fortagdiunctionals reads as follows:

Theorem 1 LetT,, be a uniformly randond-ary increasing tree with vertices. If the toll functiorf (T")
satisfies (C1) and (C2), then there exist constanasid o such that the mean and variance®fT;,) are
asymptotically

E(F(T,)) = un + d—ﬁl +o(1), Var(F(T,)) = o*n + o(n).

The constantg ando can be represented as

ks
=(d—1) ZfT)H(d 1)J+d ®3)
and
2 B J(T)? = 2f(T)(F(T) — p|T|)
’ B P T —

— 1 1Ty \Tz\f Tl T2
dzz |T1| “ DT — 1) / b1y (%) D)1y () de,

T T>
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where .

op(z)=(1-— 3;)71/ (1 — w) Y@=k gy,
The sums are taken over altary increasing trees. & # 0, then the renormalised random variable
(F(T,) — un)/Vo?n converges weakly to a standard normal distribution.

Remark 2 We remark that the result remains true if conditions (C1) &B#) hold for a shifted version
F(T) + ¢ (c any constant) of the toll function rather than the toll fupctitself, since this changds(T")
only by the deterministic quantityT'|.

Remark 3 By means of the Craen-Wold device, we also obtain joint normal distributiontoples of
additive functionals.

As mentioned earlier, the method used in proving Theorensd abplies to GPORTs. Without going
into detall, let us just state the corresponding theorem:

Theorem 2 Let T, be a random GPORT (with fixed parametérwith n vertices. If the toll function
f(T) satisfies (C1) and (C2), then there exist constantnd o such that the mean and variance of
F(T,) are asymptotically

E(F(T,)) = un — ? +o(1), Var(F(Ty,)) = o*n + o(n).

The constantg ando can be represented as

= (a+1) Y w(D)f(T) H

T ke a+1]+0¢
and
R (a f(T)? = 2f(T)(F(T) — pIT))
D XA S
a+ D)D) f(T) [
Yy, e 2
where

1
ok (x) :/ (1 — w)/FD k=1,

The sums are taken over all PORTSs, weightedi¥7). If o # 0, then the renormalised random variable
(F(T,) — un)/Vo?n converges weakly to a standard normal distribution.

3 Preliminaries

Recall that the exponential generating functidtr) of d-ary increasing trees satisfies the differential
equation
Y(z) =@(Y(z)), Y(0)=0, (4)
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whered(t) = (1 + t)¢. The explicit solution is given by (z) = (1 — (d — 1)z)~ /(@1 — 1, and the
total number ofi-ary increasing trees with vertices is

Yo=nl- [2"]Y (2) = H( ~ 1+ 1)

Let us first define a multivariate generating function thabahcorporates the tree functiondland its
toll function f. Specifically, we set

T
X a _
i(&?yanb) = E We F(T) bf(T).
T !

In view of the recursion satisfied by, (4) becomes

bl l,|T|71
“y - § a(F(T)=F(T)) — (Y (z Y —0.
afE ($5a7a) — (|T| _ 1)'6 ( ('T’aﬂo))’ (O7a7b) O

We set

IT|
Z(x,a,b) =14+ Y (xze " a,b) =1+ Z TT| erf eI,

wherep will be determined later, so that

gZ(x,a, a) = e~ "P(Y(ze” ", a,0)) = e~ "®(Z(2,a,0) — 1) = e " Z(x,a,0)"
z

Note that
[x"]Z(x,a,0) _ nl[z")Z(z, a,0)
[%n]Z($7 0, O) Ya

is the moment generating function for the random varid{&,, ) — u|7,,| = F(T},) — un when arandom
d-ary increasing tre&,, with n vertices is generated. Its derivatives with respeat &valuated ai, yield
the moments.

Let ther-th derivative ofZ with respect taz be denoted byZ (") (z, a, b). Our first goal is to determine
a differential equation for the functiod(") (x, 0,0). This is done by means of Faa di Bruno’s formula.
First, we need some further notation regarding integertans: we represent partitions of a positive
integerr as sequences= ({1, {2, . ..), where/; denotes the multiplicity of. Thus/ is a partition ofr if
>_;jtj = r. The set of all partitions of is denoted byP(r), and we write{(| = £, + {> + - - - for the
total number of parts in the partitiah

M, (a) =

Lemma 3 The functionz (") (z, 0, 0) satisfies the differential equation
9 —d ()
—I(Z(x,O,O) Z (x,o,O))

— Z(2,0,0)"H, (2) +Z< ) )rss) Z e |/|)| Hg '1 (Z(J :]E;L«OOOS))&7 5)

17
LeP(s) )
£.#1
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where
2ITI-1

) =S () S S (R — il )
s (7] - 1!

s=1

Note that at this stagé/,.(x) is only considered as a formal power series, convergena taken into
account. We first analyse this differential equation in thectal cases = 1 andr = 2 corresponding to
mean and variance before we move on to the central limit #raor

4 Mean and variance

Let us now determine mean and variancé'¢f,). Since the values of the toll functigi(T") for |T'| > n
will not affect the distribution ofF'(T,,), we can assume in this section thf&f") = 0 for |T'| > n. This
means in particular that the functiois.(z) also depend om, so we Writer.")(x) to emphasize this
dependence. Far= 1, Equation (5) becomes

%(Z(I,O,O)_dZ(l)(x, 0,0)) = Z(2,0,0)"*H™ (z) — p,
SO -
ZW(z,0,0) = Z(x,0, O)d/ ( — Z(w,0,0)" H™ (w) — u) dw,
0
where P
@) = = 0 /(). (6)

IT|<n

If we chooseu = (™) in such a way that

1/(d-1)
pl) = —(d-1) / Z(w,0,0) " H{" (w) dw,
0

then we can write

(n)
ZW(2,0,0) = :ﬁ D Z(2,0,0) + R(z). 7

where
1/(d—1)
R(z) = Z(z,0,0) / Z(w,0,0)"H™ (w) dw.
The first term on the right side of (7) contributg(é% to the mean, so it suffices to determine the con-
tribution from R(z). Note thatR(zx) is a polynomial of degree whose coefficients can be computed
explicitly using the following lemma:

Lemma4 If

P(z) = i arz® and Q(z) = (1 — x)*ﬂ/ (1 —w)? P(w)dw,
k=0

1
x
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then@(x) is a polynomial of degree with

n—1
m _ Am—-1 B‘Fm*l ) F(ﬂ+1)k'ak
[z™]Q(x) = m+5+z< " > T ET]

n—1
|am 1] 1
=0 PN R
( m tm |ak‘

k=m

This lemma gives us in particular an expressioni¢f R(x), since

[z"|R(z) = [2"](1 - (d — 1)a)~%/@=D / W_Du — (d — Dyw)¥ @D H™ (w) dw
=(d— 1"z (1 — 2)~ /@D /I (1- u)d/(dfl)Hl(") (m) du.

Evaluating the integral in the expression fof) explicitly gives us
1

(n)id(d_l)ngn Dm+ 1D)((d—1)m+d)Y, IT\Z: f(T)
. Z E(f(Tn))

Dm+1)((d— )m+d)’

m<7L

Putting everything together, we arrive at an explicit fotafior the mean:

E(F(T,)) = p™n + ;(")1 N n![z'ﬂy]f(x)

E(f(Tm)) n

) f
=@d=Dn+d) D G (- Dm D T mrda- oy, 2= /D
(

D

|T|=n

m<n
E(f

=(d(d—1)n+d) > @O+

m<n

Tm))
(d=Dm+a) &

E(f(Th)).

If we complete the series and make use of conditions (C1) @29, (we arrive exactly at the desired
asymptotic formula for the mean in Theorem 1. The varianééghvis obtained by using Equation (5) for
r = 2, can be treated in a similar fashion. Without going into dlei@der our conditions (C1) and (C2),
we can show that

Var(F(T,)) = ¢™n + o(n),

wherec(™ is a truncated double series which converges to the constantTheorem 1 as — .

5 The central limit theorem

We first consider the case thA{T") has finite support. Conditions (C1) and (C2) are then auticaibt
satisfied, hence the results in the previous section for g&nnand variance are valid in this case as well.
For the central limit theorem, we also need higher momeatsyhich we have the following statement.
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Lemma5 If the toll functionf has finite support, i.e. there exists a constahisuch thatf (7)) = 0
whenevelT'| > K, then the centred moments of the functioRiare asymptotically given by

(r—1)lo™n™/2 40 (n"/271)  reven,
E((F(T,) — ") =
(F(T5) — pn)") {O (n(r—l)/Q) r odd.
Here,u ando are as in Theorem 1. Consequentlyy i« 0, then the renormalised random variable
F(T,) — pun
o?n

converges weakly to a standard normal distribution.

The key to proving this lemma is the fact that the functidiis are now given by finite sums and
therefore trivially represent entire functions. This dealus to apply singularity analysis to the functions
Z")(x,0,0) for arbitraryr, which yields the asymptotics of the centred moments.

To deal with toll functions that are not finitely supportede wmploy a trick that was already used
in [8, 10]: we approximate them by truncated versions to Whve can apply Lemma 5. This approach is
based on the following simple yet general lemma.

Lemma6 If (X,,),>1 and(W,, »)m.n>1 are sequences of centred random variables such that
o Win & W, andW,,, %, W, wherelV” has a continuous distribution function,
o Var(X,, — Winn) —n v2, andy, —m, 0,

thenX,, %, W.

We return to additive functionals and assume that the toitfion f(7") satisfies conditions (C1) and
(C2). For every positive integen, consider the truncated toll functigh, and the corresponding function
F:

fm(T) = {f(T) |T| = " and Fm(T) = Z fm(S) = Z f(S)

0 otherwise, SeFe) SeF(TYIS|<m
From Section 4, we know that the mean and variancg,of7") have the asymptotic estimates

E(Fn(T)) = pimn + % +o(1) and Var(Fn(T)) = 0n + o(n)
asn — oo. Furthermore, for each, if o2, # 0 thenF,,(T) satisfies the central limit theorem, and
Um — pando2, — o asm — co. On the other hand, the function&(T) — F,,,(T) is also additive with
toll function f(T') — f,n(T). The conditions (C1) and (C2) are both satisfied by the l#&tefunction, so
from the asymptotic formula for the variance we know that
9 lim Var(F(T,) — Fin(Ty))

Ym = —m 0

n—oo n

under the conditions on the toll functigh Hence, Lemma 6 applies to the sequences

Fu(T) ~E(Fw(T) gy F(T) ~E(F(T)

which proves Theorem 1 for arbitrary toll functiofighat satisfy (C1) and (C2).

Wm n =
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6 Some applications

6.1 Fringe subtrees of given size and occurrences of specific fringe subtrees
The simplest example of a toll function is perhaps the indiclunction of a specific tres":

ﬂﬂ={1T_&

0 otherwise.

The associated additive functional is simply the numberagiuorences of on the fringe of a random
tree: by an occurrence &f, we mean a fringe subtree that is isomorphi§tncluding the relative order
of the labels).

In this case, we obtain a central limit theorem with mean aarthwnce only depending on the sizef
if S hask vertices, then

1 -1 and  o? = (2% + ! )+; + ) %/ () d
— o~ = — _— L L.
T ((d—1)j +d) d—1 ’

A closely related functional is the number of fringe subsred¢ some given sizé (equivalently, the
number of vertices with exactly — 1 descendants). In particular, the special dase 1 corresponds to
the number of leaves. Here, the toll function is given by

ﬂﬂ{lT:@

0 otherwise,

and we obtain a central limit theorem with
B d(d—1) 2 1 d(d )12ky2
= A= Dhtd(@d—DhsD 2@ o =# (2k+ = 1)”* 1)'2 / ok

This was already shown by Fuchs [7], who also considereddke that: is not fixed but rather tends to
infinity with the size of the tree as well.

6.2 The number of subtrees

The number of subtrees is already a somewhat more compliext@mple: for Galton-Watson trees,
binary increasing trees and recursive trees, it was alrstdijed in [14]. Here, we count all subtrees, i.e.
all induced subgraphs that are again trees, not just thoseeofninge. It is useful to study an auxiliary
quantity first, namely the number of subtrees containingdlo& we writes(T") for this number. It is not
difficult to see that

k
s(T) = H1+sB)

since each subtree induces either the empty set or a sulinésErdng the root in each of the branches.
Taking the logarithm gives us

k
log(1+ s(T)) = Zlog(l + 5(By)) +log(1 + s(T)™1),
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solog(1 + s(T)) is an additive functional with toll functiorf (T") = log(1 + s(T')~!). Simple a priori
estimates show that the technical conditions of our gereamadral limit theorem are satisfied: this is
becauses(T)) > |T'| (since every path from the root to a vertex is also a subtregkich implies that
f(T) = O(|T|71) for all T (even deterministically, not just on average). Thus oummasult applies
to the functionak(T"). As it was shown in [14], the difference betweEf(T") = log(1 + s(T)) and the
logarithm of the total number of subtrees (not necessanifaining the root) i€ (log |T|), so the central
limit theorem remains correct for the total number of sudxre

6.3 The size of the automorphism group

An important motivating example for this paper is the sizéhefautomorphism group. In their article [2],
Bona and Flajolet proved, motivated by questions in phgtagics, that the logarithm of the size of the
automorphism group of uniformly random binary trees is gstgtically normally distributed (they proved
this limit law for the number of nodes for which the two braastare isomorphic, which is equivalent).
Here, we obtain an analogous statementdary increasing trees. We remark that binary increasing
trees are also essentially equivalent to the Yule-Hardingeh(as opposed to the uniform model) of
phylogenetics [13, Section 2.5].

As it was mentioned in the introduction, the relevant tolidtion is f(T") = log(R(T")), whereR(T)
is the size of the symmetry group of the collection of rootmtees. This simplifies considerably in the
case of binary trees, where we only have two brandheand Bs. In this case, it follows that

log2 if B; andB; are isomorphic,
f(T) = :
0 otherwise.

As one would expect, it is very unlikely for large trees tha¢ two branches are actually isomorphic,
which is why the technical condition on the toll function &isfied. In fact, one can show tHé¢| f (7’,)|)
decays exponentially for binary increasing trees. We firad tihe number of automorphisms of a random
binary increasing tree asymptotically follows a log-nottas, which parallels the aforementioned result
of Bobna and Flajolet.

