
Proceedings of the 27th International Conference on

Probabilistic, Combinatorial and Asymptotic

Methods for the Analysis of Algorithms

Editors:

Ralph Neininger and Marek Zaionc

Kraków, Poland, July 4–8, 2016



Steering Committee

Bob Sedgewick (Chair) 
Nicolas Broutin 
Michael Drmota 
Conrado Martinez 
Michèle Soria 
Brigitte Vallée

Scientific Committee

Nicolas Broutin, INRIA Rocquencourt, France
Jacek Cichoń, Wrocław UT, Poland
Michael Drmota, TU Vienna, Austria
Hsien-Kuei Hwang, Academia Sinica, Taiwan
Mihyun Kang, TU Graz, Austria
Jakub Kozik, JU Kraków, Poland
Gábor Lugosi, UPF Barcelona, Spain
Markus Nebel, TU Kaiserslautern, Germany
Ralph Neininger, GU Frankfurt, Germany, co-chair
Marc Noy, UPC Barcelona, Spain
Daniel Panario, Carleton Univ., Canada
Alois Panholzer, TU Vienna, Austria
Bruno Salvy, INRIA Lyon, France
Michèle Soria, Paris 6, France
Henning Sulzbach, McGill, Montréal, Canada
Brigitte Vallée, Caen Univ., France
Stephan Wagner, Stellenbosch Univ., South Africa
Marek Zaionc, JU Kraków, Poland, co-chair

Organizing Committee

Marek Zaionc, JU Kraków, Poland
Ralph Neininger, GU Frankfurt, Germany
Katarzyna Grygiel, JU Kraków, Poland 
Maciej Bendkowski, JU Kraków, Poland
Agnieszka Łupińska, JU Kraków, Poland
Łukasz Lachowski, JU Kraków, Poland

Important dates

Submission deadline: February 12, 2016
Notification: April 22, 2016
Final version: May 13, 2016
Early registration: May 13, 2016

AofA'16 
27th International Conference 
on Probabilistic, Combinatorial  
and Asymptotic Methods 
for the Analysis of Algorithms

July 4-8, 2016, Kraków, Poland

www.aofa2016.meetings.pl

Conference office 
Grupa A-05 Meetings & Events
31-101 Kraków, pl. Na Groblach 14/2
+48 12 429 62 23, info@a05.pl

Confirmed keynote speakers

Jean Bertoin, Zürich Univ., Switzerland
Paweł Błasiak, Polish Academy of Sciences, Kraków, Poland
Hsien-Kuei Hwang, Academia Sinica, Taipeh, Taiwan
Bob Sedgewick, Princeton Univ., USA – FLAJOLET LECTURE
Wojtek Szpankowski, Purdue Univ., USA
Nick Wormald, Monash Univ., Australia



Preface

The present volume collects the proceedings of AofA 2016, the 27th International Meeting on Probabilistic,
Combinatorial, and Asymptotic Methods for the Analysis of Algorithms held at the Jagiellonian University
in Kraków, during July 4–8, 2016. The conference builds on the communities of the former series of confer-
ences ‘Mathematics and Computer Science’ and ‘Analysis of Algorithms’, and aims at studying rigorously the
combinatorial objects which appear in the analysis of data structures and algorithms, as well as the essential
ubiquitous combinatorial structures. The program committee selected submissions covering this wide range
of topics. These regular papers, that were presented in 30-minute talks, appear in the present volume. The
conference included poster and software demo sessions.

The conference also presented six invited plenary lectures. The ‘Flajolet lecture’ was given by Bob Sedgewick
(Princeton University, USA) and the five invited talks were the following:

• Jean Bertoin, Zürich University, Switzerland,

• Pawe l B lasiak, Polish Academy of Sciences, Kraków, Poland,

• Hsien-Kuei Hwang, Academia Sinica, Taipeh, Taiwan,

• Wojtek Szpankowski, Purdue University, USA,

• Nick Wormald, Monash University, Australia.

We thank the members of the steering and program committees for their involvement. We also thank the
invited speakers and the authors of the contributed papers. We express our gratitude to the members of the
organizing committee for their invaluable help in making this meeting a great success. Finally, our special thanks
go to the sponsors of the conference for their contributions: the Department of Mathematics and Computer
Science of Jagiellonian University in Kraków, the City of Kraków and the Polish Academy of Sciences.

Ralph Neininger and Marek Zaionc
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Analysis of Algorithms for Permutations
Biased by Their Number of Records

Nicolas Auger1, Mathilde Bouvel2†, Cyril Nicaud1, Carine Pivoteau1

1 Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France
2 CNRS and Institut für Mathematik, Universität Zürich, Zurich, Switzerland

The topic of the article is the parametric study of the complexity of algorithms on arrays of pairwise distinct integers.
We introduce a model that takes into account the non-uniformness of data, which we call the Ewens-like distribution
of parameter θ for records on permutations: the weight θr of a permutation depends on its number r of records. We
show that this model is meaningful for the notion of presortedness, while still being mathematically tractable. Our
results describe the expected value of several classical permutation statistics in this model, and give the expected
running time of three algorithms: the Insertion Sort, and two variants of the Min-Max search.

Keywords: permutation, Ewens distribution, random generation, analysis of algorithms

1 Introduction
A classical framework for analyzing the average running time of algorithms is to consider uniformly
distributed inputs. Studying the complexity of an algorithm under this uniform model usually gives a
quite good understanding of the algorithm. However, it is not always easy to argue that the uniform
model is relevant, when the algorithm is used on a specific data set. Observe that, in some situations, the
uniform distribution arises by construction, from the randomization of a deterministic algorithm. This is
the case with Quick Sort for instance, when the pivot is chosen uniformly at random. In other situations,
the uniformity assumption may not fit the data very well, but still is a reasonable first step in modeling it,
which makes the analysis mathematically tractable.

In practical applications where the data is a sequence of values, it is not unusual that the input is already
partially sorted, depending on its origin. Consequently, assuming that the input is uniformly distributed,
or shuffling the input as in the case of Quick Sort, may not be a good idea. Indeed, in the last decade,
standard libraries of well-established languages have switched to sorting algorithms that take advantage of
the “almost-sortedness” of the input. A noticeable example is Tim Sort Algorithm, used in Python (since
2002) and Java (since Java 7): it is particularly efficient to process data consisting of long increasing (or
decreasing) subsequences.

In the case of sorting algorithms, the idea of taking advantage of some bias in the data towards sorted
sequences dates back to Knuth [9, p. 336]. It has been embodied by the notion of presortedness, which
†Supported by a Marie Heim-Vögtlin grant of the Swiss National Science Foundation.
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quantifies how far from sorted a sequence is. There are many ways of defining measures of presortedness,
and it has been axiomatized by Mannila [10] (see Section 2.2 for a brief overview). For a given measure
of presortednessm, the classical question is to find a sorting algorithm that is optimal form, meaning that
it minimizes the number of comparisons as a function of both the size of the input and the value of m. For
instance, Knuth’s Natural Merge Sort [9] is optimal for the measure r =“number of runs” , with a worst
case running time of O(n log r) for an array of length n.

Most measures of presortedness studied in the literature are directly related to basic statistics on per-
mutations. Consequently, it is natural to define biased distributions on permutations that depend on such
statistics, and to analyze classical algorithms under these non-uniform models. One such distribution is
very popular in the field of discrete probability: the Ewens distribution. It gives to each permutation σ a
probability that is proportional to θcycle(σ), where θ > 0 is a parameter and cycle(σ) is the number of cy-
cles in σ. Similarly, for any classical permutation statistics χ, a non-uniform distribution on permutations
may be defined by giving to any σ a probability proportional to θχ(σ). We call such distributions Ewens-
like distributions. Note that the Ewens-like distribution for the number of inversions is quite popular,
under the name of Mallows distribution [7, and references therein].

In this article, we focus on the Ewens-like distribution according to χ = number of records (a.k.a. left
to right maxima). The motivation for this choice is twofold. First, the number of records is directly linked
to the number of cycles by the fundamental bijection (see Section 2.1). So, we are able to exploit the
nice properties of the classical Ewens distribution, and have a non-uniform model that remains mathe-
matically tractable. Second, we observe that the number of non-records is a measure of presortedness.
Therefore, our distribution provides a model for analyzing algorithms which is meaningful for the notion
of presortedness, and consequently which may be more realistic than the uniform distribution. We first
study how this distribution impacts the expected value of some classical permutation statistics, depending
on the choice of θ. Letting θ depend on n, we can reach different kinds of behavior. Then, we analyze
the expected complexity of Insertion Sort under this biased distribution, as well as the effect of branch
prediction on two variants of the simultaneous minimum and maximum search in an array.

2 Permutations and Ewens-like distributions
2.1 Permutations as words or sets of cycles
For any integers a and b, let [a, b] = {a, . . . , b} and for every integer n ≥ 1, let [n] = [1, n]. By convention
[0] = ∅. IfE is a finite set, let S(E) denote the set of all permutations onE, i.e., of bijective maps fromE
to itself. For convenience, S([n]) is written Sn in the sequel. Permutations of Sn can be seen in several
ways (reviewed for instance in [3]). Here, we use both their representations as words and as sets of cycles.

A permutation σ of Sn can be represented as a word w1w2 . . . wn containing exactly once each symbol
in [n]: by simply setting wi = σ(i) for all i ∈ [n]. Conversely, any sequence (or word) of n distinct
integers can be interpreted as representing a permutation of Sn. For any sequence s = s1s2 . . . sn of n
distinct integers, the rank ranks(si) of si is defined as the number of integers appearing in s that are
smaller than or equal to si. Then, for any sequence s of n distinct integers, the normalization norm(s)
of s is the unique permutation σ of Sn such that σ(i) = ranks(si). For instance, norm(8254) = 4132.

Many permutation statistics are naturally expressed on their representation as words. One will be of
particular interest for us: the number of records. If σ is a permutation of Sn and i ∈ [n], there is a
record at position i in σ (and subsequently, σ(i) is a record) if σ(i) > σ(j) for every j ∈ [i − 1]. In the
word representation of permutations, records are therefore elements that have no larger elements to their
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left. This equivalent definition of records naturally extends to sequences of distinct integers, and for any
sequence s of distinct integers, the positions of the records in s and in norm(s) are the same. A position
that is not a record is called a non-record.

A cycle of size k in a permutation σ ∈ Sn is a subset {i1, . . . , ik} of [n] such that i1
σ7→ i2 . . .

σ7→ ik
σ7→

i1. It is written (i1, i2, . . . , ik). Any permutation can be decomposed as the set of its cycles. For instance,
the cycle decomposition of τ represented by the word 6321745 is (32)(641)(75).

These two ways of looking at permutations (as words or as set of cycles) are rather orthogonal, but
there is still a link between them, provided by the so-called fundamental bijection or transition lemma.
The fundamental bijection, denoted F , is the following transformation:

1. Given σ a permutation of size n, consider the cycle decomposition of σ.
2. Write every cycle starting with its maximal element, and write the cycles in increasing order of their

maximal (i.e., first) element.
3. Erasing the parenthesis gives F (σ).

Continuing our previous example gives F
(
τ
)

= 3264175. This transformation is a bijection, and trans-
forms a permutation as set of cycles into a permutation as word. Moreover, it maps the number of cycles
to the number of records. For references and details about this bijection, see for example [3, p. 109–110].

2.2 The number of non-records as a measure of presortedness
The concept of presortedness, formalized by Mannila [10], naturally arises when studying sorting algo-
rithms which efficiently sort sequences already almost sorted. Let E be a totally ordered set. We denote
by E? the set of all nonempty sequences of distinct elements of E, and by · the concatenation on E?. A
mapping m from E? to N is a measure of presortedness if it satisfies:

1. if X ∈ E? is sorted then m(X) = 0;
2. if X = (x1, · · · , x`) and Y = (y1, · · · , y`) are two elements of E? having same length, and such

that for every i, j ∈ [`], xi < xj ⇔ yi < yj then m(X) = m(Y );
3. if X is a subsequence of Y then m(X) ≤ m(Y );
4. if every element of X is smaller than every element of Y then m(X · Y ) ≤ m(X) +m(Y );
5. for every symbol a ∈ E that does not occur in X , m(a ·X) ≤ |X|+m(X).

Classical measures of presortedness [10] are the number of inversions, the number of swaps, . . . One can
easily see, checking conditions 1 to 5, that mrec(s) = number of non-records in s = |s|− number of
records in s defines a measure of presortedness on sequences of distinct integers. Note that because of
condition 2, studying a measure of presortedness on Sn is not a restriction with respect to studying it on
sequences of distinct integers.

Given a measure of presortedness m, we are interested in optimal sorting algorithms with respect to m.
Let belowm(n, k) = {σ : σ ∈ Sn, m(σ) ≤ k}. A sorting algorithm is m-optimal (see [10] and [11]
for more details) if it performs in the worst case O(n + log |belowm(n, k)|) comparisons when applied
to σ ∈ Sn such that m(σ) = k, uniformly in k. There is a straightforward algorithm that is mrec-
optimal. First scan σ from left to right and put the records in one (sorted) list LR and the non-records
in another list LN . Sort LN using a O(|LN | log |LN |) algorithm, then merge it with LR. The worst
case running time of this algorithm is O(n + k log k) for permutations σ of Sn such that mrec(σ) = k.
Moreover, |belowmrec(n, k)| ≥ k! for any k ≥ n, since it contains the k! permutations of the form
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(k + 1)(k + 2) . . . n · τ for τ ∈ Sk. Consequently, O(n + k log k) = O(n + log |belowmrec(n, k)|)),
proving mrec-optimality.

2.3 Ewens and Ewens-like distribution
The Ewens distribution on permutations (see for instance [1, Ch. 4 & 5]) is a generalization of the
uniform distribution on Sn: the probability of a permutation depends on its number of cycles. Denoting
cycle(σ) the number of cycles of any permutation σ, the Ewens distribution of parameter θ (where θ is
any fixed positive real number) gives to any σ the probability θcycle(σ)∑

ρ∈Sn θ
cycle(ρ) . As seen in [1, Ch. 5], the

normalization constant
∑
ρ∈Sn θ

cycle(ρ) is θ(n), where the notation x(n) (for any real x) denotes the rising
factorial defined by x(n) = x(x+ 1) · · · (x+ n− 1) (with the convention that x(0) = 1).

Mimicking the Ewens distribution, it is natural (and has appeared on several occasions in the literature,
see for instance [4, Example 12]) to define other non-uniform distributions on Sn, where we introduce
a bias according to some statistics χ. The Ewens-like distribution of parameter θ (again θ is any fixed
positive real number) for statistics χ is then the one that gives to any σ ∈ Sn the probability θχ(σ)

∑
ρ∈Sn θ

χ(ρ) .
The classical Ewens distribution corresponds to χ = number of cycles. Ewens-like distributions can be
considered for many permutations statistics, like the number of inversions, of fixed points, of runs, . . . In
this article, we focus on the distribution associated with χ = number of records. We refer to it as the
Ewens-like distribution for records (with parameter θ). For any σ, we let record(σ) denote the number of
records of σ, and define the weight of σ as w(σ) = θrecord(σ). The Ewens-like distribution for records on
Sn gives probability w(σ)

Wn
to any σ ∈ Sn, where Wn =

∑
ρ∈Sn w(ρ). Note that the normalization con-

stant is Wn = θ(n), like in the classical Ewens distribution: indeed, the fundamental bijection reviewed
above shows that there are as many permutations with c cycles as permutations with c records. Fig. 1
shows random permutations under the Ewens-like distribution for records, for various values of θ.

Fig. 1: Random permutations under the Ewens-like distribution on S100 with, from left to right, θ = 1 (corresponding
to the uniform distribution), 50, 100, and 500. For each diagram, the darkness of a point (i, j) is proportional to the
number of generated permutations σ such that σ(i) = j, for a sampling of 10000 random permutations.

2.4 Linear random samplers
Efficient random samplers have several uses for the analysis of algorithms in general. They allow to
estimate quantities of interest (even when their computation with a theoretical approach is not feasible),
and can be used to double-check theoretical results. They are also a precious tool to visualize the objects
under study (the diagrams in Fig. 4 were obtained in this way), allowing to define new problems on these
objects (for example: can we describe the limit shape of the diagrams shown in Fig. 4?).
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As mentioned in [6, §2.1], one can easily obtain a linear time and space algorithm to generate a random
permutation according to the Ewens distribution (for cycles), using a variant of the Chinese restaurant
process reviewed in what follows. To generate a permutation of size n, we start with an empty array(i) σ
of length n that is used to store the values of the σ(i)’s. For i from 1 to n, we choose to either create
a new cycle containing only i with probability θ

θ+i−1 or to insert i in one of the existing cycles with
probability i−1

θ+i−1 . To create a new cycle, we set σ[i] = i. To insert i in an existing cycle, we choose
uniformly at random an element j in [i− 1] to be the element following i in its cycle, and we set σ[i] = j
and σ[σ−1[j]] = i. To avoid searching for σ−1[j] in the array σ, we only need to keep σ−1 in a second
array while adding the elements in σ.

Starting from this algorithm, we can easily design a linear random sampler for permutations according
to the Ewens-like distribution for records, using the fundamental bijection. The first step is to gener-
ate a permutation σ in Sn with the above algorithm. Then, we write the cycles of σ in reverse or-
der of their maximum, as sequences, starting from the last element and up to exhaustion of the cycle:
n, σ[n], σ[σ[n]], . . . , σ−1[n]. Each time we write an element i, we set σ[i] = 0 and each time a cycle is
finished, we search the next value of i such that σ[i] 6= 0 to start the next cycle. This new cycle will be
written before the one that has just been written. Note that all these operations can be performed in time
complexity O(1) using doubly linked lists for the resulting permutation. In the end, the cycles will be
written as sequences starting by their maximum, sorted in increasing order of their maximum, which is
the fundamental bijection.

Note that there exists another branching process, known as the Feller coupling, to generate permutations
according to the Ewens distribution (see for instance [1, p.16]). Although it is less natural than with the
Chinese restaurant process, it is also possible to infer linear random samplers from it. Details will be
provided in an extended version of this work.

3 Average value of statistics in biased random permutations
Let θ be any fixed positive real number. In this section, we study the behavior of several statistics on
permutations, when they follow the Ewens-like distribution for records with parameter θ. Our purpose is
mostly to illustrate methods to obtain precise descriptions of the behavior of such statistics. Such results
allow a fine analysis of algorithms whose complexity depends on the studied statistics.

Recall that, for any σ ∈ Sn, w(σ) = θrecord(σ) and the probability of σ is w(σ)
Wn

, with Wn = θ(n).
Recall also that the records of any sequence of distinct integers are well-defined. For any such sequence s
we subsequently set record(s) to be the number of records of s and w(s) = θrecord(s). Note that for any
such sequence s, w(s) = w(norm(s)), because the positions (and hence the number) of records do not
change when normalizing.

3.1 Technical lemmas
Seeing a permutation of Sn as a word, it can be split (in many ways) into two words as σ = π · τ for the
usual concatenation on words. Note that here π and τ are not normalized permutations: τ belongs to the
set Sk inn of all sequences of k distinct integers in [n] where k = |τ |, and π belongs to Sn−k inn. The
weight function w behaves well with respect to this decomposition, as shown in the following lemmas.

(i) Note that our array starts at index 1.
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Lemma 1 Let n be an integer, and τ be a sequence of k ≤ n distinct integers in [n]. Denote by m the
number of records in τ whose value is larger than the largest element of [n] which does not appear in τ ,
and define w′n(τ) as θm. For all σ ∈ Sn, if σ = π · τ , then w(σ) = w(π) · w′n(τ).

For instance, the definition of w′n(τ) gives w′9(6489) = θ2 (8 and 9 are records of τ larger than 7) and
w′10(6489) = 1 (there are no records in τ larger than 10).

We extend the weight function w to subsets X of Sn as w(X) =
∑
σ∈X w(σ). For any sequence τ

of k ≤ n distinct integers in [n], the right-quotient of X with τ is X/τ = {π : π · τ ∈ X}. Since
w(π) = w(norm(π)) for all sequences π of distinct integers, we have w(X/τ) = w(norm(X/τ)) for all
X and τ as above (As expected, norm(Y ) means {norm(π) : π ∈ Y }).

For k ∈ [n], we say that X ⊆ Sn is quotient-stable for k if w(X/τ) is constant when τ runs over
Sk inn. When X is quotient-stable for k, we denote wq

k(X) the common value of w(X/τ) for τ as above.
For instance,X = (4321, 3421, 4132, 3142, 4123, 2143, 3124, 1324) is quotient-stable for k = 1. Indeed,

wq
1(X) = w(X/1) = w({432, 342}) = w(X/2) = w({413, 314}) =

w(X/3) = w({412, 214}) = w(X/4) = w({312, 132}) = θ + θ2.

Note that Sn is quotient-stable for all k ∈ [n]: indeed, for any τ of size k, norm(Sn /τ) = Sn−k so
that w(Sn /τ) = w(Sn−k) for all τ of size k. It follows that wq

k(Sn) = w(Sn−k) = θ(n−k).

Lemma 2 Let X ⊆ Sn be quotient-stable for k ∈ [n]. Then w(X) = θ(n)

θ(n−k) wq
k(X).

A typical example of use of Lemma 2 is given in the proof of Theorem 3.
Remark: Lemma 2 is a combinatorial version of a simple probabilistic property: Let Eτ be the set of
elements of Sn that end with τ . If A is an event on Sn and if the probability of A given Eτ is the same
for every τ ∈ Sk inn, then it is equal to the probability of A, by the law of total probabilities. �

3.2 Summary of asymptotic results
The rest of this section is devoted to studying the expected behavior of some permutation statistics, under
the Ewens-like distribution on Sn for records with parameter θ. We are especially interested in the
asymptotics in n when θ is constant or is a function of n. The studied statistics are: number of records,
number of descents, first value, and number of inversions. A summary of our results is presented in
Table 3.2. The asymptotics reported in Table 3.2 follow from Corollaries 4, 6, 9, 11 either immediately
or using the so-called digamma function. The digamma(ii) function is defined by Ψ(x) = Γ′(x)/Γ(x). It
satisfies the identity

∑n−1
i=0

1
x+i = Ψ(x + n) − Ψ(x), and its asymptotic behavior as x → ∞ is Ψ(x) =

log(x)− 1
2x − 1

12x2 + o
(

1
x2

)
. We also define ∆(x, y) = Ψ(x+ y)−Ψ(x), so that ∆(x, n) =

∑n−1
i=0

1
x+i

for any positive integer n. In Table 3.2 and in the sequel, we use the notations Pn(E) (resp. En[χ]) to
denote the probability of an event E (resp. the expected value of a statistics χ) under the Ewens-like
distribution on Sn for records.
Remark: To some extent, our results may also be interpreted on the classical Ewens distribution, via the
fundamental bijection. Indeed the number of records (resp. the number of descents, resp. the first value) of
σ corresponds to the number of cycles (resp. the number of anti-excedances(iii) , resp. the minimum over
(ii) For details, see https://en.wikipedia.org/wiki/Digamma_function (accessed on April 27, 2016).
(iii) An anti-excedance of σ ∈ Sn is i ∈ [n] such that σ(i) < i. The proof that descents of σ are equinumerous with anti-excedances

of F−1(σ) is a simple adaptation of the proof of Theorem 1.36 in [3], p. 110–111.
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θ = 1 fixed θ > 0 θ := nε, θ := λn, θ := nδ , See
(uniform) 0 < ε < 1 λ > 0 δ > 1 Cor.

En[record] log n θ · log n (1− ε) · nε log n λ log(1 + 1/λ) · n n 4
En[desc] n/2 n/2 n/2 n/2(λ+ 1) n2−δ/2 6
En[σ(1)] n/2 n/(θ + 1) n1−ε (λ+ 1)/λ 1 9
En[inv] n2/4 n2/4 n2/4 n2/4 · f(λ) n3−δ/6 11

Tab. 1: Asymptotic behavior of some permutation statistics under the Ewens-like distribution on Sn for records. We
use the shorthand f(λ) = 1− 2λ+ 2λ2 log (1 + 1/λ). All the results in this table are asymptotic equivalents.

all cycles of the maximum value in a cycle) of F−1(σ). Consequently, Corollary 4 is just a consequence
of the well-known expectation of the number of cycles under the Ewens distribution (see for instance [1,
§5.2]). Similarly, the expected number of anti-excedances (Corollary 6) can be derived easily from the
results of [6]. Those results on the Ewens distribution do not however give access to results as precise as
those stated in Theorems 3 and 5, which are needed to prove our results of Section 4. Finally, to the best
of our knowledge, the behavior of the third statistics (minimum over all cycles of the maximum value in
a cycle) has not been previously studied, and we are not aware of any natural interpretation of the number
of inversions of σ in F−1(σ). �

3.3 Expected values of some permutation statistics
We start our study by computing how the value of parameter θ influences the expected number of records.

Theorem 3 Under the Ewens-like distribution on Sn for records with parameter θ, for any i ∈ [n], the
probability that there is a record at position i is: Pn(record at i) = θ

θ+i−1 .

Proof: We prove this theorem by splitting permutations seen as words after their i-th element, as shown
in Fig. 2. Let Rn,i denote the set of permutations of Sn having a record at position i. We claim that
the set Rn,i is quotient-stable for n − i, and that w(Rn,i) = θ(n)

θ(i)
· θ(i−1) · θ. It will immediately follow

that Pn(record at i) =
w(Rn,i)
θ(n) = θ(i−1)·θ

θ(i)
= θ

θ+i−1 . We now prove the claim. Let τ be any sequence in
Sn−i inn. Observe that norm(Rn,i/τ) = Ri,i. Since the number of records is stable by normalization,
it follows that w(Rn,i/τ) = w(Ri,i). By definition, π ∈ Si is in Ri,i if and only if π(i) = i. Thus
Ri,i = Si−1 · i in the word representation of permutations. Hence, w(Ri,i) = θ(i−1)θ, since the last
element is a record by definition. This yields w(Rn,i/τ) = θ(i−1)θ for any τ ∈ Sn−i inn, proving
that Rn,i is quotient-stable for n − i, and that wq

n−i(Rn,i) = θ(i−1)θ. By Lemma 2, it follows that

w(Rn,i) = θ(n)

θ(n−(n−i)) · wq
n−i(Rn,i) = θ(n)

θ(i)
· θ(i−1) · θ. 2

π τ

Sum to w(Si−1) = θ(i−1) θ w′n(τ )

1 i i + 1 n

Fig. 2: The decomposition used to compute the probability of
having a record at i. This record has weight θ and thus, for any
fixed τ , the weights of all possible π sum to w(Si−1) · θ =
θ(i−1) · θ.

Corollary 4 Under the Ewens-like distribution on Sn for records with parameter θ, the expected value
of the number of records is: En[record] =

∑n
i=1

θ
θ+i−1 = θ ·∆(θ, n).
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Next, we study the expected number of descents. Recall that a permutation σ of Sn has a descent at
position i ∈ {2, . . . , n} if σ(i − 1) > σ(i). We denote by desc(σ) the number of descents in σ. We are
interested in descents as they are directly related to the number of increasing runs in a permutation (each
such run but the last one is immediately followed by a descent, and conversely). Some sorting algorithms,
like Knuth’s Natural Merge Sort, use the decomposition into runs.

The following theorem is proved using Lemmas 1 and 2 and the decomposition of Fig. 3.

Theorem 5 Under the Ewens-like distribution on Sn for records with parameter θ, for any i ∈ {2, . . . , n},
the probability that there is a descent at position i is: Pn

(
σ(i− 1) > σ(i)

)
= (i−1)(2θ+i−2)

2(θ+i−1)(θ+i−2) .

π τ

Sum to w(Si−2) = θ(i−2) θ w′n(τ )

1 i i + 1 ni− 1

1

π τ

Sum to w(Si−2) = θ(i−2) 1 w′n(τ )

1 i i + 1 ni− 1

1

Fig. 3: The two cases for the probability of having a descent at i. We decompose σ as π · σ(i− 1) · σ(i) · τ , and we
let ρ = norm(π · σ(i − 1) · σ(i)). On the left, the case where σ(i − 1) is a record, that is, ρ(i − 1) = i: there are
i− 1 possibilities for ρ(i). On the right, the case where σ(i− 1) is not a record: there are

(
i−1
2

)
possibilities for the

values of ρ(i) and ρ(i− 1). In both cases, once the images of j ∈ {i− 1, . . . n} by σ have been chosen, the weight
of all possible beginnings sum to w(Si−2) = θ(i−2).

Corollary 6 Under the Ewens-like distribution on Sn for records with parameter θ, the expected value
of the number of descents is: En[desc] = n(n−1)

2(θ+n−1) .

In the second row of Table 3.2, remark that the only way of obtaining a sublinear number of descents is
to take very large values for θ.

Finally, we study the expected value of σ(1). We are interested in this statistic to show a proof that
differs from the ones for the numbers of records and descents: the expected value of the first element of a
permutation is not obtained using Lemma 2.

Lemma 7 Under the Ewens-like distribution on Sn for records with parameter θ, for any k ∈ [0, n− 1],

the probability that a permutation starts with a value larger than k is: Pn(σ(1) > k) = (n−1)!θ(n−k)
(n−k−1)! θ(n) .

Proof: Let Fn,k denote the set of permutations of Sn such that σ(1) > k. Such a permutation can
uniquely be obtained by choosing the preimages of the elements in [k] in {2, . . . , n}, then by mapping
bijectively the remaining elements to [k + 1, n]. Since none of the elements in [k] is a record and since
the elements of [k + 1, n] can be ordered in all possible ways, we get that w(Fn,k) =

(
n−1
k

)
k! θ(n−k).

Indeeed,there are
(
n−1
k

)
k! ways to position and order the elements of [k], and the total weight of the

elements larger than k is θ(n−k). Hence, Pn(σ(1) > k) =
w(Fn,k)
w(Sn)

=
(n−1
k )k!θ(n−k)

θ(n) = (n−1)!θ(n−k)
(n−k−1)! θ(n) . 2

Theorem 8 Under the Ewens-like distribution on Sn for records with parameter θ, for any k ∈ [n], the

probability that a permutation starts with k is: Pn(σ(1) = k) = (n−1)! θ(n−k)θ
(n−k)!θ(n) .



Analysis of Algorithms for Biased Permutations 9

Corollary 9 Under the Ewens-like distribution on Sn for records with parameter θ, the expected value
of the first element of a permutation is: En[σ(1)] = θ+n

θ+1 .

Remark: Our proof of Corollary 9 relies on calculus, but gives a very simple expression for En[σ(1)].
We could therefore hope for a more combinatorial proof of Corollary 9, but we were not able to find it. �

3.4 Number of inversions and expected running time of INSERTIONSORT

Recall that an inversion in a permutation σ ∈ Sn is a pair (i, j) ∈ [n] × [n] such that i < j and
σ(i) > σ(j). In the word representation of permutations, this corresponds to a pair of elements in which
the largest is to the left of the smallest. This equivalent definition of inversions naturally generalizes to
sequences of distinct integers. For any σ ∈ Sn, we denote by inv(σ) the number of inversions of σ, and
by invj(σ) the number inversions of the form (i, j) in σ, for any j ∈ [n]. More formally, invj(σ) =

∣∣{i ∈
[j − 1] : (i, j) is an inversion of σ}

∣∣.
Theorem 10 Under the Ewens-like distribution on Sn for records with parameter θ, for any j ∈ [n] and
k ∈ [0, j− 1], the probability that there are k inversions of the form (i, j) is: Pn

(
invj(σ) = k

)
= 1

θ+j−1
if k 6= 0 and Pn

(
invj(σ) = k

)
= θ

θ+j−1 if k = 0.

Corollary 11 Under the Ewens-like distribution on Sn for records with parameter θ, the expected value
of the number of inversions is: En[inv] = n(n+1−2θ)

4 + θ(θ−1)
2 ∆(θ, n).

Recall that the INSERTIONSORT algorithm works as follows: at each step i ∈ {2, . . . , n}, the first i− 1
elements are already sorted, and the i-th element is then inserted at its correct place, by swapping the
needed elements.

It is well known that the number of swaps performed by INSERTIONSORT when applied to σ is equal
to the number of inversions inv(σ) of σ. Moreover, the number of comparisons C(σ) performed by the
algorithm satisfies inv(σ) ≤ C(σ) ≤ inv(σ) +n− 1 (see [5] for more information on INSERTIONSORT).