The same holds more generally fary trees, although the expected value of the toll funatioes not
decay as quickly: in this case, the probability that two lores are isomorphic only decreases at a rate of
O(|T|=%/(4=1), which however is still sufficient.

6.4 The number of orbits

Two vertices of a rooted tree (or generally any graph) aré teabelong to the same orbit if there exists
an automorphism that maps one of the vertices to the othee VEhex set can thus be partitioned in
a natural way into orbits, and the number of orbits can alseebarded as an additive functional. Let
us illustrate this for binary increasing trees: if the twafehesB,; and B, of T' are isomorphic, then
F(T) = F(B1) +1= F(Bs) + 1, otherwise F(T") = F(B;) + F(Bz2) + 1. Hence, the toll function is
given by

F(T) = 1 - F(By) if By andB; are isomorphic,
)1 otherwise.

Our technical conditions (C1) and (C2) are not completetisBad in this examples, but it is possible
to work around that. First, the expected valug t(fT’,)| does not tend td, but the expected value of
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|f(T,) — 1| does, cf. Remark 2. SeconflT") is not bounded, but this condition can be replaced by the
fact thatf(7") andF'(T") are bothO(|T'|). Again, everything also remains valid férary increasing trees,
although the details are somewhat more intricate.
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Abstract. Let G(n, M) be the uniform random graph with vertices andV/ edges. Let,, s be the maximum
block-size of G(n, M) or the maximum size of its maxim&kconnected induced subgraphs. We determine the
expectation ofo,,, »s near the critical poinfi/ = n/2. Asn — 2M > n?/?, we find a constant, such that

c1 = lim (1 - %) E(pn, a) -

n—00

Inside the window of transition of/(n, M) with M = Z(1 + An~1/3), where)\ is any real number, we find an
exact analytic expression for

E (KD n —1/3 )
. n, Z(14+An )
()= Jim ——

This study relies on the symbolic method and analytic toofaiag from generating function theory which enable us
to describe the evolution of /3 E(pn %(qu/g)) as a function of.

Keywords: Random graph, Analytic Combinatorics, Maximum block-size

1 Introduction

Random graph theory Frieze and C. (1997); Bollobas (20IHnson et al. (2000) is an active area of
research that combines algorithmics, combinatorics, gividiy theory and graph theory. The uniform
random graph modeF(n, M) studied in Erdos and Renyi (1960) consistsuinertices withA/ edges
drawn uniformly at random from the set ¢f) possible edges. Erdés and Rényi showed that for many
properties of random graphs, graphs with a number of edggtlglless than a given threshold are un-
likely to have a certain property, whereas graphs with siyghore edges are almost guaranteed to satisfy
the same property, showing paramount changes inside theatsres (refer to aphase transition As
shown in their seminal paper Erdos and Renyi (1960), whes < for constant the largest component

of G(n, M) has a.a.sO(logn), ©(n?/3) or ©(n) vertices according to whether< 1,c¢ = 1 ore > 1.

Supported by ANR 2010 BLAN 0204 (MAGNUM) and PEPS FASCIDO MISINS2I 2015,
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This double-jumphenomenon about the structuresf, M) was one of the most spectacular results
in Erdos and Renyi (1960) which later became a cornerstotteeafandom graph theory. Due to such a
dramatic change, researchers worked around the crititiaé ¥aand one can distinguish three different
phasessub-criticalwhen (M — n/2)n=%/3 — —oo, critical M = n/2 + O(n?/?) andsupercriticalas
(M —n/2)n=2/3 — co. We refer to Bollobas Bollobas (2001) and Janson, LuczrakRucinski Janson
et al. (2000) for books devoted to the random gra@ls, M) andG(n, p). If the G(n, p) model is the
one more commonly used today, partly due to the independeiite edges, thé(n, M) model has
more enumerative flavors allowing generating functiongdapproaches. By setting= % + # the
stated results of this paper can be extended t@:the p) model.

Previous works. In graph theory, a block is a maximal 2-connected subgraphmdl definitions are given
in Section 2). The problem of estimating the maximum blocle ias been well studied for some class
of graphs. For a graph drawn uniformly from the class of seripbeled planar graphs withvertices,
the expectation of the number of vertices in the largestlbisern asymptotically almost surely (a.a.s)
wherea =~ 0.95982 Panagiotou and Steger (2010); Giménez et al. (2013). Towyd that the largest
block in random planar graphs is related to a distributiothefexponential-cubic type, corresponding to
distributions that involve the Airy function Banderier ét@001).

For the labeled connected class, these authors provedhdispandently that a connected random planar
graph has a unique block of linear size.

When we restrict to sub-critical graph (graph that the bidekomposition looks tree-like), Drmota
and Noy Drmota and Noy (2013) proved that the maximum bloo& ef a random connected graph in an
aperiodié) sub-critical graph class i9(logn).

For random maps (a map is a planar graph embedded in the pEe@and Wormald Gao and Wormald
(1999) proved that a random map witredges has almost surely'3 edges. That is, the probability that
the size of the largest block is about3 tends tol asn goes to infinity. This result is improved by
Banderieret al. Banderier et al. (2001) by finding the density Airy distrilout of the map type.

Panagiotou Panagiotou (2009) obtained more general sédsukhny graph class. He showed that the
size of largest block of a random graph frghwith »n vertices andn edges belongs to one of the two
previous categorie)(n) andO(logn)). In particular, the author pointed out that random plamapgs
with cn edges belong to the first category, while random outerplandiseries-parallel graphs with fixed
average degree belong to the second category.

For the Erd6és-Rény (n, M) model, the maximum block-size is implicitly a well-studigdaph prop-
erty whend = £t for fixedc < 1. For this range(s(n, M) contains only trees and unicyclic components
a.a.s. Erdos and Renyi (1960). So, studying maximum blotkesd the largest cycle are the same in this
case. Denote by, »s the maximum block-size af/(n, M). Itis shown in (Bollobas, 2001, Corollary
5.8) that asM = < for fixed ¢ < 1 thengp,, i is a.a.s at mosb for any functionw = w(n) — oc.
Pittel Pittel (1988) then obtained the limiting distribri (amongst other results) fer, s for ¢ < 1.
Note that the results of Pittel are extremely precise anldidecother parameters of random graphs with
satisfyinge < 1 — ¢ for fixede > 0.

Our results. In this paper, we study the fine nature of the Erdés and Rémgse transition, with emphasis
on what happens as the number of edges is cloge twithin the window of the phase transition and near
to it, we quantify the maximum block-size 6f(n, M).

) In the periodic case; = 1 mod d for somed > 1 (see Drmota and Noy (2013) for more details)
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For sub-critical random graphs, our finding can be statedigely as follows :

Theorem 1 If n — 2M > n?/3, the maximum block-size, s of G(n, M) satisfies

n
E(pn, a1) ~ 1 (m) ) 1)
wherec; ~ 0.378 911 is the constant given by
o 1 [ _,dt
c] = 1 — e E1()) gy with Ei(x) = —/ et 2
I ) 5 <

For critical random graphs, we have the following :

Theorem 2 Let A be any real constant and/ = (1 + An~1/3). The maximum block-size, s of
G(n, M) verifies :

E(pn, 1) ~ ca(N) nt/3, (3)

where

c2(N) = é/ooo (1 - \/%ZZA <3r+ %,A) A €r.d (e‘“)) du 4)

r>0d>0

Ey(x) is defined in (2)¢ is the positive solution of

A=al-a, (5)
the functionA is defined by
—AS/G ( 32/3)\)
Ay, A 6
(v, A) = 3(y+1)/3 Z k'F((y +1-2k)/3)’ ©

and the(e, 4(z)) are polynomials with rational coefficients defined recuegnby (22).

The accuracy of our results is of the same vein as the one oprtmbility of planarity of the Erdds-
Rényi critical random graphs Noy et al. (2015) or on the éigiize scaling for the core of large random
hypergraphs Dembo and Montanari (2008) which have beereafs@ssed in terms of the Airy function.
This function has been encountered in the physics of randaphg Janson et al. (1993) and is shown
in Flajolet et al. (1989) related td(y, ) defined by (6) and appearing in our formula (4).

It is important to note that there i® discontinuityoetween Theorems 1 and 2. First, observe that as

M =12 — A0 with 1« \(n) < n!/?, equation (1) states tha(p,, ) is aboutclA( 5. Next, to

see that this value matches the one from (3), we argue brigfigllaws. In (5), as\(n) — —oo we have
a ~ |A(n)| and (see (Janson et al., 1993, equation (10.3)))

1 1
A3+ 2, .
(’" 2 > V2 AT
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Thus, all the terms in the inner double summation 'vanisltegit the one corresponding to= 0 and
d = 0 (this term is the coefficient for graphs without muIticyottirumponents([f]0 = 1). Itis then remark-

able thatas\(n) — —oo, c2(A(n)) behaves ag;tLs,.

Outline of the proofs and organization of the paper.In (Flajolet and A., 1990, Section 4), Flajolet and
Odlyzko described generating functions based methodsitty &xtremal statistics on random mappings.
Random graphs are obviously harder structures but as simotlva masterful work of Jansa@t al. Janson

et al. (1993), analytic combinatorics can be used to studyejoth the development of the connected
components of7(n, M). As in Flajolet and A. (1990), we will characterize the exgagion of o, s by
means of truncated generating functions.

Given a family F of graphs, denote byF,,) the number of graphs of with n vertices. Theexpo-
nential generating functiofEGF for short) associated to the seque(gg) (or family F) is F(z) =
S50 Fnir. Let FIHI(2) be the EGF of the graphs i butwith all blocks of size at mogt From the
formula for the mean value of a discrete random varidble

E(X)=> kP[X =k =) (1-P[X <k]),

k>0 k>0

we get a generating function version to obtain

Ez) =Y [F(z) _ Fl (z)]

k>0

and the expectation of the maximum block-size of graph’ " "'%ﬂ Turning back ta= (n, M),
realizations of random graphs whét is close to7 contain a set of trees, some components with one
cycle and complex components witfregular3-cores a.a.s. In this paper, our plan is to apply this scheme
above by counting realizations 6f(n, M) with all blocks of size less than a certain value. Once we get
the forms of their generating functions, we will use comp@exrlysis techniques to get our results.

This extended abstract is organized as follows. Sectioar®sstvith the enumeration of trees of given
degree specification. We then show how to enume&ratennected graphs witb-regular3-cores. Com-
bining the trees and the blocks graphs lead to the forms afénerating functions of connected graphs
under certain conditions. Section 2 ends with the enunmerati complex connected components with all
blocks of size less than a parameterBased on the previous results and by means of analytic mgtho
Section 3 (resp. 4) offers the proof of Theorem 1 (resp. 2).

2 Enumerative tools

Trees of given degree specificatior..et U (z) be the exponential generating function of labelled unrdote
trees and’(z) be the EGF of rooted labelled trees, it is well-known {Hat

o0 3 Zn T P 2 oo . Zn i
Ulz) =) n" 72— =T(2) - (2) and T(z) = Y n" 'S = 2T, )
n=1 ' n=1 :

(@ For any power seried (z) = 3" anz™, [z A(z) denotes thei-th coefficient ofA(z), viz. [2"]A(z) = an.

(i) We refer for instance to Goulden and Jackson Goulden anddadk983) for combinatorial operators, to Harary and Palme
Harary and Palmer (1973) for graphical enumeration andalet and Sedgewick Flajolet and Sedgewick (2009) for tme-s
bolic method of generating functions.
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For a tree with exactlyn; vertices of degree, define itsdegree specificatioas the(n — 1)-tuple
(m1, ma,---, my,—1). We have the following.

Lemma 1 The number of labeled trees withvertices and degree specification,, ma, - - - my—1) with
S mi=nandd !  im; =2n—2is

n—2)! n
an(ml,mg,...,mn,l) = nfl( ) - ( ) .

[T (= 1)Y)™ \ma, ma, -+, My

Proof (sketched). Using Prifer code, the number of trees with degree sequénde, - - - , d,, (thatis

with node numbered of degreed;) is an”(;;)_'l), The result is obtained by regrouping nodes of the
same degree. a [ |
Define the associated EGFdg(m1,ma, ..., my—1) With
o0 e o
U(d1, 02, -++ 5 2) = ZZan(ml,mg, ey Mp—1)07 05 0, IH (8)
n=2

where the inner summation is taken otherdailuch thaty " im; = 2n — 2 and)_m; = n. Define
Un(51, 52, ey 5n71) as

Un(61,09,...,00—1) = [2"]U (61,02, .., 0n_1; 2) . 9)
The following result allows us to compute recursively(dq, -« , dp—1).

Lemma 2 The generating functioris,, defined in(9) satisfyUs(d1) = % and for anyn > 3,

Un(01,...,6n-1) = 062Un—1(01,...,0n—2)
n—2

+ Z5¢+1

i—2 '

Proof. Postponed in the Appendix —6.1.

Enumerating 2-connected graphs whose kernels are 3-regulaA bridge or cut-edgeof a graph is an
edge whose removal increases its number of connected canfsorEspecially, the deletion of such an
edge disconnects a connected graph. Similarlgréioulation pointor cut-vertexof a connected graph is
a vertex whose removal disconnects a graph. A connecteth griipout an articulation point is called a
blockor a2-connectedjraph.

Following the terminology of Janson et al. (1993), a cone@draph hagxcess- if it has r edges
more than vertices. Trees (respnicyclesor unicyclic componenjsare connected components with
excess = —1 (resp.r = 0). Connected components with excess 0 are calledcomplex connected
componentsA graph (not necessarily connected) is cattedhplexwhen all its components are complex.
The total exces®of a graph is the number of edges plus the number of acycligpoments, minus the
number of vertices.

Given a graph, it&-coreis obtained by deleting recursively all nodes of degre& smoothgraph is a
graph without vertices of degree one.