As a direct consequence of Corollary 11 and the asymptotic estimates of the fourth row of Table 3.2,
we get the expected running time of INSERTIONSORT:

Corollary 12 Under the Ewens-like distribution for records with parameter θ = O(n), the expected
running time of INSERTIONSORT is Θ(n2), like under the uniform distribution. If θ = nδ with 1 < δ < 2,
it is Θ(n3−δ). If θ = Ω(n2), it is Θ(n).

4 Expected Number of Mispredictions for the Min/Max Search
4.1 Presentation
In this section, we turn our attention to a simple and classical problem: computing both the minimum and
the maximum of an array of size n. The straightforward approach (called naive in the sequel) is to compare
all the elements of the array to the current minimum and to the current maximum, updating them when it
is relevant. This is done(iv) in Algorithm 1 and uses exactly 2n− 2 comparisons. A classical optimization
is to look at the elements in pairs, and to compare the smallest to the current minimum and the largest to
the current maximum (see Algorithm 2). This uses only 3n/2 comparisons, which is optimal. However,
as reported in [2], with an implementation in C of these two algorithms, the naive algorithm proves to be

(iv) Note that, for consistency, our arrays start at index 1, as stated at the beginning of this paper.
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the fastest on uniform permutations as input. The explanation for this is a trade-off between the number
of comparisons involved and an other inherent but less obvious factor that influences the running time of
these algorithms: the behavior of the branch predictor.

Algorithm 1: NAIVEMINMAX(T, n)

1 min← T [1]
2 max← T [1]

3 for i← 2 to n do
4 if T [i] < min then
5 min← T [i]

6 if T [i] > max then
7 max← T [i]

8 return min,max

Algorithm 2: 3/2-MINMAX(T, n)

1 min,max← T [n], T [n]
2 for i← 2 to n by 2 do
3 if T [i− 1] < T [i] then
4 pMin, pMax← T [i− 1], T [i]

5 else pMin, pMax← T [i], T [i− 1] if
pMin < min then min← pMin if
pMax > max then max← pMax

6 return min,max

In a nutshell, when running on a modern processor, the instructions that constitute a program are not
executed strictly sequentially but instead, they usually overlap one another since most of the instructions
can start before the previous one is finished. This mechanism is commonly described as a pipeline (see [8]
for a comprehensive introduction on this subject). However, not all instructions are well-suited for a
pipelined architecture: this is specifically the case for branching instructions such as an if statement.
When arriving at a branch, the execution of the next instruction should be delayed until the outcome of
the test is known, which stalls the pipeline. To avoid this, the processor tries to predict the result of the test,
in order to decide which instruction will enter the pipeline next. If the prediction is right, the execution
goes on normally, but in case of a misprediction, the pipeline needs to be flushed, which can significantly
slow down the execution of a program.

There is a large variety of branch predictors, but nowadays, most processors use dynamic branch pre-
diction: they remember partial information on the results of the previous tests at a given if statement, and
their prediction for the current test is based on those previous results. These predictors can be quite intri-
cate, but in the sequel, we will only consider local 1-bit predictors which are state buffers associated to
each if statement: they store the last outcome of the test and guess that the next outcome will be the same.

Let us come back to the problem of simultaneously finding the minimum and the maximum in an array.
We can easily see that, for Algorithm 1, the behavior of a 1-bit predictor when updating the maximum
(resp. minimum) is directly linked to the succession of records (resp. min-records(v)) in the array. As we
explain later on, for Algorithm 2, this behavior depends on the “pattern” seen in four consecutive elements
of the array, this “pattern” indicating not only which elements are records (resp. min-records), but also
where we find descents between those elements. As shown in [2], for uniform permutations, Algorithm 1
outerperforms Algorithm 2, because the latter makes more mispredictions than the former, compensating
for the fewer comparisons made by Algorithm 2. This corresponds to our Ewens-like distribution for
θ = 1. But when θ varies, the way records are distributed also changes, influencing the performances of
both Algorithms 1 and 2. Specifically, when θ = λn, we have a linear number of records (as opposed
to a logarithmic number when θ = 1). The next subsections provide a detailed analysis of the number
of mispredictions in Algorithms 1 and 2, under the Ewens-like distribution for records, with a particular
emphasis on θ = λn (which exhibits a very different behavior w.r.t. the uniform distribution – see Fig. 4).

(v) A min-record (a.k.a. left to right minimum) is an element of the array such that no smaller element appears to its left.
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4.2 Expected Number of Mispredictions in NaiveMinMax
Theorem 13 Under the Ewens-like distribution on Sn for records with parameter θ, the expected num-
bers of mispredictions at lines 4 and 6 of Algorithm 1 satisfy respectively En[µ4] ≤ 2

θEn[record] and
En[µ6] = 2θ∆(θ, n− 1)− (2θ+1)(n−1)

θ+n−1 .

Consequently, with our previous results on En[record], the expected number of mispredictions at line 4
is O(log n) when θ = Ω(1) (i.e., when θ = θ(n) is constant or larger). Moreover, using the asymptotic
estimates of the digamma function, the asymptotics of the expected number of mispredictions at line 6 is
such that (again, for λ > 0, 0 < ε < 1 and δ > 1):

fixed θ > 0 θ := nε θ := λn θ := nδ

En[µ6] ∼ 2θ · log n ∼ 2(1− ε) · nε log n ∼ 2λ(log(1 + 1/λ)− 1/(λ+ 1)) · n o(n)

In particular, asymptotically, the expected total number of mispredictions of Algorithm 1 is given by
En[µ6] (up to a constant factor when θ is constant).

4.3 Expected Number of Mispredictions in 3
2
MinMax

Mispredictions in Algorithm 2 can arise in any of the three if statements. We first compute the expected
number of mispredictions at each of them independently. We start with the if statement of line 3, which
compares T [i − 1] and T [i]. For our 1-bit model, there is a misprediction whenever there is a descent at
i− 2 and an ascent at i, or an ascent at i and a descent at i− 2. A tedious study of all possible cases gives:

Theorem 14 Under the Ewens-like distribution on Sn for records with parameter θ, the expected number
of mispredictions at line 3 of Algorithm 2 satisfies

En[ν3] =
n− 2

4
+
θ(θ − 1)2

4
+
θ2(θ − 1)2

12

(
1

θ + n− 1
− 3

θ + n− 2
− 1

θ + 1

)

+
θ2(θ − 1)2

6

(
∆

(
θ + 1

2
,
n− 2

2

)
−∆

(
θ

2
,
n− 2

2

))
.

As a consequence, if θ = λn, then En[ν3] ∼ 6λ2+8λ+3
12(λ+1)3 n.

Theorem 15 Under the Ewens-like distribution on Sn for records with parameter θ, the expected number
of mispredictions at line 5 of Algorithm 2 satisfies En[ν7] ≤ 2

θEn[record]. As a consequence, if θ = λn,
then En[ν7] = O(1).

We now consider the third if statement of Algorithm 2. If there is a record (resp. no record) at position
i− 3 or i− 2, then there is a misprediction when there is no record (resp. a record) at position i− 1 or i.
Studying all the possible configurations at these four positions gives the following result.

Theorem 16 Under the Ewens-like distribution on Sn for records with parameter θ, the expected number
of mispredictions at line 5 of Algorithm 2 satisfies

En[ν8] =
(n− 2)((2θ3 + θ2 − 9θ − 3)n+ 2θ4 − 5θ2 + 9θ + 3)

3(θ + n− 1)(θ + n− 2)

+
θ(2θ3 + θ + 3)

3
∆

(
θ + 1

2
,
n− 2

2

)
− θ(2θ3 + θ − 3)

3
∆

(
θ

2
,
n− 2

2

)
.

As a consequence, if θ = λn, then En[ν7] ∼
(
2λ log

(
1 + 1

λ

)
− λ(6λ2+15λ+10)

3(λ+1)3

)
n.
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It follows from Theorems 14, 15 and 16 that:

Corollary 17 Under the Ewens-like distribution on Sn for records with parameter θ = λn, the total
number of mispredictions of Algorithm 2 is

En[ν] ∼
(

2λ log

(
1 +

1

λ

)
− 24λ3 + 54λ2 + 32λ− 3

12(λ+ 1)3

)
n.

Fig. 4 shows that, unlike in the uniform case (θ = 1), Algorithm 2 is more efficient than Algorithm 1
under the Ewens-like distribution for records with θ := λn, as soon as λ is large enough.

λ

#mispredictions/n

1
4

1
2

1 2 3

1
nEn[ν]

1
nEn[µ]

Fig. 4: The expected number of mispredictions produced by the naive al-
gorithm (µ) and for 3

2
-minmax (ν), when θ := λn. We have En[µ] ∼

En[ν] for λ0 =
√
34−4
6
≈ 0.305, and there are fewer mispredictions on

average with 3
2

-minmax as soon as λ > λ0. However, since 3
2

-minmax
performs n

2
fewer comparisons than the naive algorithm, it becomes more

efficient before λ0. For instance, if a misprediction is worth 4 compar-
isons, 3

2
-minmax is the most efficient as soon as λ > 0.110.
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[3] M. Bóna. Combinatorics of permutations. Chapman-Hall and CRC Press, 2d edition edition, 2012.
[4] A. Borodin, P. Diaconis, and J. Fulman. On adding a list of numbers (and other one-dependent determinantal

processes). Bulletin of the American Mathematical Society (N.S.), 47(4):639–670, 2010.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and Clifford S. Introduction to Algorithms. MIT Press, Cambridge,

MA, third edition, 2009.
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We present an average case analysis of two variants of dual-pivot quicksort, one with a non-algorithmic
comparison-optimal partitioning strategy, the other with a closely related algorithmic strategy. For both
we calculate the expected number of comparisons exactly as well as asymptotically, in particular, we
provide exact expressions for the linear, logarithmic, and constant terms. An essential step is the analysis
of zeros of lattice paths in a certain probability model. Along the way a combinatorial identity is proven.

Keywords: Dual-pivot quicksort, lattice paths, asymptotic enumeration, combinatorial identity

1 Introduction
Dual-pivot quicksort [Sed75, WNN15, AD15] is a family of sorting algorithms related to the well-
known quicksort algorithm. In order to sort an input sequence (a1, . . . , an) of distinct elements,
dual-pivot quicksort algorithms work as follows. (For simplicity we forbid repeated elements in the
input.) If n ≤ 1, there is nothing to do. If n ≥ 2, two input elements are selected as pivots. Let p
be the smaller and q be the larger pivot. The next step is to partition the remaining elements into

• the elements smaller than p (“small elements”),
• the elements between p and q (“medium elements”), and
• the elements larger than q (“large elements”).
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Then the procedure is applied recursively to these three groups to complete the sorting.
The cost measure used in this work is the number of comparisons between elements. As

is common, we will assume the input sequence is in random order, which means that each
permutation of the n elements occurs with probability 1/n! . With this assumption we may,
without loss of generality, choose a1 and an as the pivots. Even in this setting there are different
dual-pivot quicksort algorithms; their difference lies in the way the partitioning is organized, which
influences the partitioning cost. This is in contrast to standard quicksort with one pivot, where
the partitioning strategy does not influence the cost—in partitioning always one comparison is
needed per non-pivot element. In dual-pivot quicksort, the average cost (over all permutations) of
partitioning and of sorting can be analyzed only when the partitioning strategy is fixed.
Only in 2009, Yaroslavskiy, Bentley, and Bloch [Yar09] described a dual-pivot quicksort algo-

rithm that makes 1.9n logn+O(n) comparisons [WNN15].(i) This beats the classical quicksort
algorithm [Hoa62], which needs 2n logn+O(n) comparisons on average. In [AD15], the first two
authors of this article described the full design space for dual-pivot quicksort algorithms with
respect to counting element comparisons. Among others, they studied two special partitioning
strategies. The first one—we call it “Clairvoyant” in this work—assumes that the number of small
and large elements is given (by an “oracle”) before partitioning starts. It cannot be implemented;
however, it is optimal among all partioning strategies that have access to such an oracle, and hence
its cost provides a lower bound for the cost of all algorithmic partitioning strategies. In [AD15] it
was shown that dual-pivot quicksort carries out 1.8n logn+O(n) comparisons on average when this
partitioning strategy is used. Further a closely related algorithmic partitioning strategy—called
“Count” here—was described, which makes only O(logn) more comparisons on average than
“Clairvoyant” and hence leads to a dual-quicksort variant with only O(n) more comparisons.(ii)

One purpose of this paper is to make the expected number of comparisons in both variants precise
and to determine the exact difference of the cost of these two strategies, both for partitioning and
for the resulting dual-pivot quicksort variants.
Already in [AD15] it was noted that the exact value of the expected partitioning cost (i.e.,

the number of comparisons) of both strategies depends on the expected number of the zeros of
certain lattice paths (Parts I and II). A complete understanding of this situation is the basis for
our analysis of dual-pivot quicksort, which appears in Part III.
Lattice path enumeration has a long tradition. An early reference is [Moh79]; a recent survey

paper is [Kra15]. As space is limited, many proofs and some additional results can be found in an
appendix at arXiv:1602.04031v1.

2 Overview and Results
This work is split into three parts. We give a brief overview on the main results of each of these
parts here. We use the Iversonian expression

[expr ] =
{

1 if expr is true,
0 if expr is false,

(i) In this paper “log” denotes the natural logarithm to base e.
(ii) After completing this extended abstract we found a proof that “Count” is optimal among all algorithmic
strategies. Details to be given in the full version.
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popularized by Graham, Knuth, and Patashnik [GKP94].
The harmonic numbers and their variants will be denoted by

Hn =
n∑

m=1

1
m
, Hodd

n =
n∑

m=1

[m odd]
m

and Halt
n =

n∑

m=1

(−1)m

m
.

Of course, there are relations between these three definitions such as Halt
n = Hn − 2Hodd

n and
Hodd

n +Hbn/2c/2 = Hn, but it will turn out to be much more convenient to use all three notations.

Part I: Lattice Paths
In the first part we analyze certain lattice paths of a fixed length n. We start on the vertical
axis, allow steps/increments (1,+1) and (1,−1) and end on the horizontal axis at (n, 0). To
be precise, the starting point on the vertical axis is chosen uniformly at random from the set
{(0,−n), (0,−n+ 2), . . . , (0, n− 2), (0, n)} of feasible points. Once this starting point is fixed, all
paths to (n, 0) are equally likely. We are interested in the number of zeros, denoted by the random
variable Zn, of such paths.

An exact formula for the expected number E(Zn) of zeros is derived in two different ways (see
identity (2.1) for these formulæ): On the one hand, we use the symbolic method and generating
functions (see Appendix A), which gives the result in form of a double sum. This machinery extends
well to higher moments and also allows us to obtain the distribution. The exact distribution is
given in Appendix E; its limiting behavior as n→∞ is the discrete distribution

P(Zn = r) ∼ 1
r(r + 1) .

On the other hand, a more probabilistic approach gives the expectation E(Zn) as the simple single
sum

E(Zn) =
n+1∑

m=1

[m odd]
m

= Hodd
n+1,

see Section 4 for more details. The asymptotic behavior E(Zn) ∼ 1
2 logn can be extracted

(Appendix D).
The two approaches above give rise to the identity

n+1∑

m=1

[m odd]
m

= 4
n+ 1

∑

0≤k<`<dn/2e

(
n
k

)
(

n
`

) + [n even] 1
n+ 1

(
2n

(
n

n/2
) − 1

)
+ 1; (2.1)

the double sum above equals the single sum of Theorem 4.1 by combinatorial considerations.
One might ask about a direct proof of this identity. This can be achieved by methods related to
hypergeometric sums and the computational proof is presented in Appendix C. We also provide a
completely elementary proof which is “purely human”.
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Part II: More Lattice Paths and Zeros
The second part acts as connecting link between the lattice paths of fixed length of Part I and
the dual-pivot quicksort algorithms of Part III.
The probabilistic model introduced in Section 3 (in Part I) is extended, and lattice paths are

allowed to vary in length. For a number n (the number of elements to sort) the length of a path
is the number of elements remaining when the two pivots, given by a random set of elements of
size two, and the elements between these pivots are cut out.
The number of zeros Xn in this full model is analyzed; we provide again exact as well as

asymptotic formulæ for the expectation E(Xn). Details are given in Section 7. Moreover, more
specialized zero-configurations (needed for the analysis of different partitioning strategies in
Part III) are considered as well (Section 6).