The 3-core (also calledkerne) of a complex graph is the graph obtained from2itsore by repeating
the following process on any vertex of degree two : for a veofaelegree two, we can remove it and splice

51 9
0 8—62_Un71(l', 527 ey 5n72)dx'
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together the two edges that it formerly touched. A graphiis sabicor 3-regularif all of its vertices are
of degree3. Denote byB, the family of 2-connected smooth graphs of excessith 3-regular3-cores
and let

B= G B,. (10)
r=1

In this paragraph, we aim to enumerate asymptotically thptgs of3,.. In Chae et al. (2007), the authors
established recurrence relations for the numbers of ldbaldic multigraphs with given connectivity,
number of double edges and number of loops. For instancgweee able to rederive Wormald’s result
about the numbers of labeled connected simple cubic grajthswsimple edges an2l vertices (Chae
et al., 2007, equation (24)). They proved that the numbeucti ®bjects is given by

(2n)!
ot ), > 2 11
S | 1n (11)
with
n—3
t1 =0,t =1 andt,, = 3nt,_1 + 2t,_o + (37’L — 1) Z tith_1-i,n>2. (12)
=2

From the sequendg,, ), they found the number @&-connected multigraphs.

Lemma 3 (Chae, Palmer, Robinson)Let g(s, d) be the number of cubic block<connected labelled)
multigraphs withs single edges and double-edges. Then, the numbe(s, d) satisfy

(29)!

g(s,d)=0if s <2,g(s, s) = (2s — 1)l andg(3s, 0) = 3509

(ts — 2to_1)

with ¢ defined as in (12). In all other cases,

g(s, d) = 2n(2n — 1) (“9%‘11)9(5 —1,d—1)+g(s — 3,d)> .

We are now ready to enumerate asymptotically the fafijly Throughout the rest of this paperAf(z)
andB(z) are two EGFs we write

A(z) < B(z) ifand only if [z"]A(z) ~ [z"]B(z) asn — 4o0.

Lemma4 Forr > 1, let B,.(z) be the EGF of smooth graphs of excesshose kernels ar8-regular

and2-connectedB,.(z)satisfiesB, (z) =< (1_"# whereb; = - and forr > 2
9(s, d)
by = (13)
s+%;3r 2d(2r)|

with theg(s, d) defined as in lemma 3.

Proof. Postponed in the Appendix — 6.2.
We need to count graphs of excessith at mostk vertices so that all the blocks of such structures are of
size at mosk. We begin our task with the graphs with cubic @adonnected kernels.
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Lemma5 LetBY be the family oR-connected graphs of excesswith at most: — 2r vertices of degree
two in their2-cores and whosg-cores are cubic. For any fixed> 1, we have

1— 2k

BH(2) < b, e

Proof. Postponed in the Appendix — 6.3.
Let B2° be the set of graphs @, such thats vertices of degree two of thei-cores are distinguished
amongst the others. In other words, an elemeift*éfcan be obtained from an element®f by marking
(or pointing)s unordered vertices of itscore. In terms of generating functions, we simply get (sagr/
and Palmer (1973); Goulden and Jackson (1983); FlajoleBaadewick (2009)) :

25 93 t2'r
S (br—(l ! Z)g,.) ‘ , (14)

=z

ZS 88

B = o

B (z, t)

t==z

whereB, (z, t) is the bivariate EGF 0B, with ¢ the variable for the vertices of degrge(The substitution
= z is made after the derivations.)
Define

LE] 1 . .
b = EbTH[ngr (s —1)]
=1

so thatB?*(z) =< (kzﬁ Now if we switch to the class of graphs with blocks of size atsti: then

by similar arguments, the asymptotic number of graphB8sfwith s distinguished vertices and at most
k vertices on theiR-cores behaves as

1— 2k

By M (z) < by ————
r ( ) T (1 B Z)3r+s

Counting 2-cores with cubic kernels by number of bridges.In this paragraph, we aim to enumerate
connected smooth graphs wh@seores arg-regular according to their number of bridges (or cut-eliges
and their excess. To that purpose debe the family of such graphs with excess 0, and for anyd > 0
let

Cr.a £ {G e, : Gis acycle or its3-core is3-regular and has bridges .
Clearly, we have,. o = B,.. If we want to mark the excess of these graphs by the variablee simply
have

Cra(w,z) =w"Cr q(2) .

Lemma 6 Foranyr > 1andd > 1,

Cra(z) = [WUg1 (B'l(w,z)7 2!B*(w, 2), 3!B*3(w, 2) + w1z,

w®

41B**(w, 2), ...,d!B'd(wvz)> 11— 2)4
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whereUdH are the EGF given by lemma By(w,z) = —1log (1 —2) — 2/2 — 22/4, B§*(w, 2) =
L2 By(w, 2) and B**(w, z) = 2o W B (2).

Proof. Postponed in the Appendix — 6.4

Lemma 7 Forr > 1andd > 1, we have

Cr,a(z) < (16:75)&

where the coefficients. ; are defined by
¢ra = (W Uas1 (Br(w), Ba(w), Bs(w) + w™", Ba(w), ..., Ba(w)) w?,
with b, given by (13) and

Bs(w) +Zw% H3€+(s—i)] with s > 1.
=1
Proof. Postponed in the Appendix — 6.5.

Let us restrict our attention to elementsf; with blocks of size at most. Denote byC, ", *] this set of
graphs. Since they can be obtained from a tree withl vertices by replacing each vertex of degsdmy
a s-marked block (block with a distinguished degree of degne®) bf the family( J.~ , B** (%1, we infer
the following :

Lemma 8 For fixed values of, the EGF of graphs cﬂ?[ , Verifies

(1 _ Zkt)d+1

cH =, :
,d Cr,d (1_2)3r

From connected components to complex component®enote by&[f“] the family of complex graphs
(not necessarily connected) of total excessith all blocks of sized< k. Let E,U“] be the EGF o&[k].

Using the symbolic method and sprouting the rooted trees ftee smooth graphs counted Bgyf]d(z)
we get

[e'S) 2r—1
ZwTEL = exp (Zw Z C}nkd(T(z ) .
r=0 r=1 d>0

We now use a general scheme which relates behavior of catheaimponents and complex components
(see for instance (Janson et al., 1993, Section 8)(if, 2) = 1 + > o, w"E,(2) with E,(z) =

andC,(z) < MW are EGFs satisfying

1+ ZwTE (z) = exp (Zw Cy (z))

r>1

=1

then the coefficient&,.) and(c,) are related by
r—1
eg=1ande, =c¢, + ;lecjer,j asr>1.
j=



The Maximum Block Size of Critical Random Graphs 9

Similarly, after some algebra we get

Lemma 9 For fixedr > 1,
(1)
E[k] - r,d

where the functioné:!"}) are defined recursively by (z) = 1, e[y () = 0if d > 2r — 1 and

d+1

, 1 r—1 .
e[rlfll(z) =Cra (1 — zk)dH + - chj’d e[rklj’d(z) (1 — zk) (15)

j=1

Remark. Note that the maximal rang®- — 1 of d appears when th&-core is a cacti graph (each edge
lies on a path or on a unique cycle), each cycle have exac#yertex of degree three and #score is
3-regular.

3 Proof of Theorem 1

Following the work of Flajolet and Odlyzko Flajolet and A.9d0) on extremal statistics of random
mappings, let us introduce the relevant EGF for the expiectaf the maximum block-size it¥(n, M).

On the one hand, if there are vertices,M edges and with a total excesghere must be exactly
n — M + r acyclic components. Thus, the number(of M )-graph§” of total excess without blocks
of size larger thai is

. U(Z)7L—M+r Wo(2)—3% T(2)? (K]
n'[z ]m e i=k+ 27 ET. (Z) .
where Wy (z) = —1log(1 — T(z)) — L& — TG s the EGF of connected graphs of excess: 0

(see (Janson et al., 1993, equation (3.5))).
On the other hand, the EGF of @lit, M )-graphs is

Gant(z) =3 (%2) z.

n>0
Define
2(z) = Z Gnoi(z) — Z n![zn]w eWo(2) =27, ol EF(2) z" (16)
= " = (n—M+r)! T nl |’
so that

TL![Z”]: N B n! n U<z>n—1\l+7- eWO(z)fzfik_H T(Zzi)z‘ (K] ;
5 H()_le ((]:[ [ ](nM+r)!< >Er() 7 ()

) Graph withn, vertices and/ edges
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is the expectation ob,,, rs.
We know from the theory of random graphs that in the subeaiiphase when — 2M > n?/3 G(n, M)

has no complex components with probabillty- O (%) (cf (Daudé and Ravelomanana, 2009,
Theorem 3.2)). In this abstract, we restrict our attentgthe typical random graphs. Otherwise, we will
obtain the same result as stated by bounds orEiﬁleéz) in (16) since

1< EM(z) <En(2) < %

(where inequality between the EGFs means that the coeffictérevery power of obeys the same rela-
tion and the last inequality is (Janson et al., 1993, eqnfi6.2)) withe, = (6r)! (27‘)!)' Assuming
that the graphs are typical (i.e. without complex compos)eB( z) behaves as

Uz M e‘y_# T(z) 2"
Graa(2) = 3 _ | nile"] (n— MY (1 —T(z)2 P~ > 2j ar| 48

n>0 J>k+1

Ez2) =<

k>0

We need the following Lemma to quantify large coefficient$1).

Lemma 10 Let ¢ and b be any fixed rational numbers. For any sequence of integéfs) such that
én < M for somes € [0, 1] butn — 2M > n?/3, define

n! U(Z)n—M U(Z)be—T(z)/Q—T(z)2/4

@) P T Ter

b b 1/2—a
o (2) (-2 (-2
n n n

Proof. Postponed in the Appendix — 6.6.
Using Lemma 10 withh = 1/2 andb = 0, after a bit of algebra (change of variahle= T'(z) and
approximating the sum by an integral), we first obtain

1 [ dv
E(pn, a1) ~ 1= "2 V)
(9n, ar) Z ( P ( 2 /(k+1)(1—%) T >>

k>0

fa,b(na M) =

We have

Then by Euler-Maclaurin summation formula and after a cleasfgvariable (k + 1)(1 — 222) = v so

dk = (1 — 224)~1qu), we get the result.

4 Proof of Theorem 2

The following technical result is essentially (Janson gtl&®93, Lemma 3). We give it here in a modified
version tailored to our needs (namely involving truncateides). We refer also to the proof of (Flajolet
et al., 1989, Theorem 5) and Banderier et al. (2001) for nalegelated to the Airy function.
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Lemma 11 LetM = 2 (1+ An~'/3). Then for any natural integers, k andr we have

nl anM r 2)a _ Zk 0 Zi
oy L P TP OTCN) (wou)—Zu)

(@) (n—=M+r)!  (1-T(2)% e

(19)
uniformly for|\| < n'/12 whereA(y, 1) is defined by (6) and is given by (5).
Proof. Postponed in the Appendix —6.7.

Using this lemma, equation (17) and next approximating a byran integral using Euler-Maclaurin
summation, the expectation pf, ,, is about

n oo i —1/3
e en [k] —kan~1/3 1
kz: (1—22\/@8)@ (—ZT> eT’d(e )A<3r+5,)\>> (20)
=0 T d j=k
_—1.1/3 an?/? e —u 1
=aln leZMexp - 5 dv)eqq(e ) A 3r+5,)\ du (21)
0 ” d u v

where

r—1
1 .
era(z) =cra(1— 2"+ - > dcaer—jalz) 1=z (22)

j=1

5 Conclusion

We have shown that the generating function approach is wildto make precise the expectation of
maximum block-size of random graphs. Our analysis is a fiegt ®wards a fine description of the various
graph parameters inside the window of transition of randoaplgs.

Acknowledgements: The authors thank the reviewers for their thorough reviema lighly appreciate
the comments, remarks and suggestions, which significemgyove the quality of the paper. The authors
express their gratitude to the support of the project ANR2BILAN 0204 — MAGNUM and the project
PEPS FASCIDO INSMI-INS21-2015.
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6 Appendix

6.1 Proof of Lemma 2

The caser = 2 is immediate. Let/,, be the family of trees of size andi/; be the family of rooted trees

of sizen whose roots are of degrde Deleting the root of the latter trees gives unrooted trdesize

n — 1. Conversely, an element of can be obtained from an elementZgf_;, by choosing any vertex

and by attaching to this vertex a new vertex which is the rétdi®newly obtained tree. In terms of EGF,
we have :

n—2
0
Up (01,1 0n-1) = Zalaiﬂﬁzfn_l((sl, ceyOn2).
i=1 g

The combinatorial operator that consists to choose a veftdegree; and add the root iéléia%. The

multiplication by the term§i+15i‘1 reflects the fact that we have a vertex of degréleat becomes a
vertex of degree + 1 after the addition of the new vertex of degre@hus the ternd;). Next, we have to
unmark the root which is by construction of degied\fter a bit of algebra, we obtain the result. B

6.2 Proof of Lemma 4

The numberg (s, d) count labeled cubic multigraphs. #f+ 2d = 3r, these multigraphs are exactly
the 3-cores of the graphs of the family,. Starting from the EGRg(s, d) “’(%Z) ~ — with the variablew
(resp.z) marking the edges (resp. vertices) — if we want to reconsfram these multigraphs the graphs
of the family 5,. each edgev of these multigraphs is substituted by a sequence of verti€elegree

introducing the ternhi—z) (for each of the3r edges of the multigraphs). Next, we have to compensate
the symmetry of each double-edge introducittgnes the factorzl,. [ |
6.3 Proof of Lemma 5

The 3-cores of the graphs @, have as bivariate EGE.w3"t2" (with w the variable for the edges and

for the vertices of degre®). In order to reconstruct thizcores ofB¥!, we insert at most — 2r vertices
on each of th&r paths between the vertices of degsedience,

k—2r k—2r

b Z<3r+z >7;tzr _ brz (3r +1i—1)( 33r+21;'2) (HD) iper
T — .
= b 71 A ey, L2
DL T(—z)r
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6.4 Proof of Lemma 6

Any element of the family,.; can be obtained from a tree widht 1 vertices as follows. Consider a trée

of sized + 1. For each vertex of 7 of degrees, we can substitute by an element o5°* in s! manners.
We distinguish two cases according to the degree pivertices of degred can be left unchanged or
substituted by elements @*3. Thus, the tern3!B5°%(w, z) + w~'z in (15). Next, each edge df can

be substituted by a path of length at leastith a factorw which parametrizes the excess of the obtained

graph. Thus, the facto(%. |

6.5 Proof of Lemma 7

1 (s— 1)‘

Applying the operator of;-2- on unicyclic components giveg® = . Define the ordinary

s! 6 s
generating function ofb} )420 as

bos Zb.i 0 ((S

After a bit of algebra, we get

1)+i ﬁ3€+(s—z f). (23)

(=1 i=1

cra = [W U1 (0% (w), 26°% (w), 3% (w) + w1, 416** (w), . .., db*(w)) w. (24)

Observe that for any > 1, each involved block to obtain an element(f, is necessarily of excess at
mostr — 1. So, the summation in (23) can be truncated to 1. |

6.6 Proof of Lemma 10

We split the formula in two parts f, ,(m,n) = St(m,n) - Ca(m,n) with

" an a(m,n) = [2" U(z)"=™ U(z)b e~ t(2)/2-1()7/4
((r%)) (n—m)! 4 Calm,n) =[] (n —m)! (1-T(z)) -

St(m,n) =

Using Stirling’s formula, we have for the stated rangerof

1! n+1/2 ’m+1/2
o Ve (140 (5)).
n

(n 7TTL> o )n m+1/2

We also have

Next, we get

2rnm \ 2 2mpnmm m  m? 1
St(m,n) = — s P 2mt+ — 4+ — 1+0 (- . (25)
n—m n2m(n —m) non n
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For Ca(m,n), in using Cauchy integral’s formula and substitutiny ze~*, we obtain :

2mn n—m U z b eiT(Z)/ziT(z)2/4 dz
Ca(m,n) = P j{(2T(z) —T(2)?) (2) TG o (26)
— 2am nh(z)%
= omi fg(z)e B 27)

where

B (z — 22/2)17 e—2/2-2%/4
g(z) - (1 _ Z)afl ’

m m
h(z) z—glogz—l—(l—g)log&—z).

W(z)=0forz=10rz=2m/n. h"(1) = 2m/n — 1 < 0 andh”(2m/n) = 2"=2"). ~ (_ Asiin

4m(n—m)
Flajolet et al. (1989), we can apply the saddle-point methtegjrating around a circular path = 2m/n.
Let ®(#) be the real part ofi(2m/ne’). We have

1-z 2
@(9):2mcost9+(I—Qm)logQ—mlog(@)‘F( n)bg 1+ 25— 2% cos
n n n n 2 n? n

and

(I —=m/n)m
n(14+m2/n?—2m/ncosf)

o'(0) = —2% sin 6 +

sinf .

We note thatb () is a symmetric function of. Fix sufficiently small positive constaf. Then,®(6)
takes its maximum value &t= 0, asf € [—m, —0y] U [0y, 7]. In fact,

®(0) — d(r) = 4% + (1 - g) log <n;—2) +O6?).

Therefore, ifg — 0 ®(0) > &(w). Also, ®'(6) = 0 for § = 0 andf = 6, (for somed; > 0). Standard
calculus show thab(0) is decreasing from to ¢, and then increasing frofy to 7. We also have

h®)(2) = (p— 1)! ((1)pﬂ _ M)  p>2.

nzP n(2—z)P

Hence,

h(2me” /n) = h(2m/n) + Y & (e - 1)7,

p>2

whereg, = 2107 40) (2 /n) andle,| < I (22)7 4 m=m. We then have

1D & — 1P| =0(6").

p>4
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This allows us to write

h(2m /ne®) = h(2m /n) — 7;57(7” __2:)) g2 _ ;" ;sz’?’fi)’f ™ g3 L o).

Letr = n(n —m)/ (m(n —2m)) and

where we need a functian(n) satisfyingndg > 1 butnfj < 1 asn — co. We choose

SEE

(n —2m)/4
nl/6

(28)

w(n) =
We can now use the magnitude of the integrang) @b bound the error and our choice#f verifies
lg(2m /ne?0) (exp (nh(Zm/newo)) — exp (nh(2m/n)))| = O (e_“’(")2/2) .

Thus, we obtain
277L—7L

2

/00 g (2%€i9) exp (nh(Qm/neig))dG X (1 + O (e_w(n)2/2)) '

—0o

Ca(m,n) =

We replace) by #t. The integral in the above equation leads to

(1)1/2 /w(n) g (% exp (it\/T/—n)) exp <nh <27m exp (it r/n)>)dt.

n —w(n)
Expandingg(2m/ne™V /™), we obtain
172 en) ‘ 2m71/2(n2 o 2m2) n2 ,
(E) /w(n) g (Qm/n) <1 o n5/2(n - 2m) o <(n - 2m)3t >>
X exp (nh <2_m exp (it\/T/n)>>dt.
n

Observe that our choice af(n) in (28) and the hypothesis — 2m > n2/? justify such an expansion.
Similarly, using the expansion &f(2m /ne’*V /™) yields

12 o) 2m71/2(n2 — 2m2) n?
- 2 1—i 2
(n) /_w(n)g( m/n)( ! n®/2(n — 2m) t+0<(n—2m)3t ))

X exp <nh (Zm) — 1t2>

n 2
, (n? — 5nm + 2m?) 3 n 4
1-— t O ———t dt .
8 ( ! 6(n —m)t/2mi/2(n — 2m)3/2 + (n —2m)?
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Using the symmetry of the function, we can cancel terms ss¢handit? (in fact all odd powers of).
Standard calculations show also thatfeiin the stated ranges, the multiplication of the factorst@nd
it® leads to a term of order of magnitud&n?/(n — 2m)3t*). Therefore we obtain,

2T rT\1/2 nh(2m/n w(n) —t2 n?
Ca(m,n) = - (E) g (2m/n) en@m/ )/ et /? <1O(mt4)>dt

—w(n)
2

m—n T 1/2 nn m/n - w(n 2 n

Multiplying (25) and (29) leads to the result after nice calfations. (Note that the error terms©« (™))
andO(1/n) can be regrouped with th@(n?(n — 2m)~3).) [ |

6.7 Proof of Lemma 11
Proof. Using Stirling’s formula, we get

SUM,n) — n! 1
TGy M
M
2717M+T )\3 3
= 2 - -
™ v exp 6 +4 n>

)\4
Using Cauchy integral’s formula and substitutingy ze~#, we obtain :
_ T(2)* (1 —T(2)%) oo T
n n—M-+r V(=)-272 —55-)
S -G ¢ 2
1 T()2\ "~ MF" pya o= T(2)/2-T(2)?/4=3252, T(2)7 /2j
_ _7{ T() — (2) (2)%e k dz
27 2 (1 _ T(Z))3r+1/2 an+1
2]V17nfren

= 2 faw e (ah(u) (31)

21

Ca(M,n)

where the integrand has been splitted into

u® (2u — u?)" o u/2-u?[4=3152  ul /2] (1—ub)
g(u) = (1—u)dr—1/2

and

1

M

The contour in (31) should kegp| < 1. Precisely at the critical valug/ = % we also havei(1) =
R'(1) = (1) = 0. This triple zero accounts in the procedure Janson, Knutlzék and Pittel used
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when investigating the value of the integral for largelet = n—'/, and leto be the positive solution
of (5). Following the proof of (Janson et al., 1993, Lemmavgg, will evaluate (31) on the path =
e~ (ot wheret runs from—zn'/3 to 7n!/3:

1/3

74 f(2) d— = / flem Ty at.

_anl/3

The main contribution to the value of this integral comesrfrihe vicinity of¢ = 0. The magnitude of
e"(2) depends on the real part bfz), viz. Rh(z). Rh(e~(@+)¥) decreases d8| increases anfk™"(*)|
has its maximum on the circle= e~ (“+*)* whent = 0.

We havenh(e=5")

nh(e™™) =35>+ 1A+ O((A\2s? + s*)v)
uniformly in any region such thatv| < log 2. In (Janson et al., 1993, equation (10.7)), the authorselefin

1
A(y7 :U') = o _/1'[(1) SliyeK(u’S) d57

21

whereK (p, s) is the polynomial

) = (s+p)?2s—p) s ps* p?

K(p,s

6 3 2 6
andII(«) is a path in the complex plane that consists of the followhrgé straight line segments:

—e /3¢t for—oo <t < —2a;
s(t) = a+itsinm/3, for—2a <t < +42q;
etmi/3 ¢t for+ 20 <t < 4o00.

In particular, they proved that(y, 1) can be expressed as (6).
For the functiory(u), we have
(QB_SV — 6_2“”’)T —ev e I e
—sv _ —asv—e /2—e /4= e 27
g(e™™) = 5177 € i<k (1—e
(1 _ e_sy)dr 1/2

_ (Sy)1/2—37‘673/472;;,C eI /25 (1 N e—ksu) (1+O(SV)) )

71@51))

For g(u)e™ (™ in the integrand of (31), we have

e—)\3/6f(€—su) — o3/ e 24 1/2-3r (1 _ e—ksu) 751—(37-+1/2)6K(>\, s)

x (14 0(sv) + O(Ns*v) + O(s'))
whens = O(n'/12). Finally,

3 /p
oA /6

211

d <
fg(u)e"h(“)—u = exp —3/4—5 eI /25 (1—67]““’)
u
j=k
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w  3/23r A@3r + %7 A) 4O (V5/2—37‘e—)\3/6>\3r/2+1/4)

where the error term has been derived from those alreadysodieet al. (1993). The proof of the lemma
is completed by multiplying (30) and (31). ]
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Abstract. The deterministic random walls a deterministic process analogous to a random walk. VWhéee are
some results on the cover time of tteor-router model, which is a deterministic random walk correspondmg t
simple random walk, nothing is known about the cover timeatédministic random walks emulating general transi-
tion probabilities. This paper is concerned with 8RT-routermodel with multiple tokens, which is a deterministic
process coping with general transition probabilities f@g¢s<ontaining irrational numbers. For the model, we give
an upper bound of the cover time, which is the first result erctiver time of deterministic random walks for general
transition probabilities. Our upper bound also improvesekisting bounds for the rotor-router model in some cases.

Keywords: rotor router model, stack walk, multiple random walk, mixithme, cover time

1 Introduction

Previous works for the cover time of random walks A random walkis a fundamental stochastic
process on a graph, in which a token successively transitsighboring vertices chosen at random. The
expected cover time (this paper simply sagser tim¢ of a random walk on a finite graph is the expected
time until every vertex has been visited by the token. Theectwne is a fundamental measure of a
random walk, and it has been well investigated.

Aleliunas et al. [3] showed that the cover time ddimple random walkin which a neighboring vertex
is chosen uniformly at random, is upper bounde@imn(n — 1) for any connected graph, wheredenotes
the number of edges anddenotes the number of vertices. Feige [16, 17] showed tleatdkier time is
lower bounded by{1 — o(1))nlogn and upper bounded bt + o(1))(4/27)n® for any graph.

Motivated by a faster cover time, the cover time by more thae twken has also been investigated.
Broder et al. [8] gave an upper bound of the cover timg midependent parallel simple random walks (
simple random walks) when tokens start from stationaryifigion. For an arbitrary initial configuration
of tokens, Alon et al. [4] showed that the cover timekegimple random walks is upper bounded by
((e + o(l))/k:)thit logn for any graph ifk < logn, wheree is Napier’s constant antl;;; denotes the
(maximum)hitting time Elsasser and Sauerwald [15] gave an better upper boundrfmi of O(t* +
(tnit log n)/k) for any graph ift < n, wheret* is themixing time

TSupported by JSPS KAKENHI Grant Number 15J03840.
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Ikeda et al. [21] took another approach for speeding up, Wwhkesgeneraltransition probabilities
(beyond simple random walks). They inventeédandom walk consisting of irrational transition prob-
abilities in general, and showed that the cover tim®{&2logn). Nonaka et al. [26] showed that the
cover time of aVletropolis-walk which is based on thletropolis-Hastings algorithiiis O (n? log n) for
any graph.

Little is known about the cover time by multiple tokens withngral transition probabilities. Elsasser
and Sauerwald [15] gave a general lower boung (J(fn log n)/k:) for any transition probabilities and for
anyn® < k < n,where0 < ¢ < 1 is a constant.

Previousworksfor the cover time of deterministic random walks From the view point of theleter-
ministicgraph exploration, thetor-router modelwhich is a deterministic process analogous to a simple
random walk, is well studied recently. In this model, eactteseu. sends tokens one by one to neighbor-
ing vertices in the round robin fashion, i.e.serves tokens to a neighboring vertewith a ratio about
1/6(u), whered(u) is the number of neighbors.

Yanovski et al. [31] studied the asymptotic behavior of tb®r-router model, and proved that any
rotor-router model always stabilizes to a traversal of alefan cycle afte2mD steps at most, where
D denotes the diameter of the graph. Bampas et al. [6] gave@garnf which the stabilization time
getsQ(mD). Their results imply that the cover time of a single tokensi@n of a rotor-router model is
©(mD) in general. Another approach to examine the cover time ofdtw-router model is connecting

qualities of a random walk and thesit frequenchf,T) of the rotor-router model, wher& (") denotes
the total number of times that tokens visited vertelty time 7". Holroyd and Propp [20] showed that

|7y — X,(,T)/T| < Kr, /T, whereK is an constant independentBf andr is the stationary distribution

of the corresponding random walk. This theorem says lhgtt)/T converges tar, asT increasing.
Using this fact, Friedrich and Sauerwald [19] gave uppemiswof the cover time for many classes of
graphs.

To speed up the cover time, the rotor-router model with- 1 tokens is studied by Dereniowski et
al. [13]. They gave an upper bout{mD/ log k) for any graph whert = O (poly(n)) or 2°(7), and
also gave an example ¢f(mD/k) as a lower bound. Kosowski and Pajak [24] gave a modified upper
bound of the cover time for many graph classes by conneﬁf{ﬁd and the corresponding simple random
walk. They showed that the upper boun®iét* + (A/6)(mt*/k)) for general graphs, wherk/d is the
maximum/minimum degree.

Beyond the rotor-router model, which corresponds to a gmghdom walk, theleterministic random
walk for general transition probabilities has been inventedl, it each vertex deterministically serves
tokens onu to a neighboring vertex with a ratio abou®, ,,, whereP, ,, denotes the transition probability
from u to v of a corresponding random walk (See Section 2.2 for the lditaiolroyd and Propp [20]
provides thestack wall(Shiraga et al. [28] called BRT-router modgland showed a connection between
the visit frequency and hitting probabilities. Shiraga kt[28] investigated functional-router model,
which is a more general framework, and gave an analysis ongitigge vertex discrepandyetween the
SRT-router model and its corresponding random walk. As $awa know, nothing is known about the
cover time of deterministic random walks for general traosiprobabilities.