Part III: Dual-Pivot Quicksort
The main result of this work analyzes comparisons in the dual-pivot quicksort algorithm that uses
the optimal (but unrealistic) partitioning strategy “Clairvoyant”. Aumüller and Dietzfelbinger
showed in [AD15] that this algorithm requires 1.8n logn+O(n) comparisons on average, which
improves on the average number of comparisons in quicksort (2n logn + O(n)) and the recent
dual-pivot algorithm of Yaroslavskiy et al. (1.9n logn+O(n), see [WNN15]). However, for real-
world input sizes n the (usually negative) factor in the linear term has a great influence on the
comparison count. Our asymptotic result is stated as the following theorem.
Theorem. The average number of comparisons in the dual-pivot quicksort algorithm with a
comparison-optimal partitioning strategy is

9
5n logn+An+B logn+ C +O(1/n)

as n→∞, with A = 9
5γ − 1

5 log 2− 89
25 = −2.659 . . . .

The constants B and C are explicitly given, too, and more terms of the asymptotics are
presented. The precise result is formulated as Corollary 10.2.
In fact, we even get an exact expression for the average comparison count. The precise result

is formulated as Theorem 10.1. Moreover the same analysis is carried out for the partitioning
strategy “Count”, which is an algorithmic variant of the comparison-optimal strategy “Clairvoyant”.
Aumüller and Dietzfelbinger [AD15] could show that it requires 9

5n logn+O(n) comparisons as
well. In this paper we obtain the exact average comparison count (Theorem 10.3). The asymptotic
result is again 9

5n logn+An+O(logn), but now with A = −2.382 . . . , so there is only a small
gap between the average number of comparisons in the comparison-optimal strategy “Clairvoyant”
and its algorithmic variant.

Part I: Lattice Paths
In this first part we analyze lattice paths of a fixed length n. These are introduced in Section 3 by
a precise description of our probabilistic model. We will work with this model throughout Part I,
and we analyze the number of zeros Zn.
The outline is as follows: We derive an exact expression for the expected number E(Zn) of

zeros by the generating functions machinery in Appendix A; a more probabilistic approach can
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be found in Section 4. Appendix D deals with asymptotic considerations. Direct proofs of the
obtained identity are given in Appendix C and the distribution of Zn is tackled in Appendix E.

3 Probabilistic Model
We consider paths of a given length n on the lattice Z2, where only steps (1,+1) and (1,−1) are
allowed. These paths are chosen at random according to the rules below.

Let us fix a length n ∈ N0. A path Pn ending in (n, 0) (no choice for this end-point) is chosen
according to the following rules.

1. First, choose a starting point (0, S) where S is a random integer uniformly distributed in
{−n,−n + 2, . . . , n − 2, n}, i. e., S = s occurs only for integers s with |s| ≤ n and s ≡ n
(mod 2).

2. Second, a path is chosen uniformly at random among all paths from (0, S) to (n, 0).

The conditions on S characterize those starting points from which (n, 0) is reachable.
We are interested in the number of intersections with the horizontal axis of a path. To make

this precise, we define a zero of a path Pn as a point (x, 0) ∈ Pn.
Thus, let Pn be a path of length n which is chosen according to the probabilistic model above

and define the random variable

Zn = number of zeros of Pn.

In the following sections, we determine the value of E(Zn) exactly (Appendix A and Section 4),
as well as asymptotically (Appendix D). In Appendix A, we use the machinery of generating
functions. This machinery turns out to be overkill if we are just interested in the expectation
E(Zn). However, it easily allows extension to higher moments and the limiting distribution.
In Section 4, we follow a probabilistic approach, which first gives a result on the probability

model that at the first glance looks surprising: the equidistribution at the initial values turns out
to carry over to every fixed length of the remaining path. This result yields a simple expression
for the expectation E(Zn) in terms of harmonic numbers, and thus immediately yields a precise
asymptotic expansion for E(Zn). The generating function approach, however, gives the expectation
in terms of a double sum of quotients of binomial coefficients (the right-hand side of (2.1)), see
Appendix A.

Appendix C gives a direct computational proof that these two results coincide. The original
expression in [AD15] (a double sum over a quotient of a product of binomial coefficients and a
binomial coefficient) is also shown to be equal in Appendix C. Explicit as well as asymptotic
expressions for the distribution P(Zn = r) can be found in Appendix E.

4 A Probabilistic Approach
Theorem 4.1. For a randomly (as described in Section 3) chosen path of length n, the expected
number of zeros is

E(Zn) = Hodd
n+1.
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Before proving the theorem, we consider an equivalent probability model for our random paths
formulated as an urn model. A number R from {0, . . . , n} is chosen uniformly at random. We
place R red balls and B = n−R black balls in an urn. Subsequently, in n rounds the balls are
taken from the urn (without replacements), in each round choosing one uniformly at random.
The color of the ball chosen in round i is denoted by Ui.

We construct a random walk (Wi)0≤i≤n on {−n, . . . , n} from U1, . . . , Un by setting W0 =
R−B = 2R− n and

Wi =
{
Wi−1 + 1 if Ui = black,
Wi−1 − 1 if Ui = red

for 1 ≤ i ≤ n. In each step, Wi equals the difference of the number of remaining red and black
balls in the urn. Clearly, then, Wn = 0.
One can look at the trajectories of this random walk, represented in the grid {0, . . . , n} ×
{−n, . . . , n} as sequences ((0,W0), (1,W1), . . . , (n,Wn)). Appendix B explains the equivalence
between the two models.
In order to prove Theorem 4.1, we need the following property of our paths.

Lemma 4.2. Let m ∈ N0 with m ≤ n. The probability that a random path Pn (as defined in
Section 3) runs through (n−m, k) is

P((n−m, k) ∈ Pn) = 1
m+ 1 (4.1)

for all k with |k| ≤ m and k ≡ m (mod 2), otherwise 0.
The proof of this lemma can be found in Appendix B.
A closer look reveals that when we reverse the paths, our model is equivalent to a contagion

Pólya urn model with two colors, starting with one ball of each color, where we sample with
replacement and put another ball of the color just drawn into the urn. In this setting, uniform
distribution for feasible points with the same first coordinate and hence the result of the lemma
are well-known phenomena. These results and more on the urn model can be found, for example,
in Mahmoud [Mah08].
We continue with the actual proof of our theorem.

Proof of Theorem 4.1: By Lemma 4.2, the expected number of zeros of Pn is

E(Zn) =
n∑

m=0
P((n−m, 0) ∈ Pn) =

n∑

m=0

[m even]
m+ 1 =

n+1∑

m=1

[m odd]
m

= Hodd
n+1.

5 Additional Results
The expected number of zeros can be evaluated asymptotically. We obtain
Corollary 5.1.

E(Zn) = 1
2 logn+ γ + log 2

2 + 1 + [n even]
2n − 2 + 9[n even]

12n2 +O
( 1
n3

)

asymptotically as n tends to infinity.
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The proof of this result uses the well-known asymptotic expansion of the harmonic numbers.
The actual asymptotic computations(iii) have been carried out using the asymptotic expansions
module [HK15] of SageMath [Dev16], see Appendix D.
By combining the generating function and probabilistic approach we obtain the following

identity.
Theorem 5.2. For n ≥ 0, we have

4
n+ 1

∑

0≤k<`<dn/2e

(
n
k

)
(

n
`

) + [n even] 1
n+ 1

(
2n

(
n

n/2
) − 1

)
+ 1

= 1
n+ 1

bn/2c∑

m=0

n−m∑

`=m

(2m
m

)(
n−2m
`−m

)
(

n
`

) = Hodd
n+1.

The second expression for the expected number of zeros, but without taking the zero at (n, 0)
into account, has been given in [AD15, displayed equation after (14)]. In Appendix C we give two
direct proofs of the identity above: One of them follows a computer generated proof (“creative
telescoping”) by extracting the essential recurrence. The second proof is “human” and completely
elementary using not more than Vandermonde’s convolution.

Furthermore, the generating function machinery allows us to determine the distribution of the
number Zn of zeros. Beside an exact formula (see Appendix E), we get the following asymptotic
result.
Theorem 5.3. Let 0 < ε ≤ 1

2 . For positive integers r with r = O
(
n1/2−ε

)
, we have asymptotically

P(Zn = r) = 1
r(r + 1)

(
1 +O

(
1/n2ε

))

as n tends to infinity.

Part II: More Lattice Paths and Zeros
This second part deals with an analysis of some special zero-configurations, which are needed for
the analysis of the partitioning strategies in Part III. Moreover, in Section 7, we extend the model
introduced in Section 3 to accommodate lattice paths of variable length. Again expectations are
studied exactly and asymptotically.

6 Going to Zero and Coming From Zero
For the analysis of comparison-optimal dual-pivot quicksort algorithms (see Part III) we need the
following two variants of zeros on the lattice path.

• An up-to-zero situation is a point (x, 0) ∈ Pn such that (x− 1,−1) ∈ Pn.

• A down-from-zero situation is a point (x, 0) ∈ Pn such that (x+ 1,−1) ∈ Pn.
(iii) A worksheet containing the computations can be found at http://www.danielkrenn.at/downloads/

quicksort-paths/quicksort-paths.ipynb.
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We show

E(number of up-to-zero situations on Pn) = 1
2

(
E(Zn)− [n even]

n+ 1

)
= 1

2H
odd
n

and

E(number of down-from-zero situations on Pn) = 1
2 (E(Zn)− 1) = 1

2
(
Hodd

n+1 − 1
)
.

Proof idea: The factor 1
2 stems from symmetry: Up-to-zero situations at (x, 0) occur with the

same probability as the symmetric “down-to-zero” situations at (x, 0), similarly for down-from-zero
situations. The correction terms [n even]

n+1 and 1 are caused by the fact that there is a zero, but no
up-to-zero situation, at (0, 0), and a zero, but no down-from-zero situation, at (n, 0). The full
proofs are in Appendix F.

7 Lattice Paths of Variable Length
In this section, we use a random variable N ′ instead of the fixed n above. Let us fix an n ∈ N
with n ≥ 2. We choose a path length N ′ according to the following rules.

1. Choose (P,Q) with 1 ≤ P < Q ≤ n uniformly at random from all
(

n
2
)
possibilities.

2. Let N ′ = n− 1− (Q− P ).

3. Choose a path of length N ′ according to Section 3.

Let us denote the number of up-to-zero and down-from-zero situations on the path by X↗n and
X↘n , respectively. In Appendix G, we show

E
(
X↗n

)
= 1

2
(

n
2
)

n−2∑

n′=0

n′∑

m=1
[m odd] n

′ + 1
m

= 1
2H

odd
n−2 −

1
8 + (−1)n

8(n− [n even])

and

E
(
X↘n

)
= 1

2
(

n
2
)

n−2∑

n′=0

n′+1∑

m=3
[m odd] n

′ + 1
m

= E
(
X↗n

)
− 1

2 + 1
2(n− [n even]) .

Part III: Dual-Pivot Quicksort
In this third and last part of this work, we finally analyze two different partitioning strategies and
the dual-pivot quicksort algorithm itself.

As mentioned in the introduction, the number of comparisons of dual-pivot quicksort depends
on the concrete partitioning procedure. For example, if one wants to classify a large element, i. e.,
an element larger than the larger pivot, comparing it with the larger pivot is unavoidable, but it
depends on the partitioning procedure whether a comparison with the smaller pivot occurs, too.
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First, in Section 8, we make our set-up precise, fix notions, and start solving the dual-pivot
quicksort recurrence (8.1). This recurrence relates the cost of the partitioning step to the total
number of comparisons of dual-pivot quicksort.

In Section 9 two partitioning strategies, called “Clairvoyant” and “Count”, are introduced and
their respective cost is analyzed. It will turn out that the results on lattice paths obtained in
Parts I and II are central in determining the partitioning cost exactly.

Everything is put together in Section 10: We obtain the exact comparison count for two versions
of dual-pivot quicksort (Theorems 10.1 and 10.3). The asymptotic behavior is extracted out of
the exact results (Corollaries 10.2 and 10.4).

8 Solving the Dual-Pivot Quicksort Recurrence
We consider versions of dual-pivot quicksort that act as follows on an input sequence (a1, . . . , an)
consisting of distinct numbers: If n ≤ 1, do nothing, otherwise choose a1 and an as pivots, and by
one comparison determine p = min(a1, an) and q = max(a1, an). Use a partitioning procedure to
partition the remaining n− 2 elements into the three classes small, medium, and large. Then call
dual-pivot quicksort recursively on each of these three classes to finish the sorting, using the same
partitioning procedure in all recursive calls.
Let Pn, a random variable, denote the partitioning cost. This is defined as the number of

comparisons made by the partitioning procedure if the input (a1, . . . , an) is assumed to be in
random order. Further, let Cn be the random variable that denotes the number of comparisons
carried out when sorting n elements with dual-pivot quicksort. The reader should be aware that
both Pn and Cn are determined by the partitioning procedure used.
Since the input (a1, . . . , an) is in random order and the partitioning procedure does nothing

but compare elements with the two pivots, the inputs for the recursive calls are in random order
as well, which implies that the distributions of Pn and Cn only depend on n. In particular we
may assume that when the sorting algorithm is called on n elements during recursion, the input
is a permutation of {1, . . . , n}.
The recurrence

E(Cn) = E(Pn) + 3(
n
2
)

n−2∑

k=1
(n− 1− k)E(Ck) (8.1)

for n ≥ 0 describes the connection between the expected sorting cost E(Cn) and the expected
partitioning cost E(Pn). It will be central for our analysis. Note that it is irrelevant for (8.1) how
the partitioning cost E(Pn) is determined; it need not even be referring to comparisons. The
recurrence is simple and well-known; a version of it occurs already in Sedgewick’s thesis [Sed75]. For
the convenience of the reader we give a brief justification in Appendix H. In Hennequin [Hen91]
recurrence (8.1) was solved exactly for E(Pn) = an + b, where a and b are constants. For
E(Pn) = an+O(n1−ε) the solution is E(Cn) = 6

5an logn+O(n), see [AD15, Theorem 1].

9 Partitioning Algorithms and Their Cost
In Section 8 we saw that in order to calculate the average number of comparisons E(Cn) of a
dual-pivot quicksort algorithm we need the expected partitioning cost E(Pn) of the partitioning
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procedure used. The aim of this section is to determine E(Pn) for two such partitioning procedures,
“Clairvoyant” and “Count”, to be described below.

We use the set-up described at the beginning of Section 8. For partitioning we use comparisons
to classify the n − 2 elements a2, . . . , an−1 as small, medium, or large. We will be using the
term classification for this central aspect of partitioning. Details of a partitioning procedure that
concern how the classes are represented or elements are moved around may and will be ignored.
(Nonetheless, in Appendix M we provide pseudocode for the considered classification strategies
turned into dual-pivot quicksort algorithms.) The cost Pn depends on the concrete classification
strategy used, the only relevant difference between classification strategies being whether the next
element to be classified is compared with the smaller pivot p or the larger pivot q first. This
decision may depend on the whole history of outcomes of previous comparisons. (The resulting
abstract classification strategies may conveniently be described as classification trees, see [AD15],
but we do not need this model here.)

Two comparisons are necessary for each medium element. Furthermore, one comparison with p
is necessary for small and one comparison with q is necessary for large elements. As the input
consists of the elements 1, . . . , n, there are p−1 small, q−p−1 medium, and n− q large elements.
Averaging over all

(
n
2
)
positions of the pivots, we see that on average

4
3(n− 2) + 1 (9.1)

necessary comparisons are required no matter how the classification procedure works, see [AD15,
(5)]; the summand +1 corresponds to the comparison of a1 and an when choosing the two pivots.

We call other comparisons occurring during classification additional comparisons. That means,
an additional comparison arises when a small element is compared with q first or a large element
is compared with p first. In order to obtain E(Pn) for some classification strategy, we have to
calculate the expected number of additional comparisons.