Our results This paper is concerned with the cover time of the determiandom walk according
to general transition probabilities with tokens, while previous results studied the rotor-routedeho
(corresponding to simple transition probabilities). Weegan upper bound of the cover time for any SRT-
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router model imitating any ergodic and reversible traosithatrix possibly containing irrational numbers
(Theorem 4.1). Precisely, the upper boun®ig* + m’t* /k) for any number of tokens > 1, where
m’ = max,ev (d(u)/m,). This is the first result of an upper bound of the cover timedeterministic
random walks imitating general transition probabilitias far as we know. Theorem 4.1 implies that the
upper bound of the cover time of the rotor-router modé {¢* + mt* /k) for any graph (Corollary 4.2).
For k = 1, this bound matches to the existing boudtn D) by [31] whent* = O(D). This bound is
better thanO(mD/ log k) by [13] whent* is small ork is large. Our bound also improves the bound
O(t* + (A/6)(mt* /k)) by [24] in A/ factor for inhomogeneous graphs.

In our proof, we investigate the connection between the ﬁrisquenchéT) of the SRT-router model
and the corresponding multiple random walks with geneealdition probabilities. This approach is an
extension of [20, 19, 24]. In precise, we show that — (Xf,ﬂ/kT)\ < K, /T holds for any reversible
and ergodic transition matrices, wherg is the stationary distribution of the corresponding traosi
matrix andK is constant independent @f. This upper bound extends the result of [20kto- 1 tokens
and general transition probabilities.

Related topics for deterministic random walks As a highly related topic, there are several results
on the single vertex discrepancy between a configuratiooladrts of a multiple deterministic random
walk and an expected configuration of tokens of its corredpmrandom walk. Rabani et al. [27] gave
an upper bound of the single vertex discrepancy ofdiffeisive modeland gave the framework of the
analysis. The single vertex discrepancy on several basictates were widely studied, e.g., constant
upper bound for the lattice [12, 11, 14], lower bound for tfreet[10],d-dimensional hyper cube [18, 1],
etc. Berenbrink et al. [7] gave a sophisticated upper bound-egular graphs. To cope with general
rational transition probabilities, rotor-router model owltidigraphs is studied in [23, 22]. The SRT-
router model is investigated in [28, 29]. They examined tiserépancy between this model and general
Markov chains under natural assumptions. Recently, Clraketpal. [9] gave the upper and lower bound
of the stabilization time for the rotor-router model with myaokens.

2 Preliminaries

2.1 Random walk / Markov chain

LetV = {1,2,...,n} be a finite state set, and |& ¢ RZ;" be a transition matrix of. P satisfies

vev Puw = 1foranyu € V, whereP, , denotes théu, v)-entry of P. It is well known that any
ergodié) P has a uniqustationary distributionr € R (i.e., 7P = =), and the limit distribution isr
(i.e.,lim¢— oo EP = m for any probability distributiorf on V). To discuss theonvergencéormally, we
introduce theotal variation distanceand themixing time Let ¢ and( be probability distributions ofr’,
then the total variation distand®,, betweer¢ and( is defined by

def.
Di(6.¢) = max

P (IR

vEA

1 1
=5le=clhi=3> 16 -Gl (1)

veV

O Pis ergodic if P is irreducible Yu, v € V,3t > 0, P} ,, > 0) and aperiodic{v € V, GCD{t € Zx¢ | P}, > 0} = 1).
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Themixing timeof P is defined b{)

7(e) def max min {t € Zo | DW(PL,,W) s 5} @

fore > 0, and
t & r(1/4), (3)

which is often used as an important characterizatioR ¢¢f.[25]).

In this paper, we assume is ergodic andeversible We call aP is reversible ifr, P, , = m,P,
holds for anyu,v € V. For example, transition matrices of tferandom walk [21] and the Metropolis
walk [26] are both reversible.

Notationsof multiplerandomwalks Letu(®) = (u§°>, .. .,uﬁo)) € L%, denote an initial configuration
of k tokens overll/. At each time step € Z>(, each token om € V moves independently to € V

with probability P, . Let u® = (u{", ... u{) € Rz, denote theexpectectonfiguration of tokens

attimet € Zso: thenp® = 40 Pt holdd™ . Note that the definitions of the mixing times say that
Dy (u® [k, ) < e aftert > 7(e).

2.2 SRT-router model

To imitate random walks with general transition probaigiitpossibly containing irrational numbers, the
deterministic process based lowv-discrepancy sequencés. [5, 30]) were proposed, calleddack walk
in [20] andSRT-router modeh [28]. In this section, we describe the definition of thisdrb

Let M (v) denote the (out-)neighborho®dof v, i.e., N'(v) = {u € V | P,, > 0}. In this model k
tokens move according 8RT-routels, : Z>, — N (v) defined on eaclh € V for a givenP. Given
0,(0), ...,0,(i — 1), inductivelyo, (7) is defined as follows. First, let

Ti(v) ={u e N(v) | {j € 0,7) | 00 (4) = u}| = (i + 1) Ppu < 0},

where[z,z') = {z,2+ 1,...,2' — 1} (and we remarKz, z) = (). Then, leto,(i) beu* € T;(v)
minimizing the value

‘{j € [072) | Uv(j) :u}’ +1
P’U,u

over choices: € T;(v). If there are two or more suah € T;(v), then letu* be the minimum in them in
an arbitrary prescribed order. Then, the sequen¢e), o,(1), . . . satisfies the followingpw-discrepancy
propertyfor anyv and P (cf. [5, 30]).

Proposition 2.1 [5, 30] For any P,
“{J € [072) | Uv(j) = u}| - Z'Pv,u <1

holds for anyv, w € V' and for any integee > 0.

@ pt , denotes théu, v) entry of P*, and P¢ . denotes the:-th row vector ofP*.
(@ In this paper(u(®) P*), denotes the-th element of the vectqu(®) P?, i.e., (u(O Pt), =3 v w9 pt

u,vt

M If Pis reversibleu € N (v) if and only ifv € AV (w), and then we abus¥ (v) for in-neighborhood of) € V/
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Let x(© = u(® andx(® e Z2, denote the configuration dftokens at time € Z>, in a SRT-router
model §_, .y Xﬁf) = k). Then, SRT-router model works as follows. At first time step-= 0), there are

XSJO) tokens on vertex, and each serves tokens to neighbors according£@0), ., (1), ..., o, (X,(f)) —1).

In other words|{j € [O,Xff’)) | 0 (j) = u}|tokens move from to u, andy( = Y oeev i€ [O,Xgo)) |

0y(j) = u}|. Nexttime step# = 1), there ar@o(,l) tokens on vertex, and eachy serves tokens to
neighbors according o, (x\"), o (x\” + 1),...,0.(x” + ¥tV = 1), andy® is defined in a similar
way. In general, IerfL denote the number of tokens moving freno « at timet. ThenZ,SfL is defined

as

20 = |{i € 0.,XD) [ o(x + ) = u}|, &)
whereX (™) = 771 () (and we remarks”) = 0 for anyv € V'), andy(**1) is defined by
NORIED SP TR S ®

veV veEN (u)

for anyu € V. Note that

doz0 = Y Z0 =xP (6)

ueV ueN (v)

holds for anyv € V. For the SRT-router model, we have the following basic psifn, based on
Proposition 2.1.

Proposition 2.2

<1

T
Z(Z'l()f’?l, - Xs;t)Pv,u)
t=0

holds for anyP and for anyT’ > 0.

Proof: From the definition 0127%, it is not difficult to check that

T T
S 20 = S H{ieo lox?+5)=u}

t=0

t
= Y |{i e O X0+ Lou(h) = u}| = [{5 € 10,XT4) | 05) = u}|

=0
T
t=0

and> " P, = X" P, . Then, Proposition 2.2 is obtained by Proposition 2.1 byrigtt =
X, O
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3 Analysis of the Visit Frequency

As a preliminary of the analysis of the cover time of the SBiliter model, we investigate the upper
bound of X" — M|, whereM (™) = ST ' () (and we remark thatZ,”) = 0 for anyv € V). Let
§(v) = N (v)] andA = max,cy 6(v).

Theorem 3.1 Suppose thaP is ergodic and reversible. Then,

5 max
X — M{D| < 3m,t* max () =0 (Lt*A>

ueV Ty Tmin

holds for anyw € V and for anyT’ > 0.
From Theorem 3.1, we get the following corollary 3.2, likeebnem 4 of [20].

Corollary 3.2 Suppose thaP is ergodic and reversible. Then,
3t* 3t maxyev %f) Ky,

x
<
=ar " KT T

kT

Tw —

holds for anyw € V and for anyI’ > 0, whereK = O(% + A ) is a constant independent &t

Tmink
Note that Corollary 3.2 gives the upper bound for SRT-roantedels withk tokens, while Theorem 4
T
of [20] is for rotor-router models with a single token. Cdaoy 3.2 also means th%drw — %(*TL‘ <clif

T>3 (% 4 ) et

Tmink

To prove the Theorem 3.1, we begin with the following lemnmethie following arguments, we assume
that P is ergodic and reversible.

Lemma 3.3
T-2 T—t—2
XD =MD =3 >0 > X (B =X P (Pl — )
t=0 ueV veN(u) t'=0
holds for anyw € V and for anyT’ > 1.

Proof: We use the following lemma to prove Lemma 3.3.

Lemma 3.4 [28] (Lemma 4.1.)

T—1
X =D =33 > (28 - X PP = )
t=0 ueV veN (u)

holds for anyw € V and for anyI" > 0. |
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By the definitions ofX (7), M(T) and Lemma 3.4,

T—-1 T—1

X =MD = S = pl) = = u™)
t’'=0 t'=1
T—1t'—1

= 333 Y @ - XOPL(PL T ) 7)

t'=1 t=0 ueV veN (u)

holds. The second equation holds siné® = 4. Lets!” = ZveN(u)(qufL P, ), for conve-
nience. Then,

T—1t'—1 T—1t—1
DI WLTCAEENED ) ) SR GRS T
t'=1 t=0 ueV ’ ueV t'=1 t=0

holds. Carefully exchanging the variables of the summati@nobtain

T—1t'—1 T-2 T-1 T-2T—-t-2
I IEICIENED 3 O S CIENED S DRI
t'=1 t=0 t=0 t'=t+1 t=0 t'=

Combining (8) and (9), we obtain

T—-2T—-t-2

(8) = ZZ Z ¢(t) *ﬂ'w)

ueV t=0 t'=
T—-2T—t-2

SN @) xR, ).

ueV t=0 t'=0 veN (u)

]

Proof of Theorem 3.1: It is trivial for 7' = 1, hence we assuni€ > 1. By Lemma 3.3 and Proposi-
tion 2.2,

L ) D S SRR SRR MM

T—-2 T—t—2
< 33N S @) =X |PL, -l
t=0 ueV veN (u) | /=0
T—-2
< 2> > NP m|-ZZfS —m|  (10)
t=0 ueV veN (u) t=0 uev

holds. By the reversibility ofP,

(10) = ZZ&

t=0 ueV

Tu)

< Tw max— Z Z wau (11)
uevV
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holds. By the definition of total variation distance (1),

T-2 T—-2
SR, ] =2 D (P ) (12)
t=0

t=0 ueV

holds. Now, we use the following lemma.
Lemma 3.5 [28] (Lemma 4.2.) For any € V and for anyl" > 0,

l—~
<
Z Dtv v, = 1 _ 27 T(’Y)
holds for anyy (0 < v < 1/2).
Thus, we have
1—(1/4) .
< Qb —r =

12)< 2 T3 (1/4)7(1/4) 3t (13)

and we obtain the claim. O

Proof of Corollary 3.2: Notice that

(D KTy = X30|  |WTmy = M|+ M - x 0
_w _ <
Mo ™ T kT = kT
]\/ITS;T) - kT’/Tw 37th maxuev 8(u) )

<
- kT * kT ’

where the last inequality follows Theorem 3.1. Thus, it iffisient to prove thaquUT) — kTmy| <
3kt* /2. Note thaty"[_' 3, oy @7, = kT, holds sincey”, . u(®) = k from the definition, and

also note thaf/{) = = i = = Y ouev MQ(P)P,f,w holds by the definitions. Then,
NI?S)T) - kTﬂ-w‘ = Z Z lu(O) waw Z Z K ﬂ—w - Z Z :u’(O) waw 7Tw)
t=0 ueV t=0 ueV t=0 ueV
< > ou Z 1Py — Tl (14)
ueV t=0
holds. By Lemma 3.5 and the definition of total variation amste (1),
T-1 3
Pt — | < Div ( ) < St*. 15
2 Pl =l Z t . (15)

Combining (14) and (15) & - kTm,| < 3kt*/2 holds, and we obtain the claim. O
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4 Bound of the Cover Time

Combining techniques of the analysis of the visit frequesnay reversible Markov chains, we obtain the
cover time of SRT-router models. Let

Teover = Mmin {T € Z>o | Xi()T) > 1 holds for any v € V} . (16)

First, we show the following theorem.
Theorem 4.1 Suppose’ be ergodic and reversible. Then,

o(u) 4%
12 max -t +*A
Teover < 2t* +1 4+ vV =0 <max{—k, t})

k Tmin

holds for any initial configuration of > 1 tokens.

Theorem 4.1 is the first result of the cover time for deterstinrandom walks imitating general transition
probabilities possibly containing irrational transitiprobabilities. Applying Theorem 4.1 to the transition
matrix of simple random walk o6, we obtain the following corollary.

Corollary 4.2 For anyG and for any initial configuration ok > 1 tokens,

24mt* t*
Topper < 26" +14+ 0 _ 0 <max{m t})

k k

holds for any rotor-router model o@, wheret* is the mixing time of the simple random walk@n

The upper bound of [24] (Theorem 4.1, proposition 4.2, andofem 4.5) isO(t* + (A/é)(mt*/k)),
where A /¢ is the maximum/minimum degree of the graph. Hence Corodagyimproves this bound
for inhomogeneous graphs. Compare to@enD/ log k) by [13] (Theorem 3.3 and 3.7), our bound is
better whert* = O(D(k/logk)) (whent* is small ork is large).