Next we describe two (closely related) classification strategies from [AD15]. Let si and `i denote
the number of elements that have been classified as small and large, respectively, in the first i
classification rounds. Set s0 = `0 = 0.
Strategy “Clairvoyant”. Assume the input contains s = p − 1 small and ` = n − q large
elements. When classifying the ith element, for 1 ≤ i ≤ n− 2, proceed as follows: If s− si−1 ≥
`− `i−1, compare with p first, otherwise compare with q first.
The number of additional comparisons of Clairvoyant is denoted by Acv

n , its partitioning cost
P cv

n .
Note that the strategy “Clairvoyant” cannot be implemented algorithmically, since s and ` are

not known until the classification is completed.
As shown in [AD15, Section 6], this strategy offers the smallest expected classification cost

among all strategies that have oracle access to s and ` at the outset of a classification round. As
such, its expected cost is a lower bound for the cost of all algorithmic classification procedures;
hence we call it an optimal strategy.
The non-algorithmic strategy “Clairvoyant” can be turned into an algorithmic classification

strategy, which is described next. It will turn out that its cost is only marginally larger than that
of strategy “Clairvoyant”.
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Strategy “Count”. When classifying the ith element, for 1 ≤ i ≤ n− 2, proceed as follows: If
si−1 ≥ `i−1, compare with p first, otherwise compare with q first.
The number of additional comparisons of this strategy is called Act

n , its cost P ct
n .

No algorithmic solution for the classification problem can have cost smaller than “Clairvoyant”.
Strategy “Count” is algorithmic. Thus any cost-minimal algorithmic classification procedure has
cost between E(P cv

n ) and E(P ct
n ), and a precise analysis of both will lead to good lower and upper

bounds for the cost of such a procedure. It was shown in [AD15] that E(P ct
n )−E(P cv

n ) = O(logn)
and that, as a consequence, both strategies lead to dual-pivot quicksort algorithms that use
9
5n logn + O(n) comparisons on average. In the following, we carry out a precise analysis of
E(P cv

n ) and E(P ct
n ), which will make it possible to determine the expected comparison count of

an optimal dual-pivot quicksort algorithm up to 0.28n.
Lemma 9.1. (a) The expected number of additional comparisons of strategy “Clairvoyant” is

E(Acv
n ) = n

6 −
7
12 + 1

4(n− [n even]) − E
(
X↘n

)
.

(b) The expected number of additional comparisons of strategy “Count” is

E
(
Act

n

)
= n

6 −
7
12 + 1

4(n− [n even]) + E
(
X↗n

)
.

Proof ideas: (The full proof can be found in Appendix J. A different proof of a related statement
was given in [AD15].)

(a) Noticing that medium elements can be ignored, we consider a reduced input of size n′ = s+`,
consisting only of the s small and the ` large elements in the input. For 0 ≤ i ≤ n′ let s′i = s− si

and `′i = `− `i denote the number of small respectively large elements left unclassified after step i.
Then {(i, s′i − `′i) | 0 ≤ i ≤ n′} is a lattice path with distribution (including the distribution of n′)
exactly as in Section 7, so that the results on the expected number of zeros on such paths given
there may be applied. We also note that the sign of s′i−1− `′i−1 decides whether the ith element to
be classified is compared with p first or with q first, and that additional comparisons correspond
to steps on the path that lead away from the horizontal axis, excepting down-from-zero steps (due
to the asymmetry in treating the situation s − si = ` − `i in strategy “Clairvoyant”). For the
number of steps away from the horizontal axis one easily finds the expression min(s, `). Averaging
over all choices for n′ and the two pivots leads to the formula claimed in (a).
(b) Now assume strategy “Count” is applied to n′ = s+ ` elements. The set {(i, si − `i) | 0 ≤

i ≤ n′} forms a lattice path that starts at (0, 0) and ends at (n′, s − `). It can be shown that
reflection with respect to the vertical line at n′/2 maps these paths in a probability-preserving
way to the paths from from (a) (and thus from our model), and it turns out that additional
comparisons in this strategy correspond to steps away from the horizontal axis and up-to-zero
steps. As in (a), averaging leads to the formula claimed in (b).
Lemma 9.1 allows us to give an exact expression for the average number of comparisons of

“Clairvoyant” and “Count” in a single partitioning step. The expressions for E(P cv
n ) and E(P cv

n )
are obtained by adding the expected number of necessary comparisons 4

3 (n− 2) + 1 to the cost
terms in Lemma 9.1 (see Appendix J).
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10 Main Results and their Asymptotic Aspects
In this section we give precise formulations of our main results. We use the partitioning cost
from the previous section to calculate the expected number of comparisons of the two dual-
pivot quicksort variants obtained by using classification strategies “Clairvoyant” and “Count”,
respectively. We call these sorting algorithms “Clairvoyant” and “Count” again. Recall that
“Clairvoyant” uses an oracle and is comparison-optimal, and that “Count” is its algorithmic version.
We validated our main results in experiments which can be found in Appendix L. They show that
the error term O(n−4) is small already for real-life input sizes n, and that the linear term has a
big influence even for larger n.
Theorem 10.1. For n ≥ 4, the average number of comparisons in the comparison-optimal
dual-pivot quicksort algorithm “Clairvoyant” (with oracle) is

E(Ccv
n ) = 9

5nHn + 1
5nH

alt
n −

89
25n+ 77

40Hn + 3
40H

alt
n + 67

800 −
(−1)n

10 + rn

where
rn = [n even]

320

( 1
n− 3 + 3

n− 1

)
− [n odd]

320

( 3
n− 2 + 1

n

)
.

Corollary 10.2. The average number of comparisons in the algorithm “Clairvoyant” is

E(Ccv
n ) = 9

5n logn+An+B logn+ C + D

n
+ E

n2 + F [n even] +G

n3 +O
( 1
n4

)

with

A = 9
5γ −

1
5 log 2− 89

25 = −2.6596412392892 . . . , B = 77
40 = 1.925,

C = 77
40γ −

3
40 log 2 + 787

800 = 2.042904116393455 . . . , D = 13
16 = 0.8125,

E = − 77
480 = −0.1604166 . . . , F = 1

8 = 0.125, G = − 19
400 = −0.0475,

asymptotically as n tends to infinity.
Before continuing with the second partitioning strategy, let us make a remark on the (non-

)influence of the parity of n. It is noteworthy that in Corollary 10.2 no such influence is visible in
the first six terms (down to 1/n2); only from 1/n3 on the parity of n appears. This is somewhat
unexpected, since a term (−1)n appears in Theorem 10.1.
Theorem 10.3. The average number of comparisons in the dual-pivot quicksort algorithm “Count”
is

E
(
Cct

n

)
= 9

5nHn −
1
5nH

alt
n −

89
25n+ 67

40Hn −
3
40H

alt
n −

83
800 + (−1)n

10 − rn

where rn is defined in Theorem 10.1.
Again, the asymptotic behavior follows from the exact result.



Zeros in Random Walks on Integers and Dual-Pivot Quicksort 13

Corollary 10.4. The average number of comparisons in the algorithm “Count” is

E
(
Cct

n

)
= 9

5n logn+An+B logn+ C + D

n
+ E

n2 + F [n even] +G

n3 +O
( 1
n4

)

with

A = 9
5γ + 1

5 log 2− 89
25 = −2.3823823670652 . . . , B = 67

40 = 1.675,

C = 67
40γ + 3

40 log 2 + 637
800 = 1.81507227725206 . . . , D = 11

16 = 0.6875,

E = − 67
480 = −0.1395833 . . . , F = −1

8 = −0.125, G = 31
400 = 0.0775,

asymptotically as n tends to infinity.
The idea of the proofs of Theorems 10.1 and 10.3 is to translate the recurrence (8.1) into

a second order differential equation for the generating function C(z) of E(Cn) in terms of the
generating function P (z) of E(Pn). Integrating twice yields C(z). This generating function
then allows extraction of the exact expressions for E(Cn). The asymptotic results follow. See
Appendix K for details.

Appendix
The appendices can be found at arXiv:1602.04031v1.

References
[AD15] Martin Aumüller and Martin Dietzfelbinger. Optimal partitioning for dual-pivot quicksort. ACM Trans.

Algorithms, 12(2):18:1–18:36, November 2015.
[Dev16] The SageMath Developers. SageMath Mathematics Software (Version 7.0), 2016. http://www.sagemath.

org.
[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics. A foundation for

computer science. Addison-Wesley, second edition, 1994.
[Hen91] P. Hennequin. Analyse en moyenne d’algorithmes : tri rapide et arbres de recherche. PhD thesis, Ecole

Politechnique, Palaiseau, 1991.
[HK15] Benjamin Hackl and Daniel Krenn. Asymptotic expansions in SageMath. http://trac.sagemath.org/

17601, 2015. module in SageMath 6.10.beta2.
[Hoa62] Charles A. R. Hoare. Quicksort. Comput. J., 5(1):10–15, 1962.
[Kra15] Christian Krattenthaler. Lattice path enumeration. In Handbook of enumerative combinatorics, Discrete

Math. Appl. (Boca Raton), pages 589–678. CRC Press, Boca Raton, FL, 2015.
[Mah08] Hosam Mahmoud. Polya Urn Models. Chapman & Hall/CRC, 1 edition, 2008.
[Moh79] Sri Gopal Mohanty. Lattice path counting and applications. Academic Press [Harcourt Brace Jovanovich,

Publishers], New York-London-Toronto, Ont., 1979. Probability and Mathematical Statistics.
[Sed75] Robert Sedgewick. Quicksort. PhD thesis, Standford University, 1975.
[WNN15] Sebastian Wild, Markus E. Nebel, and Ralph Neininger. Average case and distributional analysis of

dual-pivot quicksort. ACM Transactions on Algorithms, 11(3):22, 2015.
[Yar09] Vladimir Yaroslavskiy. Replacement of quicksort in java.util.arrays with new dual-pivot quicksort. http:

//permalink.gmane.org/gmane.comp.java.openjdk.core-libs.devel/2628, 2009. Archived version of
the discussion in the OpenJDK mailing list.



Proceedings of the 27th International Conference on Probabilistic, Combinatorial
and Asymptotic Methods for the Analysis of Algorithms
Kraków, Poland, 4-8 July 2016

On Leader Green Election

Jacek Cichoń†, Rafal Kapelko, Dominik Markiewicz
Department of Computer Science
Faculty of Fundamental Problems of Technology
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Poland

We investigate the number of survivors in the Leader Green Election (LGE) algorithm introduced by P. Jacquet, D.
Milioris and P. Mühlethaler in 2013. Our method is based on the Rice method and gives quite precise formulas. We
derive upper bounds on the number of survivors in this algorithm and we propose a proper use of LGE.

Finally, we discuss one property of a general urns and balls problem and show a lower bound for a required number
of rounds for a large class of distributed leader election protocols.

Keywords: leader election, distributed algorithms, geometric distribution, Rice method, urns and balls model

1 Introduction
In Jacquet et al. (2013) Philippe Jacquet, Dimitris Milioris and Paul Mühlethaler introduced a novel energy
efficient broadcast leader election algorithm, which they called, in accordance with the popular fashion
in those years, a Leader Green Election (LGE). This algorithm was also presented by P. Jacquet at the
conference AofA’13.

We will use the same model as in Jacquet et al. (2013), namely we assume that the communication
medium is of the broadcast type and is prone to collisions. We also assume that the time is slotted. Each
slot can be empty (the slot does not contain any burst), collision (the slot contains at least two burst) or
successful (the slot contains a single burst).

During the investigation of efficiency of LGE algorithm we found a connection of the leader election
problem with some properties of the general ”‘urns and balls”’ model. This connection is discussed in
Section 3.

1.1 Short Description of LGE
We will give a short description of a slightly simplified version of the LGE algorithm (for example, authors
of Jacquet et al. (2013) consider an arbitrary base of numeral systems, but we restrict our considerations
only to base 3, since some additional arguments, not presented in this paper, show that base-3 is an optimal
choice for our purposes).

†This paper was supported by Polish National Science Center (NCN) grant number 2013/09/B/ST6/02258
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2 J. Cichoń, R. Kapelko and D. Markiewicz

We assume that the broadcast medium has N connected users (assume N ≈ 106) and that the number
of contenders n is always smaller or equal to N . We fix a number p ∈ (0, 1) and we assume that p is not
close to one (e.g. p = 0.01). We also fix a number L = O (log logN).

Each contender ω selects independently a random number gω according to the geometric distribution
with parameter p (see next section for details). If gω ≥ 3L+1 then we put gω = 0. The number gω is
written

gω =

L∑

k=0

bk · 3k , (1)

where bk ∈ {0, 1, 2}. We fix a function f : {0, 1, 2} → {0, 1}2 by f(0) = 00, f(1) = 01 and f(2) = 10,
and define the transmission key Kω for a contender ω as the concatenation

Kω = f(bL)||f(bL−1)|| . . . ||f(b1)||f(b0) .

Notice that lenght(Kω) = O (log logN). This keyKω is used in the following algorithm played in discrete
rounds:

1: candidate = true
2: for i=1 to lenght(Kω) do
3: if Kω(i) = 1 then
4: send a beep
5: else
6: listen
7: if you hear a beep then
8: candidate = false
9: exit loop

10: end if
11: end if
12: end for

The survivors of this algorithm are those contenders which at the end have the variable ”candidate” set
to true. In Jacquet et al. (2013) authors propose to repeat this algorithm several times in order to reduce
the number of survivors to 1. However we propose in this paper an another approach: we propose to use
this algorithm only once (in order to reduce number of survivors to a small number) and then to use other
leader election algorithm for final selection a leader.

1.2 Mathematical Background
The core of LGE algorithm is based on properties of extremal statistics of random variables with geometric
distributions. Let us recall that a random variableX has a geometric distribution with parameter p ∈ [0, 1]
(X ∼ Geo(p)) if P [X = k] = (1 − p)k−1p for k ≥ 1. In the first part of LGE, each user chooses
independently a random variable with geometric distribution with a fixed parameter p. The winners of
this part of LGE are those users who select a maximal number.

Definition 1 A random variable M has distribution MGeo(n, p) if there are independent random vari-
ables X1, . . . , Xn with distribution Geo(p) such that

M = max{X1, . . . , Xn} .
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It is well known (see e.g. Szpankowski and Rego (1990), Cichoń and Klonowski (2013)) that if M ∼
MGeo(n, p) then E [M ] = 1

2 + Hn

ln 1
1−p

+ P (n) + O
(

1
n

)
, where P (n) is a periodic function with small

amplitude and Hn is the nth harmonic number. Let us recall that Hn = lnn + γ + O
(

1
n

)
, where

γ = 0.557 . . . is the Euler constant.
The distribution MGeo(n, p) controls the number of time slots used in LGE algorithm. More precisely,

the LGE algorithm requires some upper approximation on the variable with the MGeo(n, p) distribution.
The next Lemma gives some upper bound for it.

Lemma 1 Let M ∼ MGeo(n, p), C > 0 and Q = 1
1−p . Then

Pr[M > C
lnn

lnQ
] ≤ 1

nC−1
.

Proof: Let q = 1 − p. Let us recall that if X ∼ Geo(p) and k is an integer then Pr[X > k] = qk.
Therefore Pr[M > k] ≤ nqk, hence Pr

[
M > C lnn

lnQ

]
≤ nqC lnn

lnQ = 1
nC−1 . 2

We introduce the next distribution which models the number of survivors in LGE algorithm.

Definition 2 A random variableW has distribution WMGeo(n, p) if there are independent random vari-
ables X1, . . . , Xn with distribution Geo(p) such that

W = card ({k : Xk = max{X1, . . . , Xn}}) .

2 Probabilistic Propeties of LGE
The formal analysis of LGE algorithm in Jacquet et al. (2013) is based on the Mellin transform. In this
section, we use an approach based on Rice’s method (see e.g. Knuth (1998) and Flajolet and Sedgewick
(1995)). We shall derive formulas for expected number of survivors and probabilities for the number of
survivors. By Wn,p we denote a random variable with WMGeo(n, p) distribution.

Theorem 1 Let n ≥ 2, p ∈ (0, 1) and q = 1− p. Let Wn,p ∼WMGeo(n, p) and a ≥ 1. Then

Pr[Wn,p = a] =

(
n

a

)
pa

n−a∑

b=0

(
n− a
b

)
(−1)b

1− qa+b

and

E [Wn,p] =
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

1− qb+1
.