To prove Theorem 4.1, we check the following lemma.
Lemma 4.3 Suppose” is ergodic and reversible. Then,

Pt > Tw
u,w = 4
folds for anyu,w € V if t > 2t*.
Proof: Theseparation distancf] is defined by
Pt
£ = 1w 17
s(t) u{gg( m) 7)

This distance satisfiegt + t') < s(t)s(t’) for anyt, ¢’ > 1 (submultiplicativity property, Lemma 3.7 of
[2]). We have the following lemma for the reversitite

Lemma4.4 [25] (Lemma 19.3.) Suppogeis reversible. then,
s(2t) < 1— (1—d(1))*

holds for anyt > 0, whered(t) = max, vev Div (P, ., Pf.).
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It is known that

aw) < (18)
holds whenP is ergodic (see (4.34) of [25]). Combining these facts, weesha
1 P < st <s@2)<1—(1—dE)?<1—(1-1 3
ST s <s) <1-(-dey < (1-3) =5,
and we obtain the claim. O

Proof of Theorem 4.1: Lemma 4.3 gives us a lower bound Bf ,, for anyu,w € V, t > 2t* and for
any reversible and ergodte. It provides a lower bound chUT), like [24].

T-1 T—1 T_1 .

M = Opt > Opt > ©Tw _ Frw( =287 g

W= 22 WPz 3D WPz 3 ) w) = (19)
t=0 ueV t=2t* ucV t=2t* ueV

By Theorem 3.1 and (19), we obtain that

5 k(T — 2t* 5
XfUT) > MQE,T) — 3m,t* max (1) > u ) — 3mut” maxﬂ. (20)
u€V Ty 4 u€V Ty
Notice that (20) implies
X >0

foranyw € V and foranyT” € Z>, satisfying

12t* max,, ow)

T > 2t* + €V .
k

The fact (21) implies thdf ..., < 7”’, and we obtain the claim. O

Proof of Corollary 4.2: Note that a SRT-router model corresponding to a simple nendalk onG is

exactly a rotor-router model o, and we see thahax,cy ‘i(r—“) = 2m, sincer, = % Thus,

24mt*
TCO/UG'I" S 2t* + 1 +

holds by Theorem 4.1. a

5 Concluding Remarks

In this paper, we gave techniques to examine the visit fnacuué(ﬁT) of the SRT-router model with
k > 1 tokens, and gave an upper bound of the cover time for any ergod reversible®. Also, our

upper bound improve the upper bound of the previous restiteaotor-router model with > 1 tokens

in many cases. A better upper bound of the cover time by deraiming a specifidastrandom walk
(e.g.,s-random walk, Metropolis walk) is a challenge.
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A half-normal distribution scheme for generating
functions and the unexpected behavior of
Motzkin paths
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We present an extension of a theorem by Michael Drmota and Michéle Soria [Images and Preimages in
Random Mappings, 1997] that can be used to identify the limiting distribution for a class of combinatorial
schemata. This is achieved by determining analytical and algebraic properties of the associated bivariate
generating function. We give sufficient conditions implying a half-normal limiting distribution, extending
the known conditions leading to either a Rayleigh, a Gaussian, or a convolution of the last two distributions.
We conclude with three natural appearances of such a limiting distribution in the domain of Motzkin paths.

Keywords: Lattice path, analytic combinatorics, singularity analysis, limit laws

1 Introduction

Generating functions have proved very useful in the analysis of combinatorial questions. The
approach builds on general principles of the correspondence between combinatorial constructions
and functional operations. The symbolic method [14] provides a direct translation of the struc-
tural description of a class into an equation on generating functions. In [11], Drmota and Soria
provided general methods for the analysis of bivariate generating functions F(z,u) = Y foxz"u®.
In general, n is the length or size, and k is the value of a “marked” parameter.

They continued their work in [12], wherein they derived three general theorems which identify
the limiting distribution for a class of combinatorial schemata from certain properties of their
associated bivariate generating function. These lead to a Rayleigh, a Gaussian, or a convolu-
tion of both distributions. Especially for a Gaussian limit distribution there are many schemata
known: Hwang’s quasi-powers theorem [16] or [14, Theorem IX.8], the supercritical composition
scheme [14, Proposition IX.6], the algebraic singularity scheme [14, Theorem IX.12], an implicit
function scheme for algebraic singularities [10, Theorem 2.23], or the limit law version of the
Drmota-Lalley-Woods theorem [2, Theorem 8]. But such schemata also exist for other distribu-
tions, like e.g., the Airy distribution, see [4]. In general it was shown in [1] and [2, Theorem 10]
that even in simple examples “any limit law”, in the sense that the limit curve can be arbitrarily
close to any cadlag multi-valued curve in [0, 1]2, is possible.

In this paper we extend the work of [12], by providing an additional limit theorem, Theorem 2.1,
which reveals a half-normal distribution. This distribution is generated by the absolute value | X|
of a normally distributed random variable X with mean 0. We will encounter several distributions,
whose most important properties are summarized in Table 1.

We also present three natural appearances of this distribution in combinatorial constructions.
In particular we consider Motzkin walks. Despite them being well-studied objects [7,9,17], they
still hide some mysterious properties. Our applications extend some examples of random walks
presented by Feller in [13, Chapter III] to Motzkin walks. We show that the same phenomena
appear which, to quote Feller, “not only are unexpected but actually come as a shock to intuition
and common sense”.
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Geometric Normal Half-normal Rayleigh
Geom(p) N(p, o) H(o) R(o)
Graph — , \¥
Support ze€{0,1,...} z€eR z € Rxg x € Rxg
PDF (1—p)*p 55 €XD (— (2}’3)2) 2, exp (—%) 2 exp (—%)
1— 2 T
Mean Tp 1 (7\/; o/
. 1— 2 ™
Variance p—gp o? o2 (1-2) o?(2-3%)

Table 1: A comparision of the geometric, normal, half-normal, and Rayleigh distribution. We will

encounter all four of them in the context of Motzkin walks.

Plan of this article. First, in Section 2, we present our main contribution: a scheme for
bivariate generating functions leading to a half-normal distribution. In Section 3, we introduce
Motzkin paths and establish the analytic framework which will be used in the subsequent sections.
In Section 4, we apply our result to three properties of Motzkin walks: the number of sign changes,
the number of returns to zero, and the height. In the case of zero drift a half-normal distribution
appears. In Section 5, we give a summary of our results.

2 The half-normal theorem

Let c(z) = ), cn2™ be the generating function of a combinatorial structure and c(z,u) =
3" carz™u be the bivariate generating function where a parameter of interest has been marked,
i.e., c(z,1) = ¢(z). We introduce a sequence of random variables X,,,n > 1, defined by

Cn, 2"uFe Z,u
PIx, = = 2 = s

where P denotes the probability. As we are interested in the asymptotic distribution of the marked
parameter among objects of size n where n tends to infinity, the probabilistic point of view is given
by finding the limiting distribution of X,,.

Important combinatorial constructions are “sequences” or “sets of cycles” (in the case of expo-
nential generating functions) which imply the following decomposition

1

c(z,u) = T(z,u)’

with a generating function a(z,u) corresponding to the elements of the sequence, or the cycles,
respectively. Another important and recurring phenomenon is the one of an algebraic singular-
ity p(u) of the square-root type such that a(p(1),1) = 1. According to further analytic properties
of a(z,u) the limiting distribution of X, is shown to be either Gaussian, Rayleigh, the convolution
of Gaussian and Rayleigh (see [12, Theorems 1-3]), or half-normal (see Theorem 2.1).

We start with the general form of the analytic scheme. In contrast to the original hypothesis [H]
in [12] we call our hypothesis [H’] because we drop the condition that h(p,1) > 0 and we require
it only for p(u) = const.

Hypothesis [H’]: Let c(z,u) = 3", caxz"u be a power series in two variables with non-negative
coefficients ¢, > 0 such that ¢(z, 1) has a radius of convergence of p > 0.
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We suppose that 1/¢(z,u) has the local representation

c(zl,u) :g(z,u)—i-h(z,u)ﬂl—%, (1)

for lu—1| <eand |z —p| < e, arg(z — p) # 0, where € > 0 is some fixed real number, and g(z,u),
and h(z,u) are analytic functions. Furthermore, these functions satisfy g(p,1) = 0.

In addition, z = p is the only singularity on the circle of convergence |z| = |p|, and 1/¢(z,u),
respectively c(z,u), can be analytically continued to a region |z| < p+6,|u| < 1+6,[u—1| > §
for some ¢ > 0. O

Theorem 2.1 (Half-normal limit theorem) Let c¢(z,u) be a bivariate generating function sat-

isfying [H']. If g.(p,1) # 0, hy(p, 1) # 0, and h(p,1) = gu(p,1) = Guu(p,1) = 0, then the sequence
of random variables X,, defined by

[2"u¥]c(z,u)

PlXn =kl = [2™]e(z, 1)

has a half-normal limiting distribution, i.e.,

4 H(o),

S

where o = \/559“2((%11)), and H(o) has density ‘7{32 exp (—%) for z > 0. Ezpected value and

variance are given by

E[X,] oﬂ\/m o(1) and VIX,] = o2 (1 - i) n+ O(V/n).

Moreover, we have the local law

2
P(X, = k] =~/ — exp (—kzj/f) +0 (kn~2) + 0 (n7),

o\ m™m
uniformly for all k > 0.

Remark 2.2 (Non-trivial dependency of p on u) The assumption of a constant singularity
in z given by p can be weakened to a singularity p(u) = p(1) + O((u—1)3), i.e., p’(1) = p”(1) = 0.
However, no example is known where p(u) is not constant in a neighborhood of u ~ 1. n

Proof (Sketch): The proof ideas are similar to the ones of [12, THEOREM 1]. For details on the
half-normal distribution we refer to [19], but all we need is the characteristic function. The main
idea is to derive the asymptotic form of the characteristic function of X,,/4/n. Since

E[eitXn/ﬁ] _ [Z[ZLC](CZ(?:?;) ,

we need to expand [2"]c(z,u) for u = e*/V? =1 + \’/—% + O(n~1Y). To achieve this, we will apply
Cauchy’s integral formula for the following path of integration I' =Ty U T's:

Flz{z:p(l+i):s€’y'},
n

2 . 2 .
I‘Q{zRew:Rp’1+10g:+Z , arg<1+ngH) < |9 Sw},
where v/ = {s:|s| =1, Rs <0} U{s:0 < Rs < logZn, Is = £1} is the major part of a Hankel
contour v, see Figure 1.

What remains is to investigate the parts separately: The first part gives the claimed result,
whereas the second one is asymptotically negligible. Note that the changes in the hypothesis [H]
are responsible for the appearance of characteristic function of the half-normal distribution in the
limit. We omit these technical steps. 0
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Figure 1: Hankel contour decomposition (left), and contour of v’ (right).

3 Motzkin paths

In this section we present needed, known results on directed lattice paths. Readers familiar with
the exposition of Banderier and Flajolet [3] or related results may skip this section.

Definition 3.1 (Lattice paths) A step set S C Z? is a fixed, finite set of vectors {(a1,b1),...,
(@m,bm)}. An n-step lattice path or walk is a sequence (vy, ..., vy) of vectors, such that v; is in S.
Geometrically, it is a set of points {wg, w1, . ..,ws} Where w; € Z2,wg = (0,0) and w; — w;_1 = v;
for i = 1,...,n. The elements of S are called steps or jumps. The length |w| of a lattice path is
its number n of jumps. O

We restrict our attention to simple directed paths for which every element in the step set S is of
the form (1,b). In other words, these walks constantly move one step to the right. We introduce
the abbreviation & = {b1,..., by} in this case.

Along these restrictions, we introduce the following classes (see Table 2): A bridge is a path
whose end-point w, lies on the x-axis. A meander is a path that lies in the quarter plane Zi. An
excursion is a path that is at the same time a meander and a bridge. Their generating functions
have been fully characterized in [3] by means of analytic combinatorics, see [14].

ending anywhere ending at 0
unconstrained
(On Z) - - - - - - e - [ - TRRRES - - - e Y SRR
walk/path (W) ' ) bridge (B)
W(z) = ﬁp(l) B(z) = zZiEi;
constrained
(on Zy)
meander (M) excursion (&)
M(z) = =58 B(z) = ut)

Table 2: The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for Motzkin paths [3, Fig. 1].

Definition 3.2 (Motzkin paths) A Motzkin path is a path that starts at the origin and is
given by the step set S = {—1,0,+1}. O

We will refer to Motzkin walks/meanders/bridges/excursions depending on the different restric-
tions. In the literature Motzkin paths are often defined as Motzkin excursions, e.g. in [9].
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In many situations it is useful to associate weights to single steps.

Definition 3.8 (Weights) For a given step set S, we define the respective system of weights as
{ps | s € S} where p; > 0 is the associated weight to step s € S. The weight of a path is defined
as the product of the weights of its individual steps. O
A typical weighted lattice path model is p; = 1 (enumeration of paths), or > _p, = 1 (proba-
bilistic model of paths, i.e., step s is chosen with probability ps).
The following definition is the algebraic link between weights and steps. It is given only for the
case of Motzkin paths, which is sufficient for our purpose.

Definition 3.4 (Jump polynomial of Motzkin paths) The jump polynomial is defined as
the polynomial in u,u~! (a Laurent polynomial)

P(u) == p_1u™" + po + pru, with p-1,po,p1 > 0.
The kernel equation is defined by
1—2P(u) =0, or equivalently u— z(uP(u)) = 0.
The quantity K(z,u) := u — zuP(u) is called kernel. O

A walk is called periodic with period p if there exists a polynomial H(u) and integers b € Z and
p € N, p > 1 such that P(u) = u’H(uP). Otherwise its called aperiodic. The condition py > 0
implies aperiodicity for Motzkin paths. Note that generating functions of aperiodic walks possess
a unique singularity on the positive real axis [3].

The kernel plays a crucial réle and is name-giving for the kernel method, which is the key tool
characterizing this family of lattice paths. The interested reader is referred to [3, Chapter 2]. In
the heart of this method lies the observation that the kernel equation is of degree 2 in u, and
therefore has generically 2 roots. These correspond to branches of an algebraic curve given by the
kernel equation.

Proposition 3.5 (Roots of the kernel) The kernel equation 1 — zP(u) = 0 has 2 solutions:

_ 1—pozF /(1 —po2)* — dp_1p12?
2p1%2 ’

’UJLQ(Z)

It holds that lim,_,o u1(2) = 0, and lim,_,o u2(z) = co. Because of that, we call u1(z) the small
branch, and us(z) the large branch.

Banderier and Flajolet showed that the generating functions of bridges, excursions and meanders
can be expressed in terms of the small branch(es) and the jump polynomial, see Table 2. The
branch u;(z) is real positive near 0. It is responsible for the asymptotic behavior of bridges,
excursions and meanders, compare [3, Theorem 3 and 4].

In order to understand their behavior we need the following constants:

Lemma 3.6 (Structural constants) The structural constant 7, which is the unique positive
solution of P'(u) =0, is 7 = , /pp;ll, The structural radius is p = ﬁ = m‘

The theory of Newton-Puiseux series implies that the small branch u; (z) is analytic on the open
interval (0, p), and satisfies the singular expansion

ul(z)—foﬂ+0(1;>, 2)

2 ;//((TT)). This is a direct consequence of the implicit function theorem.

for z — p~, where C' =

Proposition 3.7 (Square-root singularity) There exists a neighborhood 2\ (p,00) such that
for z = p in Q\ (p,0) ui(z) has a local representation of the kind

u1(z) =a(z) + b(2)V/1—2z/p, with a(p) =7, and b(p) = —C,
where a(z) and b(z) are analytic functions for every point z € Q\ (p,0), z # 2.

Proof: This is a direct consequence of the explicit structure of uq(z) from Proposition 3.5. O
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4  Properties of Motzkin paths

The following examples are motivated by the very nice presentation of Feller [13, Chapter III]
about one-dimensional symmetric, simple random walks. Therein, the discrete time stochastic
process (Sp)n>o0 is defined by Sp = 0 and S,, = Z?:l X;, n > 1, where the (X;);>1 are iid
Bernoulli random variables with P[X; = 1] = P[X; = —1] = 1. These results are generalized to
the case of Motzkin paths. In particular compare [13, Problems 9-10] and [18, Remark of Barton]
for returns to zero of symmetric and asymmetric random walks, respectively. Furthermore, see [13,
Chapter II1.5] for sign changes, and [13, Chapter IIL.7] for the height. See also the recent paper
of Débler [8] on Stein’s method for this questions in which he derives bounds for the convergence
rate in the Kolmogorov and the Wasserstein metric.

Let us now analyze these properties in the case of Motzkin walks. For the sake of brevity we will
only mention the weak convergence law. However, in all cases the local law and the asymptotic
expansions for mean and variance hold as well.

4.1 Returns to zero

A return to zero is a point of a walk of altitude 0, except for the starting point; in other words
a return to the z-axis, see Figure 3. In order to count them we consider “minimal” bridges, in
the sense that the bridges touch the z-axis only at the beginning and at the end. We call them
arches. As a bridge is a sequence of such arches, we get their generating function in the form of

A(z)zlfﬁ.

Lemma 4.1 The generating function of arches A(z) is for z — p of the kind

A(z) = a(z) + b(2)\/1 = z/p,

where a(z) and b(z) are analytic functions in a neighborhood Q\ (p, 00) of p (i.e., for z € Q\ (p, )
it holds that z ¢ (p,0)).

Proof: We know that B(z) = zZiEz; is analytic for |z| < p, see [3, Theorem 3]. Due to py > 0
(aperiodicity) p is the only singular point on the circle of convergence. Hence,

Cy c

B(z)= —1— +0(1), Ci=—, 3
(0= oo, Gi= g ®
by (2) for z — p. Proposition 3.7 together with (3) implies the desired decomposition. 0

Here, we are interested in the number of returns to zero of walks which are unconstrained by
definition. Every walk can be decomposed into a maximal initial bridge, and a walk that never
returns to the z-axis, see Figure 2 . Let us denote the generating function of this tail by T(z).

bridge

tail

Figure 2: A walk with 9 returns to zero decomposed into a bridge and a tail.

As we want to count the number of returns to zero, we mark each arch by an additional parameter
u and reconstruct the generating function of walks. This gives

W(z,u) = TA(Z)T(Z) =T =BG with T(z) =
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Let us define the random variable X,, which stands for the number of returns to zero of a random
k_n
meander of length n. Thus, P[X,, = k] = WV%

Theorem 4.2 (Limit law for returns to zero) Let X, denote the number of returns to zero
of a walk of length n. Let 6 = P'(1) be the drift.

1. For § # 0 we get convergence to a geometric distribution:

d lp1 — p-1]
X,, — Geom (P(l) > .

2. For 6 =0 we get convergence to a half-normal distribution:

X, 4d P(1)
v ( p~<1)> |

Proof: First of all, we see that [2"|W(z,1) = [z"]W(z) = P(1)". Note that because of py > 0
(aperiodicity) B(z) is singular only at p. Obviously, W (z) is singular at p; := ﬁ.

Note that P(7) is the unique minimum of P(u) on the positive real axis. Hence, only two cases
are possible: p; < p, if 7 # 1; or p1 = p, if 7 = 1. These cases are equivalent to d # 0 and § = 0,
respectively. In the first case W(z) is responsible for the dominant singularity. Then we get (B(2)
is analytic for |z| < p)

P(1)"

B(m)lfu(lf%)

[z"]W (z,u) = + o(P(1)™).

Thus, the limit distribution is a geometric distribution with parameter A = %. Distinguishing

between a positive and a negative drift, and some tedious calculations with the help of relations
implied by the kernel equation, give the final result for ¢ # 0.

In the second case 7 = 1 or 6 = 0, we apply Theorem 2.1. By Lemma 4.1 it holds that 1/W (z, )
has a decomposition of the kind (1). In particular, from (3) we directly get that

ﬁ: <1Z>u+§(lu)ﬂ+0<<1z> (lu)),

for z — p and w — 1, with g(p, 1) = h(p,1) = gu(p, 1) = Guu(p,1) = 0; and g.(p,1) = —P(1) and
hu(p, 1) = —/ %,1()1). Hence, Theorem 2.1 yields the result. 0O

4.2  Sign changes of Motzkin walks

We say that nodes which are strictly above the xz-axis have a positive sign denoted by “+”, whereas
nodes which are strictly below the z-axis have a negative sign denoted by “—”, and nodes on the x-
axis are neutral denoted by “0”. This notion easily transforms a walk w = (wy)n>0 into a sequence
of signs. In such a sequence a sign change is defined by either the pattern +(0)— or —(0)+,
where (0) denotes a non-empty sequence of 0’s, see Figure 3.

The main observation in this context is the non-emptiness of the sequence of 0’s. Geometrically
this means that it has to touch the z-axis when passing through it. This means that we can count
the number of sign changes by counting the number of maximal parts above or below the z-axis.
The idea is to decompose a walk into an alternating sequence of positive (above the z-axis) and
negative (below) excursions terminated by a positive or negative meander.

We introduce two new terms: positive excursions are “traditional” excursions, i.e., they are
required to stay above the x-axis, whereas negative excursions are walks which start at zero, end
on the z-axis, but are required to stay below the x-axis.



8 M. Wallner

Figure 3: A Motzkin walk with 7 returns to zero and 4 sign changes. The positive, neutral or negative
signs of the walks are indicated by +,0, or —, respectively.

Lemma 4.3 Among all walks of length n, the number of positive excursions is equal to the number
of negative excursions.

Proof: Mirroring bijectively maps positive excursions to negative ones. O

We define the bivariate generating function B(z,u) = by, 2" u*, where b,, ;, denotes the number
of bridges of size n having k sign changes. Furthermore, we define

1
o) = 1 —poz’

as the generating function of chains, which are walks constructed solely from the jumps of height 0.
Then the generating function of excursions starting with a +1 jump is given by

B2
o) "

E1 (Z) =

because we need to exclude all excursions which start with a chain or are a chain. Due to Lemma 4.3
this is also the generating function for excursions starting with a —1 jump.

Theorem 4.4 The bivariate generating function of bridges (where z marks the length, and u
marks the number of sign changes of the walk) is given by

B(z,u) = C(2) (1 + %) .

Proof: A bridge is either a chain, which has zero sign changes, or it is not a chain. In the latter
it is an alternating sequence of positive and negative excursions, starting with either of them. We
decompose it uniquely into such excursions, by requiring that all except the first one start with
a non-zero jump. Therefore the first excursion is counted by E(z) — C(z), whereas all others are
counted by E;(z). The decomposition is shown in Figure 4. O

E1 (Z)

£

b\
1
|
1
1
1
]

Figure 4: A bridge is an alternating sequence of positive and negative excursions. Here, it starts with a
positive excursion, followed by excursions starting with a non-zero jump.

Let X,, be the random variable for the number of sign changes of a random bridge of length n.

Thus, P[X,, = k] = %%'
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Theorem 4.5 (Limit law for returns to zero for bridges) Let X,, denote the number of sign
changes of a Motzkin bridge of length n. Then for n — oo the normalized random variable has a
Rayleigh®) limit distribution

4R (o) and o=

S

where T = pp’ll and R(c) has the density 5 exp (—%) for x> 0.

Proof (Sketch): We apply the first limit theorem of Drmota and Soria, [12, Theorem 1]. Propo-
sition 3.7 implies that E;(z) and therefore B(z,u) has a decomposition of the desired form (1).
Checking the other conditions with the help of Lemma 3.6 yields the result. O

Finally, we consider sign changes of walks. Since we want to count the number of sign changes
we need to know whether a bridge ended with a positive or negative sign. Let positive bridges
be bridges whose last non-zero signed node was positive, and negative bridges be bridges whose
last non-zero signed node was negative. Their generating functions are denoted by B (z,u) and
B_(z,u), respectively. Figure 4 shows a negative bridge.

Lemma 4.6 The number of positive and negative bridges is the same and given by

_ B(z,u) —C(z) E(z)—C(2)

2 1 —uFE(2)

B+(Z’u)

Proof: The result is a direct consequence of Lemma 4.3, because a positive bridge is either a non
trivial excursion or a negative bridge where an additional excursion starting with a +1 jump was
appended. For negative bridges an analogous construction holds. O

Proposition 4.7 The bivariate generating function of walks W(z,u) = Y . ;50 Wr2"uF where
Wni 1S the number of all walks of length n with k sign changes, is given by -

W) WE N
Bz T (B(z) 1>( D:

is the generating function of walks.

where W (z) = #P(l)

Proof: Combinatorially, a walk is either a bridge or a bridge concatenated with a meander that
does not return to the x-axis again. In the second case an additional sign change appears if the
bridge ends with a positive sign and continues with a meander always staying above the z-axis,
or vice versa. By Lemma 4.6 the desired form follows. O

The next theorem concludes this discussion. Its proof is similar to the one of Theorem 4.2.

Theorem 4.8 (Limit law for sign changes) Let X,, denote the number of sign changes of
Motzkin walks of length n. Let 6 = P'(1) be the drift.

1. For § # 0 we get convergence to a geometric distribution:

L 6 <0,
X, % Geom (V) with A= { Jor

L0 ford > 0.

2. For § =0 we get convergence to a half-normal distribution:

Xn 4 1 [P"(1)
\/ﬁ—>H<2 P(l))'
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Figure 5: A Motzkin walk of height 2. The relative heights are given at every node.

4.3 Height of Motzkin walks

For a path of length n we define the height as its maximally attained y-coordinate, see Figure 5.
Formally, let w = (wg)i—y be a walk. Then its height is given by maxyeqo,....n} W-

In order to analyze the distribution of heights, we define the bivariate generating function
F(z,u) =32, 150 fnnz"ul. The coefficient f,,;, represents the number of walks of height ~ among
walks of length n. First we need a relation between the branches of the kernel equation:

Lemma 4.9 Let P(u) = p_1u~! + pg + piu. Then the small branch u1(z) and the large branch
ug(z) of the kernel equation 1 — zP(u) = 0 fulfil

P-1 1 —zpo
uy(2)ug(z) = — and up(z) + ug(z) = ——.
1(2)ua(2) o 1(2) + ua(2) o
Proof: The kernel equation factorizes into u(1—zP(u)) = —zp1 (u—u1(2))(u—uz(z)). Comparing
the coefficients gives the results. 0

This relation gives us an explicit expression of F(z,u) in terms of the large and small branch.
For the final analysis we will use the latter.

Theorem 4.10 The bivariate generating function of Motzkin walks (where z marks the length,
and u marks the height of the walk) is given by

B 1 us(z) —1 1 1 - }%ul(z)
C1—2P(Wuz(z) —u  1—2zP(1)1—u Ly (2)

F(z,u)

P
p—
Proof: Banderier and Nicodéme derived in [5, Theorem 2] the generating function F[=°"l(2) for
walks staying always below a wall y = h. For the case of Motzkin walks we get FI[-°/(z) =
- 1 h+1

%, where us(z) is the large branch of the kernel equation. From this we directly get
the generating function FI"l(2) for walks that have height exactly h. For h > 1 it equals

h

The last formula also holds for h = 0. Finally, marking the heights by v and summing over all
possibilities yields the result. The second formula is a consequence of Lemma 4.9. O

Let X,, be the random variable for the height of a random walk of length n. Thus, P[X,, = k| =

“E:i?}f;g?;” = [“’“Zlf(]f;f””. This time the behavior will be different for § < 0 and § > 0. We omit

its proof, however the ideas are again similar to the ones of Theorem 4.2.

2

() The parameter A = 0~2 was used in [12, Theorem 1].
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Theorem 4.11 (Limit law for the height) Let X, denote the height of a Motzkin walk of
length n. Let 6 = P'(1) be the drift.

1. For § <0 we get convergence to a geometric distribution:

X, 2 Geom <p1> .
p-1

2. For § =0 the standardized random variable converges to a half-normal distribution:

X, Pr(1)
s ( (1) ) '

3. For 6 > 0 the standardized random variable converges to a normal distribution:

X, —pn q _ 0 gzz_pO_LQ
v NGO, "= Pay TP (P(1)>'

5 Conclusion

Drmota and Soria [12] presented three schemata leading to three different limiting distributions:
Rayleigh, normal, and a convolution of both. This paper can be seen as an extension, by adding
Theorem 2.1 yielding a half-normal distribution to this family. Other popular limit theorems are
Hwang’s quasi-powers theorem [16], and (implied by it) the supercritical composition scheme [14,
Proposition IX.6]. These lead to a normal distribution.

The question may arise, how Theorem 2.1 behaves in the situation of a singularity p(u) with
p' (1) # 0 and p”(1) # 0, compare Remark 2.2. This remains an object for future research.