Proof: Let us fix n ≥ 2, p ∈ (0, 1) and q = 1−p. Let X1, . . . , Xn be independent random variables with
distribution Geo(p) and let

An;k,a = (max{X1, . . . , Xn} = k) ∧ (card ({i : Xi = k} = a)) .
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Then [Wn,p = a] =
⋃
k≥1An;k,a and Pr[An;k,a] =

(
n
a

)
(qk−1p)a(1− qk−1)n−a. Therefore,

Pr[Wn = a] =
∑

k≥1

(
n

a

)
(qk−1p)a(1− qk−1)n−a =

(
n

a

)
pa
∑

k≥0

qka(1− qk)n−a =

(
n

a

)
pa
∑

k≥0

n−a∑

b=0

(
n− a
b

)
(−1)bqkbqka =

(
n

a

)
pa

n−a∑

b=0

(
n− a
b

)
(−1)b

∑

k≥0

qk(b+a) =

(
n

a

)
pa

n−a∑

b=0

(
n− a
b

)
(−1)b

1− qa+b
,

so the first part of the Theorem is proved. Next we have

n∑

a=1

aPr[An;k,a] = n
n∑

a=1

(
n− 1

a− 1

)
(qk−1p)a(1− qk−1)n−a =

nqk−1p

n∑

a=1

(
n− 1

a− 1

)
(qk−1p)a−1(1− qk−1)(n−1)−(a−1) =

nqk−1p
n−1∑

b=0

(
n− 1

b

)
(qk−1p)b(1− qk−1)(n−1)−b =

nqk−1p(qk−1p+ 1− qk−1)n−1 = nqk−1p(1− qk)n−1 .

Therefore, for fixed n, we have

∑

k≥1

n∑

a=1

aPr[Ak,a] =
∑

k≥1

npqk−1
n−1∑

b=0

(
n− 1

b

)
(−1)bqkb =

np
n−1∑

b=0

(
n− 1

b

)
(−1)b

∑

k≥1

qk−1qkb =
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

∑

k≥1

qkqkb =

np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

∑

k≥1

qk(b+1) =
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)bqb+1

∑

k≥0

(qb+1)k =

np

q

n−1∑

b=0

(
n− 1

b

)
(−1)bqb+1

1− qb+1
.
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Since we assumed that n ≥ 2, we have

np

q

n−1∑

b=0

(
n− 1

b

)
(−1)bqb+1

1− qb+1
=
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

(qb+1 − 1) + 1

1− qb+1
=

−np
q

n−1∑

b=0

(
n− 1

b

)
(−1)b +

np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

1

1− qb+1
=

−np
q

(−1 + 1)n−1 +
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

1− qb+1
=
np

q

n−1∑

b=0

(
n− 1

b

)
(−1)b

1− qb+1
.

2

From Theorem 1 we obtain the following equality Pr[Wn,p = 1] = np
∑n−1
b=0

(
n−1
b

) (−1)b

1−q1+b . Therefore,
we have the following nice equality

E [Wn,p] =
1

1− p Pr[Wn,p = 1] .

Remark Quite recently we learned that Theorem 1 and part of results from the next subsection has been
proved in Kirschenhofer and Prodinger (1996). Due to the completeness of arguments we decided to leave
the proof in this paper. Our new contribution in this section is the Theorem 3.

2.1 Approximations
Let us fix the number p ∈ (0, 1) and let q = 1 − p. Let fa(z) = 1

1−qa+z . We shall consider complex
variable functions fa for such indexes a which are integers such that a ≥ 1. Notice that the function fa
has singularities at points from the set {ζa,k : k ∈ Z}, where ζa,k = −a + 2kπi

ln(q) . The function fa is
periodic with period 2πi/ ln(q), has single poles at points ζa,k and

Res(fa(z) : z = ζa,k) =
−1

ln q
.

It is easy to check that limx→∞ |fa(x+ iy)| = 1 and limx→−∞ |fa(x+ iy)| = 0 for each fixed y ∈ R.
LetKn(s) = n!

s(s−1)···(s−n) . Notice that if n ≥ 1 then |Kn(s)| = O
(

1
|s|2
)

as |s| grows to infinity. Also

notice that if a > 0 is an integer, thenKn(−a) = (−1)n+1 1
a

(
n
a

)−1
. Notice also that the sets of singularity

points of functions fa and Kn are disjoint. This fact greatly simplifies the analysis of the singular points
of the product of these functions

Lemma 2 If m ≥ 1, a ≥ 1 and q ∈ (0, 1) then
m∑

b=0

(
m

b

)
(−1)b

1− qa+b
= (−1)m

1

ln q

∑

k∈Z
Km(ζa,k) .

Proof: Rice’s integrals summation method (see Knuth (1998)) is based on the formula
m∑

b=0

(
m

b

)
(−1)bg(b) =

(−1)m

2πi

∮

C
g(s)Km(s)ds ,
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where g is analytic in a domain containing [0,+∞) and C is a positively oriented closed curve that lies in
the domain of analyticity of g and encircles the real interval [0,m].

We use Rice’ formula for functions fa. Notice that

1

2πi

∮

C
fa(s)Km(s)ds =

m∑

k=0

Res(fa(z)Km(z) : z = k) .

Let Ck be the positively oriented square with corners at points ±ηq,k ± ηq,ki, where ηq,k = (2k +
1)π/ ln q. We consider such k that |ηq,k| > m. For such k the interval [0,m] lies inside the square Ck.
The mentioned before Lemma 2 properties of the function fa (periodicity and boundedness on horizontal
lines not crossing singular points) and the kernel function Km imply that

lim
k→∞

∮

Ck

fa(s)Km(s)ds = 0 ,

from which we deduce that
∑

k∈Z
Res(fa(z)Km(z) : z = ζa,k) +

m∑

k=0

Res(fa(z)Km(z) : z = k) = 0 .

Therefore,
m∑

b=0

(
m

b

)
(−1)b

1− qa+b
= (−1)m+1

∑

k∈Z
Res(fa(z)Km(z) : z = ζa,k) =

(−1)m+1
∑

k∈Z
Res(fa(z) : z = ζa,k)Km(ζa,k) = (−1)m+1

∑

k∈Z

−1

ln q
Km(ζa,k).

2

Lemma 3 Suppose that a > 0 is an integer and that b ∈ C. Then

Km(−a+ b) =
(−1)m+1

a
(
a+m
a

) · 1∏m+a
j=a (1− b

j )
.

Proof: Directly from the definition of the kernel function Km we have

Km(−a+ b) = m!
m∏

j=0

1

−a+ b− j = (−1)m+1m!

m∏

j=0

1

a+ j − b =

(−1)m+1m!
m+a∏

j=a

1

j − b = (−1)m+1m!
m+a∏

j=a

1

j(1− b
j )

=

(−1)m+1m!
(a− 1)!

(m+ a)!

m+a∏

j=a

1

(1− b
j )
.

2

The next Lemma follows directly from Theorem 1, Lemmas 2 and 3:
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Lemma 4 If n > a then

Pr[Wn,p = a] =
pa

a ln 1
q


1 +

∑

k∈Z\{0}

1
∏n
j=a(1− 2kπi/ ln q

j )


 ,

where q = 1− p.

Theorem 2 If 0 < a < n then Pr[Wn,p = a] = pa

a ln(Q) + rn, where |rn| < (a+1)2

12a pa ln(Q), where
Q = 1

1−p .

Proof: Let ηk = 2πki
ln q , where q = 1− p. Notice that

∣∣∣∣∣∣

n∏

j=a

(1− ηk
j

)

∣∣∣∣∣∣

2

=

n∏

j=a

(
1 +
|ηk|2
j2

)
≥
a+1∏

j=a

(
1 +
|ηk|2
j2

)
≥
(

1 +
|ηk|2

(a+ 1)2

)2

.

Therefore,
∣∣∣∣∣∣
∑

k∈Z\{0}

n∏

j=a

1

1− ηk
j

∣∣∣∣∣∣
≤ 2

∞∑

k=1

1

1 + |ηk|2
(a+1)2

≤ 2(a+ 1)2
∞∑

k=1

1

|ηk|2
=

(a+ 1)2(ln q)2

2π2

∞∑

k=1

1

k2
=

(a+ 1)2(ln q)2

12
,

so the conclusion follows from Lemma 4. 2

Let us fix p ∈ (0, 1), let Q = 1
1−p . We put

φp(a) =
pa

a lnQ
+

(a+ 1)2

12a
pa lnQ.

Notice that Pr[Wn,p = a] ≤ φp(a).

Theorem 3 Pr[Wn ≥ k] < φ(k)
1−2p

Proof: It can be observed that φp(a+1)
φp(a) < 2p. Therefore,

Pr[Wn ≥ k] =
n∑

a=k

Pr[Wn = a] <
∞∑

a=k

φ(a) <
φ(k)

1− 2p
.

2
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Fig. 1: Plot of Pr[Wn, 1
3
= 1] for n = 1, . . . , 600.

2.2 Discussion

Let us observe that formulas from Theorem 2 do not depend on the number n. However, small fluctuations
(which are very interesting from theoretical point of view) are hidden inside the error term, which can be
observed on the Fig. 2.2.

This practical independence of the number n of nodes on the number of survivors is very interest-
ing. However, the number n has an influence on the required number of rounds in LGE. This number
may be controlled by Lemma 1: from this lemma we deduce that if X ∼ MGeo(n, p) then Pr[X >
(ln 1020 + lnn)/ ln(Q)] < 10−20 (where Q = 1/(1 − p)), and hence from a practical point of view
it is negligible. This implies that (see Jacquet et al. (2013) for details) the LGE algorithm should run
2 ·
⌈
log3

(
1

ln(Q) (lnn+ ln(1020)
)⌉

rounds in order to ensure that its probabilistic properties are controlled

by the distribution WGeo with probability at least 1− 10−20.

From Theorem 2 we deduce that Pr[Wn,p = 1] = 1 − p
2 + O

(
p2
)

and Pr[Wn,p = 2] = p
2 + O

(
p2
)
.

From these formulas we deduce that the probability of failure of one phase of LGE is quite large. However,
notice that from Theorem 3 we get Pr[Wn,0.01 > 10] ≈ 1.006 · 10−19. Therefore, the LGE algorithm
may be used for quick reduction of potential leaders to a small subgroup. We see that if we use this
algorithm with parameter p = 1

100 , then with probability at least 1− 10−19, the number of survivors will
be less or equal 10. The survivors may then take part in another algorithm (e.g. in an algorithm based
on paper Prodinger (1993) or in algorithm based on paper Janson and Szpankowski (1997), Louchard and
Prodinger (2009)), which deals better with small sets of nodes, in order to select a leader with high and
controllable probability.
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3 Lower Bound
In the previous section we recalled that the LGE algorithm should use O (ln ln(n)) rounds in order to
achieve high effectiveness. In this section we prove a general result confirming that this bound is near
to an optimal. We use a method applied by D. E. Willard in Willard (1986) for an analysis of resolution
protocols in a multiple access channel.

Let us consider a system (Ui)i=1,...,L of L urns and let us fix a number n. We consider a process of
throwing an arbitrary numberQ ∈ {2, . . . , n} of balls into these urns. We assume that all balls are thrown
independently and that the probability that the ball is thrown into ith urn is equal pi. This process is fully
described by the vector ~p of probabilities from the simplex ΣL = {(p1, . . . , pL) ∈ [0, 1]L : p1+. . .+pL =
1} and the number Q of balls.

The most broadly studied model of urns and balls is the uniform case, i.e. the case when ~p =
( 1
L , . . . ,

1
L ). However, in several papers (see e.g. Flajolet et al. (1992), Boneh and Hofri (1997)) one

can find some results for the general case. In this section we are interested in the existence of at least
one singleton, i.e. in the existence of an urn Ui with precisely one ball. The problem of estimation of the
number of singletons was quite recently analyzed in Penrose (2009).

Let S~p,Q denote the event ”there exists at least one urn with a single ball” and let S~p,Q,i denote the
event ”there is exactly one ball in ith urn”. Then, Pr[S~p,Q,i] = Qpi(1− pi)Q−1 and S~p,Q =

⋃L
i=1 S~p,Q,i,

therefore, Pr[S~p,Q] ≤ Q∑L
i=1 pi(1− pi)Q−1.

Let us assume that the number Q of balls is unknown but it is bounded by a number n. We are going to
show that if the number n is sufficiently large compared toL, then there is no ~p ∈ ΣL which will guarantee
the existence of singleton with a high probability for arbitrary Q from {2, . . . , n}. More precisely, let

MSP (L, n) = max
~p∈ΣL

min
2≤Q≤n

Pr[S~p,Q] .

(term MSP is an abbreviation of ”Maximal Success Probability”).

Theorem 4 For arbitrary L ≥ 1 and n ≥ 2, we have

MSP (L, n) <
L− 1

Hn − 1
.

Proof: Let us observe that if ~p ∈ ΣL is such that for some i we have pi = 1 and Q ≥ 2, then Pr[S~p,Q] =
0, so min2≤Q≤n Pr[S~p,Q] = 0. Hence, we may consider only such ~p ∈ ΣL that pi < 1 for each
i = 1, . . . , L.

Let us fix the number L of urns and let us consider the following function (this is the trick which we
borrow from Willard (1986)):

f(~p) =
n∑

Q=2

Pr[S~p,Q]

Q
.

Then we have

f(~p) ≤
n∑

Q=2

L∑

i=1

Pr[S~p,Q,i]

Q
=

n∑

Q=2

L∑

i=1

pi(1− pi)Q−1 ≤
L∑

i=1

∞∑

Q=2

pi(1− pi)Q−1 =

L∑

i=1

pi(1− pi)
1

1− (1− pi)
=

L∑

i=1

(1− pi) = L−
L∑

i=1

pi = L− 1 .
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On the other side, let p∗ = min{Pr[S~p,Q] : 2 ≤ Q ≤ n}. Then we have

f(~p) ≥
n∑

Q=2

p∗

Q
= p∗

n∑

Q=2

1

Q
= p∗(Hn − 1) .

Therefore, we have
p∗(Hn − 1) ≤ f(~p) < L− 1 .

Hence, if we take Q∗ such that Pr[S~p,Q∗ ] = p∗, then

Pr[S~p,Q∗ ] <
L− 1

Hn − 1
,

so

min
2≤Q≤n

Pr[S~p,Q] <
L− 1

Hn − 1

for arbitrary ~p ∈ Σn. 2

Corollary 1 If 1 ≤ L ≤ 1
2 lnn+ 1+γ

2 then MSP (L, n) < 1
2 .

Corollary 2 If n ≥ exp(2L− (1 + γ)) then MSP (L, n) < 1
2 .

Proof: Both proofs follow directly from Theorem 4 and the inequality Hn ≥ ln(n) + γ. 2

3.1 Application to Leader Election Problem
Let us consider any oblivious leader election algorithm in which at the beginning each station selects
randomly and independently a sequence of bits of length M , and later this station use the sequence in the
algorithm in a deterministic way. Let n denote the upper bound on the number of stations taking part in
this algorithm and let bi denote the sequence of bits chosen by the ith station. Observe that if for each
i there is j 6= i such that bi = bj , then the algorithm must fail. Hence, success is possible only if there
is a singleton in choices made from the space {0, 1}M of all possible sequences of bits. When we use
Corollary 1 with L = 2M , then we deduce that if M ≤ log2

(
1
2 lnn+ 1+γ

2

)
then the probability that the

considered algorithm chooses a leader is less than 1
2 . We may say that log2( 1

2 lnn) random bits are too
few for distinguishing an arbitrary collection of ≤ n objects with a high probability.
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Vertex Degrees in Planar Maps

Gwendal Collet, Michael Drmota, Lukas Daniel Klausner
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We prove a general multi-dimensional central limit theorem for the expected number of vertices of a given degree in
the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers
D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined
analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss some possible
extension to maps of higher genus.

Keywords: Planar maps, Central limit theorem, Analytic combinatorics, Mobiles

1 Introduction and Results
In this paper we study statistical properties of planar maps, which are connected planar graphs, possibly
with loops and multiple edges, together with an embedding into the plane. Such objects are frequently
used to describe topological features of geometric arrangements in two or three spatial dimensions. Thus,
the knowledge of the structure and of properties of “typical” objects may turn out to be very useful in the
analysis of particular algorithms that operate on planar maps. We say that map is rooted if an edge e is
distinguished and oriented. It is called the root edge. The first vertex v of this oriented edge is called the
root-vertex. The face to the right of e is called the root-face and is usually taken as the outer (or infinite)
face. Similarly, we call a planar map pointed if just a vertex v is distinguished. However, we have to be
really careful with the model. In rooted maps the root edge destroys potential symmetries, which is not
the case if we consider pointed maps.

The enumeration of rooted maps is a classical subject, initiated by Tutte in the 1960’s, see [11]. Among
many other results, Tutte computed the number Mn of rooted maps with n edges, proving the formula

Mn =
2(2n)!

(n+ 2)!n!
3n

which directly provides the asymptotic formula

Mn ∼
2√
π
n−5/212n.

() Funded by FWF – SFB F50 Algorithmic and Enumerative Combinatorics
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We are mainly interested in planar maps with degree restrictions. Actually, it turns out that this kind
of asymptotic expansion is quite universal. Furthermore, there is always a (very general) central limit
theorem for the number of vertices of given degree.

Theorem 1. Suppose that D is an arbitrary set of positive integers but not a subset of {1, 2}, letMD be
the class of planar rooted maps with the property that all vertex degrees are in D and let MD,n denote
the number of maps in MD with n edges. Furthermore, if D contains only even numbers, then set
d = gcd{i : 2i ∈ D}; set d = 1 otherwise.

Then there exist positive constants cD and ρD with

MD,n ∼ cDn−5/2ρ−nD , n ≡ 0 mod d. (1)

Furthermore, let X(d)
n denote the random variable counting vertices of degree d (∈ D) in maps inMD.

Then E(X
(d)
n ) ∼ µdn for some constant µd > 0 and for n ≡ 0 mod d, and the (possibly infinite) random

vector Xn = (X
(d)
n )d∈D (n ≡ 0 mod d) satisfies a central limit theorem, that is,

1√
n

(Xn − E(Xn)) , n ≡ 0 mod d, (2)

converges weakly to a centered Gaussian random variable Z (in `2).

Note that maps where all vertex degrees are 1 or 2 are very easy to characterize and are not really of
interest, and that actually, their asymptotic properties are different from the general case. It is therefore
natural to assume that D is not a subset of {1, 2}.

Since we can equivalently consider dual maps, this kind of problem is the same as considering planar
maps with restrictions on the face valencies. This means that the same results hold if we replace vertex
degree by face valency. For example, if we assume that all face valencies equal 4, then we just consider
planar quadrangulations (which have also been studied by Tutte [11]). In fact, our proofs will refer just to
face valencies.

Theorem 1 goes far beyond known results. There are some general results for the Eulerian case where
all vertex degrees are even. First, the asymptotic expansion (1) is known for Eulerian maps by Bender and
Canfield [2]. Furthermore, a central limit theorem of the form (2) is known for all Eulerian maps (without
degree restrictions) [9]. However, in the non-Eulerian case there are almost no results of this kind; there
is only a one-dimensional central limit theorem for X(d)

n for all planar maps [10].

Section 2 introduces planar mobiles which, being in bijection with pointed planar maps, will reduce our
analysis to simpler objects with a tree structure. Their asymptotic behaviour is derived in Section 3, first
for the simpler case of bipartite maps (i.e., whenD contains only even integers), then for families of maps
without constraints onD. Section 4 is devoted to the proof of the central limit theorem using analytic tools
from [8, 9]. Finally, in Section 5 we discuss the combinatorics of maps on orientable surface of higher
genus. The expressions we obtain are much more involved than in the planar case, but it is expected to
lead to similar analytic results.

2 Mobiles
Instead of investigating planar maps themselves, we will follow the principle presented in [5], whereby
pointed planar maps are bijectively related to a certain class of trees called mobiles. (Their version of
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mobiles differ from the definition originally given in [3]; the equivalence of the two definitions is not
shown explicitly in [5], but [7] gives a straightforward proof.)

Definition 1. A mobile is a planar tree – that is, a map with a single face – such that there are two kinds
of vertices (black and white), edges only occur as black–black edges or black–white edges, and black
vertices additionally have so-called “legs” attached to them (which are not considered edges), whose
number equals the number of white neighbor vertices.
A bipartite mobile is a mobile without black–black edges.
The degree of a black vertex is the number of half-edges plus the number of legs that are attached to it.
A mobile is called rooted if an edge is distinguished and oriented.

The essential observation is that mobiles are in bijection to pointed planar maps.

Theorem 2. There is a bijection between mobiles that contain at least one black vertex and pointed planar
maps, where white vertices in the mobile correspond to non-pointed vertices in the equivalent planar map,
black vertices correspond to faces of the map, and the degrees of the black vertices correspond to the face
valencies. This bijection induces a bijection on the edge sets so that the number of edges is the same.
(Only the pointed vertex of the map has no counterpart.)

Similarly, rooted mobiles that contain at least one black vertex are in bijection to rooted and vertex-
pointed planar maps.

Finally, bipartite mobiles with at least two vertices correspond to bipartite maps with at least two
vertices, in the unrooted as well as in the rooted case.

Proof. For the proof of the bijection between mobiles and pointed maps we refer to [7], where the bipartite
case is also discussed. It just remains to note that the induced bijection on the edges can be directly used
to transfer the root edge together with its direction.

2.1 Bipartite Mobile Counting
We start with bipartite mobiles since they are more easy to count, in particular if we consider rooted
bipartite mobiles, see [7].

Proposition 1. Let R = R(t, z, x1, x2, . . .) be the solution of the equation

R = tz + z
∑

i≥1
x2i

(
2i− 1

i

)
Ri. (3)

Then the generating function M = M(t, z, x1, x2, . . .) of bipartite rooted maps satisfies

∂M

∂t
= 2 (R/z − t) , (4)

where the variable t corresponds to the number of vertices, z to the number of edges, and x2i, i ≥ 1, to
the number of faces of valency 2i.

Proof. Since rooted mobiles can be considered as ordered rooted trees (which means that the neighboring
vertices of the root vertex are linearly ordered and the subtrees rooted at these neighboring vertices are
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again ordered trees) we can describe them recursively. This directly leads to a functional equation for R
of the form

R =
tz

1− z∑i≥1 x2i
(
2i−1
i

)
Ri−1

which is apparently the same as (3). Note that the factor
(
2i−1
i

)
is precisely the number of ways of

grouping i legs and i− 1 edges around a black vertex (of degree 2i; one edge is already there).
Hence, the generating function of rooted mobiles that are rooted by a white vertex is given by R/z.

Since we have to discount the mobile that consists just of one (white) vertex, the generating function of
rooted mobiles that are rooted at a white vertex and contain at least two vertices is given by

R/z − t =
∑

i≥1
x2i

(
2i− 1

i

)
Ri. (5)

We now observe that the right hand side of (5) is precisely the generating function of rooted mobiles that
are rooted at a black vertex (and contain at least two vertices). Summing up, the generating function of
bipartite rooted mobiles (with at least two vertices) is given by

2(R/z − t).

Finally, ifM denotes the generating function of bipartite rooted maps (with at least two vertices) then ∂M
∂t

corresponds to rooted maps, where a non-root vertex is pointed (and discounted). Thus, by Theorem 2 we
obtain (4).

Remark 1. It can be easily checked that Formula (4) can be specialized to count MD, for any subset D of
even positive integers: It suffices to set to 0 every x2i such that 2i ∈ D.

2.2 General Mobile Counting
We now proceed to develop a mechanism for general mobile counting that is adapted from [5]. For this,
we will require Motzkin paths.

Definition 2. A Motzkin path is a path starting at 0 and going rightwards for a number of steps; the steps
are either diagonally upwards (+1), straight (0) or diagonally downwards (−1). A Motzkin bridge is a
Motzkin path from 0 to 0. A Motzkin excursion is a Motzkin bridge which stays non-negative.

We define generating functions in the variables t and u, which count the number of steps of type 0
and −1, respectively. (Explicitly counting steps of type 1 is then unnecessary, of course.) The ordinary
generating functions of Motzkin bridges, Motzkin excursions, and Motzkin paths from 0 to +1 shall be
denoted by B(t, u), E(t, u) and B(+1)(t, u), respectively.

Continuing to follow the presentation of [5] and decomposing these three types of paths by their last
passage through 0, we arrive at the equations:

E = 1 + tE + uE2,

B = 1 + (t+ 2uE)B,

B(+1) = EB.
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In what follows we will also make use of bridges where the first step is either of type 0 or −1. Clearly,
their generating function B is given by

B = tB + uB(+1) = B(t+ uE).

When Motzkin bridges are not constrained to stay non-negative, they can be seen as a random arrange-
ment of a given number of steps +1, 0,−1. It is then possible to obtain explicit expressions for

B`,m = [t`um]B(t, u) =

(
l + 2m

l,m,m

)
, (6)

B
(+1)
`,m = [t`um]B(+1)(t, u) =

(
l + 2m+ 1

l,m,m+ 1

)
, (7)

B`,m = [t`um]B(t, u) = B`−1,m +B
(+1)
`,m−1 =

l +m

l + 2m

(
l + 2m

l,m,m

)
. (8)

Using the above, we can now finally compute relations for generating functions of proper classes of
mobiles. We define the following series, where t corresponds to the number of white vertices, z to the
number of edges, and xi, i ≥ 1, to the number of black vertices of degree i:

• L(t, z, x1, x2, . . .) is the series counting rooted mobiles that are rooted at a black vertex and where
an additional edge is attached to the black vertex.

• Q(t, z, x1, x2, . . .) is the series counting rooted mobiles that are rooted at a univalent white vertex,
which is not counted in the series.

• R(t, z, x1, x2, . . .) is the series counting rooted mobiles that are rooted at a white vertes and where
an additional edge is attached to the root vertex.

Similarly to the above we obtain the following equations for the generating functions of mobiles and
rooted maps.

Proposition 2. Let L = L(t, z, x1, x2, . . .), Q = Q(t, z, x1, x2, . . .), and R = R(t, z, x1, x2, . . .) be the
solutions of the equation

L = z
∑

`,m

x2m+`+1B`,mL
`Rm,

Q = z
∑

`,m

x`+2m+2B
(+1)
`,m L`Rm, (9)

R =
tz

1−Q,

and let T = T (t, z, x1, x2, . . .) be given by

T = 1 +
∑

`,m

x2m+`B`,mL
`Rm, (10)
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where the numbers B`,m, B(+1)
`,m , and B`,m are given by (6)–(8). Then the generating function M =

M(t, z, x1, x2, . . .) of rooted maps satisfies

∂M

∂t
= R/z − t+ T, (11)

where the variable t corresponds to the number of vertices, z to the number of edges, and xi, i ≥ 1, to the
number of faces of valency i.

Proof. The system (9) is just a rephrasement of the recursive structure of rooted mobiles. Note that the
numbers B`,m and B(+1)

`,m are used to count the number of ways to circumscribe a specific black vertex
and considering white vertices, black vertices and “legs” as steps −1, 0 and +1. The generating function
T given in (10) is then the generating function of rooted mobiles where the root vertex is black.

Finally, the equation (11) follows from Theorem 2 since R/z− t corresponds to rooted mobiles with at
least one black vertex where the root vertex is white and T corresponds to rooted mobiles where the root
vertex is black.

Remark 2. Note that Proposition 1 is a special case of Proposition 2. We just have to restrict to the terms
corresponding to ` = 0 since bipartite mobiles have no black–black edges. In particular, the series for L
is not needed any more and the second and third equations from (9) can be used to easily eliminate Q in
order to recover the equation (3).

3 Asymptotic Enumeration
In this section we prove the asymptotic expansion (1). It turns out that it is much easier to start with
bipartite maps. Actually, the bipartite case has already been treated by Bender and Canfield [2]. However,
we apply a slightly different approach, which will then be extended to cover the general case as well the
central limit theorem.

3.1 Bipartite maps
Let D be a non-empty subset of even positive integers different from {2}. Then by Proposition 1 the
counting problem reduces to the discussion of the solutions RD = RD(t, z) of the functional equation

RD = tz + z
∑

2i∈D

(
2i− 1

i

)
RiD (12)

and the generating function MD(t, z) that satisfies the relation

∂MD

∂t
= 2 (RD/z − t) . (13)

Let d = gcd{i : 2i ∈ D}. Then for combinatorial reasons it follows that there only exist maps with n
edges for n that are divisible by d. This is reflected by the fact that the equation (12) can we rewritten in
the form

R̃ = t+
∑

2i∈D

(
2i− 1

i

)
zi/dR̃i, (14)

where we have substituted RD(t, z) = zR̃(t, zd). (Recall that we finally work with RD/z.)
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Lemma 1. There exists an analytic function ρ(t) with ρ(1) > 0 and ρ′(1) 6= 0 that is defined in a
neighborhood of t = 1, and there exist analytic functions g(t, z), h(t, z) with h(1, ρ(1)) > 0 that are
defined in a neighborhood of t = 1 and z = ρ(1) such that the unique solution RD = RD(t, z) of the
equation (12) that is analytic at z = 0 and t = 0 can be represented as

RD = g(t, z)− h(t, z)

√
1− z

ρ(t)
. (15)

Furthermore, the values z = ρ(t)e(2πij/d), j ∈ {0, 1, . . . , d − 1}, are the only singularities of the
function z 7→ RD(t, z) on the disc |z| ≤ ρ(t), and there exists an analytic continuation of RD to the
range |z| < |ρ(t)|+ η, arg(z − ρ(t)e(2πij/d)) 6= 0, j ∈ {0, 1, . . . , d− 1}.

Proof. From general theory (see [8, Theorem 2.21]), we know that an equation of the formR = F (t, z, R),
where F is a power series with non-negative coefficients, has a square-root singularity if there are positive
solutions (ρ,R0) to the following system:

R0 = F (1, ρ, R0), 1 = FR(1, ρ, R0).

It is important to observe that the solutions are inside the region of convergence of F . Besides, one has
to check several analytic conditions on the derivatives of F evaluated at this singular point. For a more
detailed proof, the reader can refer to the work of Bender and Canfield [2].

It is now relatively easy to obtain similar properties for MD(t, z).

Lemma 2. The function M = MD(t, z) that is given by (13) has the representation

MD = g2(t, z) + h2(t, z)

(
1− z

ρ(t)

)3/2

(16)

in a neighborhood of t = 1 and z = ρ(1), where the functions g2(t, z), h2(t, z) are analytic in a neighbor-
hood of t = 1 and z = ρ(1) and we have h2(1, ρ(1)) > 0. Furthermore, the values z = ρ(t)e(2πij/d),
j ∈ {0, 1, . . . , d− 1}, are the only singularities of the function z 7→MD(t, z) on the disc |z| ≤ ρ(t), and
there exists an analytic continuation of MD to the range |z| < |ρ(t)| + η, arg(z − ρ(t)e(2πij/d)) 6= 0,
j ∈ {0, 1, . . . , d− 1}.

Proof. This is a direct application of [8, Lemma 2.27].

In particular it follows that MD(1, z) has the singular representation

MD = g2(1, z) + h2(1, z)

(
1− z

ρ(1)

)3/2

around z = ρ(1). The singular representations are of the same kind around z = ρ(1)e(2πij/d), j ∈
{1, . . . , d − 1} and we have the analytic continuation property. Hence it follows by usual singularity
analysis (see for example [8, Corollary 2.15]) that there exists a constant cD > 0 such that

[zn]MD(1, z) ∼ cDn−5/2ρ(1)−n, n ≡ 0 mod d,

which completes the proof of the asymptotic expansion in the bipartite case.
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3.2 General Maps
We now suppose that D contains at least one odd number. It is easy to observe that in this case we have
[zn]MD(1, z) > 0 for n ≥ n0 (for some n0), so we do not have to deals with several singularities.

By Proposition 2 we have to consider the system of equations for LD = LD(t, z), QD = QD(t, z),
RD = RD(t, z):

LD = z
∑

i∈D

∑

m

Bi−2m−1,mL
i−2m−1
D RmD ,

QD = z
∑

i∈D

∑

m

B
(+1)
i−2m−2,mL

i−2m−2
D RmD , (17)

RD =
tz

1−QD
,

and also the function
TD = TD(t, z) = 1 +

∑

i∈D

∑

m

Bi−2m,mL
i−2m
D RmD .

Lemma 3. There exists an analytic function ρ(t) with ρ(1) > 0 and ρ′(1) 6= 0 that is defined in a
neighborhood of t = 1, and there exist analytic functions g(t, z), h(t, z) with h(1, ρ(1)) > 0 that are
defined in a neighborhood of t = 1 and z = ρ(1) such that

RD/z − t+ TD = g(t, z)− h(t, z)

√
1− z

ρ(t)
. (18)

Furthermore, the value z = ρ(t) is the only singularity of the function z 7→ RD/z − t + TD on the disc
|z| ≤ ρ(t), and there exists an analytic continuation ofRD to the range |z| < |ρ(t)|+η, arg(z−ρ(t)) 6= 0.