However, the more interesting question is if more “natural” appearances of such situations exist.
Another known example is the limit law of the final altitude of meanders with zero drift in the
reflection-absorption model in [6]. Chronologically, this was the starting point for the research of
this paper. But this distribution also appears in number theory, see [15].

Yet another question is how the zero drift behavior of the analyzed parameters generalizes to
other lattice path models. We will comment on these questions in the full version of this work.

Summing up, the applications to Motzkin paths show that intuition might lead you into the
wrong direction. In Table 3 we see a comparison of the parameters. Obviously, the situation
depends strongly on the drift. The critical case of a 0 drift seems to be the most delicate one, as
it changes the nature of the law. In this case the limiting probability functions are concentrated
at 0. In particular the expected value for ©(n) trials grows like ©(y/n) and not linearly. Equipped
with the presented tools they might still be a “shock to intuition and common sense” but should
not come “unexpected” anymore.

‘ drift H returns to zero ‘ sign changes ‘ height ‘
0 <0 || Geom (p}f(z)m) Geom (p’%ll) Geom (ﬁ)

=0 | n(yEm) [ nVE) [ (V)
P-1

6 >0 || Geom (p 1;&”) Geom (p—l) Normal distribution

Table 3: Summary of the limit laws for Motzkin paths.
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Abstract. We prove that the characteristic function of the quicksort distribution is exponentially decreasing at infinity.
As a consequence it follows that the density of the quicksort distribution can be analytically extended to the vicinity
of the real line.
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1 Introduction

Let X, be the number of steps required by Quicksort algorithm to sort the list of values o(1), (2), ..., o(n)
where ¢ is a random permutation chosen with uniform probability from the set of all permutations S,, of
order n. It has been proven by Régnier (1989) and Rosler (1991) that the appropriately scaled distribution
of X, converges to some limit law
X, —EX,
n
as n — oo. Let us denote as f(t) the characteristic function of the limiting distribution

7(t) = B

=4y

Tan and Hadjicostas (1995) proved that the characteristic function f(¢) has a density p(z). Knessl and
Szpankowski (1999) using heuristic approach established a number of very precise estimates for the be-
havior of p(z) at infinity. Later Fill and Janson (2000) showed that the characteristic function f(¢) of the
limit quicksort distribution together with its all derivatives decrease faster than any polynomial at infinity.
More precisely they showed that for all real p > 0 there is such a constant c,, that

Cp

()] < G forall teR.

They also proved that

cp < op’+6p
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Hence ‘
p>+6p
t)] < inf ———.
‘f( )| \p>0 |t‘p
The infimum in the above inequality can be evaluated as

2
9p~+6p log? |¢]

|f(#)] < inf < JtPe” a2

p>0 |t|p

The main result of this paper is the following theorem stating that the characteristic function f(¢) of
limiting Quicksort distribution decreases exponentially at infinity.

Theorem 1 There is a constant n > 0 such that
£() = 0(e=M)
as |t| — oc.

Corollary 2 Quicksort distribution has a bounded density that can be extended analytically to the vicinity
of the real line |3(s)| < n. Where 1) is the same positive number as in the formulation of Theorem 1.

2 Proofs

It has been shown in Rosler (1991) that the characteristic function f(t) satisfies the functional equation
1
f(t) _ eit / f(tl‘)f(t(l _ x))eQitz log z+2it(1—x) log(1—x) dx
0

which after a change of variables x — /¢ becomes

t
tf(t)e%t logt _ eit/ f(y)f(t _ y)e%ylogy+2i(t7y) log(t—y) dy
0

It follows hence by taking Laplace transform of the both sides that function

w(s) _ Aw f(t>62itlogte—st dt

satisfies an equation
—y/(s) = ¥*(s = 0). M
The Laplace transform 1) (s) together with the above differential equation will be the main tool of proving
the result stated in the introduction.
It is well known that the quicksort distribution has finite moments of all orders. In the following
analysis we will only need the fact that it has finite first moment, which implies that | f'(¢)| is bounded.
Thus integrating by parts we conclude that

w(s) _ Am f(t)e2itlogte—st dt

1 1 [ it log it log
_ + g / (f/(t)e%t logt 4 f(t)eZzt logt(2i IOgt 4 2i))6_8t dt (2)
0

s

A | log s
gi 1 )
|s|< s >
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for all s lying in the right half-plane Rs > 0 and A > 0 being some positive absolute constant.
Lemma 3 For all s lying in the right half-plane Rs > 0 and all integer n. > 0 holds the inequality

n+1
W(n)(s)| <n! ( max }|¢(s - 17‘)|>

e{o,1,...,

Proof: The proof is done by applying mathematical induction on n and using the fact that the differential
equation for 1) (s) allows us to express the derivatives /(™) (s) as a polynomial function of (s — ik) with
0<k<n.

Indeed, for n = 0 the above inequality becomes an identity. Suppose this identity holds for all n not
exceeding m. Let us consider now n = m + 1. Replacing the first derivative of 1(s) by —?(s — i) we
obtain

B () = (1(5) " = = (2 (s — i)
:—m " ) (s — i) MR (s — ).
> (7 )ots = puim s =)

Thus applying the inductive hypothesis to the derivatives of 1)(s — 1) we get

!w("L+1’(s)l<i<TZ)k!( max |w(siir)|>k+1 (mk)!< max |w(siir)|)m_k+1

P re{0,1,...,k} re{0,1,...,m—k}
m—+2
< + 1! —1 .
<m0t _max (s —in)])

The last inequality is the same as stated in the lemma with n = m + 1. This completes the proof of the
lemma |

Lemma 4 For all s lying in the lower part of the right half-plane Rs > 0 and s < 0 holds the inequality
C n+1
s
Where o = Rs and |
Clo)=A (1 + Og"|>
o

with some absolute constant A > 0.

Proof: Our upper bound (2) for ¥ (s) implies that for Rs > 0 and Ss < 0 we have
C(o) o C(o)

max <
r€{0,1,...,n} |s — ir| |s]

76{{]{118:Xn}}w(8 ’L’l")’
Since imaginary part of s is negative so |s — ir| > |s|. Using this inequality to evaluate the right hand
side of the inequality of Lemma 3 we complete the proof of the lemma.
O
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Proposition 5 The function 1 (s) can be continued analytically to the whole complex plane. Moreover,
for all s belonging to the lower half-plane 3(s) < 0 and Rs > —B with any fixed B > 0 holds the
estimate

¥(s) = Op(1/[s])

Proof: For R(s) > 1 the estimate of the proposition already follows from (2). By this estimate of Lemma
4 we have that the Taylor series

oo ; .
U (1 - iK) i
o =3 PO 1
7=0
converges in the circle |1 — iK — s| < |1 —iK|/C(1) and moreover in this circle holds the estimate

> /o) ' o CQ) 1
vl <X (i) - O =

This means that 1)(s) can be analytically continued to the region of complex plane that consists of such s
that are contained in any of the circles of radius |1 — ¢/ |/C/(1) with center at 1 — K with some K > 0.
S(s)

Note that all complex number s with negative imaginary part such that 1 + om < R(s) satisfy such
condition. See the figure 1.

Note that 1 (s) satisfies a shift-differential equation (1) which is by integrating its both sides yields the
identity

¢(5):¢(87i)+i/0 W(s —i— ity dt.

The repeated application of the above identity allows us to continue (s) analytically to the whole com-
plex plane.
O

We have already proven that for J(s) < 0 we have

w=o(3)

when R(s) > —H with an arbitrary fixed H > 0. Let us now try to obtain a similar estimate for the
values of s lying in the upper half-plane.

Lemma 6 Forall o > 0 we have

. 1
sup [1h(0 +iy)| < —.
yER g
Proof: The proof of the lemma relies on a standard trick that is used to prove that if a modulus of a
characteristic function of a random variable reaches 1 at some point other than 0 then the random variable
has a lattice distribution. We have
o0
1
/ et dt‘ < -,
0 g

o0
/ f(t)e%t log tef(aJrz't)t dt’ <
0

(o +iy)| =
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Fig. 1: The continuation of ¢ (s) to the left half-plane
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for 0 > 0. Note that the estimate 2 for fixed o > 0 implies that 1/(c + iy) = O(1/]y|) as |y| — oo which
means that the supremum of |¢)(c + iy)| will be reached on some finite point yo = yo (o). It remains to
prove that this supremum cannot be equal to 1/o. Indeed if

0o+ i) = =

then recalling the definition of ¢) we can rewrite this identity as

[e) . X (o)
/ f(t)e?itlostemoteivot dt’ = / e ot dt
JO 0

or equivalently
ei& / f(t)eQitlogtefotefiygt dt = / efat dt
0 0
for some real 6. Since | f(¢)| < 1 taking the real part of the above equation we have
%(eief(t)e%t log tefiygt) =1.

The above identity together with the fact that [e® f ()¢ 198 e =0t | < 1 implies that S(e™ f (t)e?tlogte=wot) =
0 and thus
ewf(t)eit log te—iyot =1.
Which means that
o if

s —iyo

’(/}(S) — / f(t)€22tlogte—st dt = 6—10/ e—stezyot dt =
0 0

However such function does not satisfy the equation —1)’(s) = 1%(s —i). O With the help of the just

proven lemma we can obtain an upper bound for ¢(s) in the vicinity of the imaginary line $(s) = 0.
Lemma 7 We have

1-¢

s) —1|(1-¢)’

for s belonging to the vertical strip — 5= < R(s) < $=5, where € is such that sup,,c [ (1+iy)| = 1—¢.

€

) < T

Proof: Applying the inequality of Lemma 6 with 0 = 1 we have
Pl +iy) <1-e¢
for all y € R and some fixed £ > 0. Hence inequality of Lemma 3 yields that

PP (1 +iy) < k1 — )kt 3)

uniformly for y € R. This implies that 1)(s) is bounded in the vicinity of the imaginary line R(s) > —¢’

where ¢’ < e. Indeed by Taylor expansion

) (1 4 i
v =3 U gy

k=0
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Thus
1—¢
1—]s—1—iy|(l—¢)

W(s) <D (1) H s — 1 —iylF =

k=0
for [s — 1 —iy| < 1. Suppose |R(s) — 1| < 11 then taking y = S(s) we get

1—¢
s)—1|(1—¢)’

)| < T

for all s lying in the strip [R(s) — 1| < O

l1—e°

A more precise estimate can be obtained combining the obtained two upper bounds for derivatives of

)
wel=0 ()

Lemma 8 We have an upper bound
in the region R(s) > ——=—.. Where €' is a fixed number that 0 < & < e=1— sup,eg [Y(1 +iy)

T 1—¢
constant in the symbol depends on €' only.

, the

Proof: Putting o = 1 in our non-uniform bound (2) for ¢(s) we have

[¥(1 +1dy)| < D/]yl

for some fixed D > 0. Again by induction for k < |y|/2 we have

k+1
wwme<m(ﬁQ

Suppose |R(s) — 1| < . Let us take y = 3(s). Combining the above upper bound with our previous

1—¢’
uniform estimate (3) for the derivatives of 11 (1 4 iy) we get

oD\ k!
el 3 ( ) soloigl Y Js— 1yl o)t

|yl

k<lyl/2 k>lul/2
2D 1 s — 1 —iy|(|]s — 1 —iy|(1 — )"/
<5 — :
lyl 1 - 20]s — 1 — iyl 1—[s—1—iyl(1—¢)
_ yl|/2
2D (=)

< )
wi-at - (1-12)

for [R(s) — 1| < X and |y| > 2. Since 1=5 < 1 we have

wel=0 (1)
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O A number of conclusions can be drawn from the estimate of the just proven lemma.

2itlogt

Proof of Theorem 1: The Laplace transform of ¢ f (¢)e is —1’(s) so, by inversion formula we have

B e R
27 J, 2mit

—100 o —100

and taking into account that |¢)(s — ¢)| < 1/|s| in the region R(s) > —2n for some fixed n > 0 we can
shift the integration line to the left and obtain

) 1 —n—+ico
f(t)62ztlogt _ 7/ ¢2($ _ i)ets ds < 6*7775.

27T'Lt —n—ico

Proof of Corollary 2: The density is given by formula
(r) = 5 /OO f(t)e™"" at
Xr)= — (& .
b 2 J_

The fact that f(t) is exponentially decreasing | f(t)] < e~"I*l at infinity |t| — oo immediately implies

that the integral
I e ;
— f(t)e "t dt.
2 /,oo

is absolutely convergent in the vicinity of the real line |3(s)| < 7 where it defines an analytic function
that coincides with the density of the quicksort distribution p(z) on the real line s = x € R. O

Corollary 9 The density function p(x) of the quicksort distribution can have only finite number of zeros
in any finite interval. The same is true for the derivatives of p(x) of all orders.

Proof: Since an analytic function that is not identically equal to zero can have only finite number of zeros
in any closed circle |s — z| < r/2 for any = € R, so the density p(z) can have only finite number of zeros
in any finite interval [x — /2,2 + r/2] with all z € R. O

Acknowledgements

The author sincerely thanks Prof. Hsien-Kuei Hwang for numerous discussions on the topic of the paper
as well as for his hospitality during the author’s visits to Academia Sinica (Taiwan). The author also
thanks the anonymous referee for pointing out numerous errors in the previous draft of the paper and his
suggestions that lead to considerable improvement in the exposition of the results of the paper.



On the exponential decay of the characteristic function of the quicksort distribution 9

References

J. A.Fill and S. Janson. Smoothness and decay properties of the limiting Quicksort density function. In
Mathematics and computer science (Versailles, 2000), Trends Math., pages 53—64. Birkhéuser, Basel,
2000.

C. Knessl and W. Szpankowski. Quicksort algorithm again revisited. Discrete Math. Theor. Comput. Sci.,
3(2):43-64 (electronic), 1999. ISSN 1365-8050.

M. Régnier. A limiting distribution for quicksort. RAIRO Inform. Théor. Appl., 23(3):335-343, 1989.
ISSN 0988-3754.

U. Rosler. A limit theorem for “Quicksort”. RAIRO Inform. Théor. Appl., 25(1):85-100, 1991. ISSN
0988-3754.

K. H. Tan and P. Hadjicostas. Some properties of a limiting distribution in Quicksort. Statist. Probab.
Lett., 25(1):87-94, 1995. ISSN 0167-7152. doi: 10.1016/0167-7152(94)00209-Q. URL http:
//dx.doi.org/10.1016/0167-7152(94)00209-0Q.