Proof. Instead of a single equation, we have to deal with the strongly connected system (17), which is
known to have similar analytic properties (see [8, Theorem 2.33]). As in Lemma 1, the main observation
is that the singular point lies within the region of convergence of the equations, which follows directly in
the finite case, but gets more technical in the infinite case.

Lemma 3 shows that we are precisely in the same situation as in the bipartite case (actually, it is slightly
easier since there is only one singularity on the circle |z| = ρ(t)). Hence we immediately get the same
property for MD as stated in Lemma 2 and consequently the proposed asymptotic expansion (1).

4 Central Limit Theorem for Bipartite Maps
Based on this previous result, we now extend our analysis to obtain a central limit theorem. Actually, this
is immediate if the set D is finite, whereas the infinite case needs much more care.

Let D be a non-empty subset of even positive integers different from {2}. Then by Proposition 1 the
generating functions RD = RD(t, z, (x2i)2i∈D) and MD = MD(t, z, (x2i)2i∈D) satisfy the equations

RD = tz + z
∑

2i∈D
x2i

(
2i− 1

i

)
RiD (19)
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and
∂MD

∂t
= 2 (RD/z − t) . (20)

If D is finite, then the number of variables is finite, too, and we can apply [8, Theorem 2.33] to obtain
a representation of RD of the form

RD = g(t, z, (x2i)2i∈D)− h(t, z, (x2i)2i∈D)

√
1− z

ρ(t, (x2i)2i∈D)
, (21)

a proper extension of the transfer lemma [8, Lemma 2.27] (where the variables x2i are considered as
additional parameters) leads to

MD = g2(t, z, (x2i)2i∈D) + h2(t, z, (x2i)2i∈D)

(
1− z

ρ(t, (x2i)2i∈D)

)3/2

, (22)

and finally [8, Theorem 2.25] implies a multivariate central limit theorem for the random vector Xn =

(X
(2i)
n )2i∈D of the proposed form.
Thus, we just have to concentrate on the infinite case. Actually, we proceed there in a similar way;

however, we have to take care of infinitely many variables. There is no real problem to derive the same
kind of representation (21) and (22) if D is infinite. Everything works in the same way as in the finite
case, we just have to assume that the variables xi are uniformly bounded. And of course we have to use
a proper notion of analyticity in infinitely many variables. We only have to apply the functional analytic
extension of the above cited theorems that are given in [9]. Moreover, in order to obtain a proper central
limit theorem we need a proper adaption of [9, Theorem 3]. In this theorem we have also a single equation
y = F (z, (xi)i∈I , y) for a generating function y = y(z, (xi)i∈I) that encodes the distribution of a random
vector (X

(i)
n )i∈I in the form

y =
∑

n

yn

(
E
∏

i∈I
x
X(i)

n
i

)
zn,

where X(i)
n = 0 for i > cn (for some constant c > 0) which also implies that all appearing potentially

infinite products are in fact finite. (In our case this is satisfied since there is no vertex of degree larger
than n if we have n edges.) As we can see from the proof of [9, Theorem 3], the essential part is to
provide tightness of the involved normalized random vector, and tightness can be checked with the help
of moment conditions. It is clear that asymptotics of moments for X(i)

n can be calculated with the help of
derivatives of F , for example EX(i)

n = Fxi
/(ρFz) · n+O(1). This follows from the fact all information

on the asymptotic behavior of the moments is encoded in the derivatives of the singularity ρ(z, (xi)i∈I)
and by implicit differentiation these derivatives relate to derivatives of F . More precisely, [9, Theorem 3]
says that the following conditions are sufficient to deduce tightness of the normalized random vector:

∑

i∈I
Fxi

<∞,
∑

i∈I
F 2
yxi

<∞,
∑

i∈I
Fxixi

<∞,

Fzxi = o(1), Fzxixi = o(1), Fyyxi = o(1), Fyyxixi = o(1),

Fzzxi = O(1), Fzyxi = O(1), Fzyyxi = O(1), Fyyyxi = O(1),
(i→∞),
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where all derivatives are evaluated at (ρ, (1)i∈I , y(ρ)).
The situation is slightly different in our case since we have to work with MD instead of RD. However,

the only real difference between RD and MD is that the critical exponents in the singular representations
(21) and (22) are different, but the behavior of the singularity ρ(t, z, (xi)i∈I) is precisely the same. Note
that after the integration step we can set t = 1. Now tightness for the normalized random vector that is
encoded in the functionMD follows in the same way as forRD. And since the singularity ρ(1, z, (xi)i∈I)
is the same, we get precisely the same conditions as in the case of [9, Theorem 3].

This means that we just have to check the above conditions hold for

F = F (1, z, (x2i)2i∈D, y) = z + z
∑

2i∈D
x2i

(
2i− 1

i

)
yi,

where all derivatives are evaluated at z = ρ, x2i = 1, and y = RD(ρ) < 1/4. However, they are trivially
satisfied since ∑

i≥1

(
2i− 1

i

)
iKyi <∞

for all K > 0 and for positive real y < 1/4.
Remark 3. As stated in Theorem 1, the results and methods extend to the general case as well. The main
idea is to reduce the (positive strongly connected) system of two equations (17) to a single functional
equation, by applying [8, Theorem 3].

5 Maps of Higher Genus
The bijection used in Section 2 relies solely on the orientability of the surface on which the maps are
embedded. Therefore it can easily be extended to maps of higher genus, i.e., embedded on an orientable
surface of genus g ∈ Z>0 (while planar maps correspond to maps of genus 0). The main difference lies
in the fact that the corresponding mobiles are no longer trees but rather one-faced maps of higher genus,
while the other properties still hold.

However, due to the apparition of cycles in the underlying structure of mobiles, another difficulty arises.
Indeed, in the original bijection, vertices and edges in mobiles could carry labels (related to the geodesic
distance in the original map), subject to local constraints. In our setting, the legs actually encode the local
variations of these labels, which are thus implicit. Local constraints on labels are naturally translated into
local constraints on the number of legs. But the labels have to remain consistent along each cycle of the
mobiles, which gives rise to non-local constraints on the repartition of legs.

In order to deal with these additional constraints, and to be able to control the degrees of the vertices at
the same time, we will now use a hybrid formulation of mobiles, carrying both labels and legs. As before,
we will focus on the simpler case of mobiles coming from bipartite maps.

5.1 g-Mobiles
Definition 3. Given g ∈ Z≥0, a g-mobile is a one-faced map of genus g – embedded on the g-torus –
such that there are two kinds of vertices (black and white), edges only occur as black–black edges or
black–white edges, and black vertices additionally have so-called “legs” attached to them (which are not
considered edges), whose number equals the number of white neighbor vertices.



Vertex Degrees in Planar Maps 11

n◦ = 4

n→ = 7

n ◦ = 3

n→ − n◦ − n ◦ = 0

Fig. 1: An oriented cycle in a g-mobile and
the constraint on its left (colored area). Notice
that a similar constraint holds on its right, but
is necessarily satisfied thanks to the properties
of a g-mobile.

Furthermore, for each cycle c of the g-mobile, let n◦, n→ and n ◦ respectively be the numbers of white
vertices on c, of legs dangling to the left of c and of white neighbours to the left of c. One has the following
constraint (see Figure 5.1):

n→ = n◦ + n ◦ (23)

The degree of a black vertex is the number of half-edges plus the number of legs that are attached to it.
A bipartite g-mobile is a g-mobile without black–black edges. A g-mobile is called rooted if an edge is
distinguished and oriented.
Notice that a 0-mobile is simply a mobile as described in Definition 1.

Theorem 3. Given g ≥ 0, there is a bijection between g-mobiles that contain at least one black vertex
and pointed maps of genus g, where white vertices in the mobile correspond to non-pointed vertices in
the equivalent map, black vertices correspond to faces of the map, and the degrees of the black vertices
correspond to the face valencies. This bijection induces a bijection on the edge sets so that the number of
edges is the same. (Only the pointed vertex of the map has no counterpart.)

Similarly, rooted g-mobiles that contain at least one black vertex are in bijection to rooted and vertex-
pointed maps of genus g.

Proof. This generalization of the bijection to higher genus was first given in [6] for quadrangulations
and [4] for Eulerian maps, from which we will exploit many ideas in the present section.

5.2 Schemes of g-Mobiles
g-mobiles are not as easily decomposed as planar mobiles, due to the existence of cycles. However, they
still exhibit a rather simple structure, based on scheme extraction.
The g-scheme (or simply the scheme) of a g-mobile is what remains when we apply the following op-
erations (see Figure 2): first remove all legs, then remove iteratively all vertices of degree 1 and finally
replace any maximal path of degree-2-vertices by a single edge.

Once these operations are performed, the remaining object is still a one-faced map of genus g, with
black and white vertices (white–white edges can now occur), where the vertices have minimum degree 3.

To count g-mobiles, one key ingredient is the fact that there is only a finite number of schemes of a
given genus. Indeed, let di be the number of degree i vertices of a g-scheme:

∑

k≥3
(i− 2)di =

∑

k≥3
idi − 2

∑

k≥3
di = 2(#edges−#vertices) = 4g − 2.

The number of vertices (respectively edges) is then bounded by 4g − 2 (respectively 6g − 3), where this
bound is reached for cubic schemes (see an example in Figure 2).
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Fig. 2: A 1-mobile on the torus and its scheme.
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0

Fig. 3: The variations of labels around a black vertex and along an oriented cycle.

To recover a proper g-mobile from a given g-scheme, one would have to insert a suitable planar mobile
into each corner of the scheme and to substitute each edge with some kind of path of planar mobiles.
Unfortunately, this cannot be done independently: Around each black vertex, the total number of legs in
every corner must equal the number of white neighbors, and around each cycle, (23) must hold.

In order to make these constraints more transparent, we will equip schemes with labels on white vertices
and black corners. Now, when trying to reconstruct a g-mobile from a scheme, one has to ensure that the
local variations are consistent with the global labelling. To be precise, the label variations are encoded as
follows (see Figure 3):

• Around a black vertex of degree d, let (l1, . . . , ld) be the labels of its corners read in clockwise
order:

∀i, li+1 − li =





+1 if there is a leg between the two corresponding corners,
0 if there is a black neighbor,
−1 if there is a white neighbor.

• Along the left side of an oriented cycle, the label decreases by 1 after a white vertex or when
encountering a white neighbor and increases by 1 when encountering a leg.

The above statements hold for general – as well as bipartite – mobiles. In the following, we will only
consider bipartite mobiles, as they are much easier to decompose.
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5.3 Reconstruction of Bipartite Maps of Genus g

In the following, it will be convenient to work with rooted schemes. One can then define a canonical la-
belling and orientation for each edge of a rooted scheme. An edge e now has an origin e− and an endpoint
e+. The k corners around a vertex of degree k are clockwisely ordered and denoted by c1, . . . , ck.

Given a scheme S, let V◦, V•, C◦, C• be respectively the sets of white and black vertices and of white
and black corners. A labelled scheme (S, (lc)c∈V◦∪C•) is a pair consisting of a scheme S and a labelling
on white vertices and black corners, with lc ≥ 0 for all c. Labellings are considered up to translation, as
they will not affect local variations. For e ∈ ES , an edge of S, we associate a label to each extremity
le− , le+ . If an extremity is a white vertex of label l, its label is l. If the extremity is a black vertex, its label
is the same as the next clockwise corner of the black vertex.

Let a doubly-rooted planar mobile be a rooted (on a black or white vertex) planar mobile with a sec-
ondary root (also black or white). These two roots are the extremities of a path (v1, . . . , vk). The increment
of the doubly-rooted mobile is then defined as n→ − n◦ − n ◦, which is not necessarily 0, as the path is
not a cycle.

Similarly as in [4], we present a non-deterministic algorithm to reconstruct a g-mobile:

Algorithm.
(1) Choose a labelled g-scheme (S, (lc)c∈V◦∪C•).
(2) ∀v ∈ V•, choose a sequence of non-negative integers (ik)1≤k≤deg(v), then attach ik planar mobiles

and ik + lck+1
− lck + 1 legs to ck (the kth corner of v).

(3) ∀e ∈ S, replace e by a doubly-rooted mobile of increment incr(e) = le+−le−+

{
+1 if e− is white,
−1 if e− is black.

(4) On each white corner of S, insert a planar mobile.
(5) Distinguish and orient an edge as the root.

i

j

k

l
i

j

k

l

j − l
+1

k − j + 1

l − k
+1

i

j

k

l

j − l
+1

k − j + 1

l − k
+1

i− l + 1

j − i + 1

i− k − 1

Fig. 4: Steps (1)–(3) of the algorithm.

Proposition 3. Given g > 0, the algorithm generates each rooted bipartite g-mobile whose scheme has
k edges in exactly 2k ways.

Proof. One can easily see that the obtained object is indeed bipartite. Attaching planar mobiles and legs
added at step (2) in a corner ck creates new corners, such that:

• The first carries the same label lck as ck, and
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• the last carries the label lck + (ik + lck+1
− lck + 1)− ik = lck+1

+ 1.

The next corner should then be labelled (lck+1
+ 1)− 1 = lck+1

, due to the next white neighbor, which is
precisely what we want.

In the same fashion, at step (3), a simple counting shows that each edge is replaced by a path such that
the labels along it evolve according to the scheme labelling.

We thus obtain a well-formed rooted bipartite g-mobile, with a secondary root on its scheme. Since the
first root destroys all symmetries, there are exactly 2k choices for the secondary root, which would give
the same rooted g-mobile.

5.4 g-Mobile Counting
A doubly-rooted bipartite planar mobile can be decomposed along a sequence of elementary cells forming
the path between its two roots. Its increment is simply the sum of the increments of its cells.

Definition 4. An elementary cell is a half-edge connected to a black vertex itself connected to a white
vertex with a dangling half-edge. The white vertex has a sequence of black-rooted mobiles attached on
each side. The black vertex has j ≥ 0 legs and k ≥ 0 white-rooted mobiles on its left, l ≥ 0 white-rooted
mobiles and k+ l− j+ 2 legs on its right, and its degree is 2(k+ l+ 2). The increment of the cell is then
j − k − 1.

The generating series P := P (t, z, (x2i), s) of a cell, where s marks the increment, is:

P (t, z, (x2i), s) =
z2R2

t

∑

j,k,l≥0

(
j + k

j

)(
k + 2l − j + 2

l

)
sj−k−1x2(k+l+2)R

k+l =
z2R2

st
P̂ .

The generating series S := S(t, z, (x2i), s) of a doubly-rooted mobile depends on the color of its roots
(u, v):

S(u,v)(t, z, (x2i), s) =





1
1−P if (u, v) = (◦, •) or (•, ◦),
zP̂
1−P if (u, v) = (◦, ◦),
zR2

st(1−P ) if (u, v) = (•, •).

We can now express the generating series RS := RS(t, z, (x2i)) of rooted bipartite g-mobiles with
scheme S:

RS(t, z, (x2i)) = 2
z∂

∂z

1

2|E|z
|E|t|V◦|

(
R

tz

)|C◦|
•

•
∑

(lc) labelling


∏

e∈E
[sincr(e)]S(e−,e+)

∏

v∈V•

∑

i1,...,ideg(v)≥0




deg(v)∏

k=1

(
2ik + lck+1

− lck + 1

ik

)
x2(deg(v)+

∑
ik)


 .

(24)

Proposition 4. The generating series M (g)
D := M

(g)
D (t, z, (x2i)) for the family of rooted bipartite maps

of genus g, where the vertex degrees belong to D, satisfies the relation:

∂M
(g)
D

∂t
=

2

z

∑

S scheme
of genus g

RS(t, z, (x2i1{2i∈D})). (25)
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Proof. This follows directly from Theorem 3 and Equation (24).

6 Conclusion
Theorem 1 confirms the existence of a universal behaviour of planar maps. The asymptotics (with ex-
ponent −5/2) and this central limit theorem for the expected number of vertices of a given degree are
believed to hold for any “reasonable” family of maps. It has also been shown in [6, 4] that a similar phe-
nomenom occurs for maps of higher genus: The generating series of several families (quadrangulations,
general and Eulerian maps) of genus g exhibit the same asymptotic exponent 5g/2− 5/2.

The expression obtained in Section 5 needs to be properly studied in order to obtain an asymptotic
expansion. It refines previous results by controlling the degree of each vertex in the corresponding map.
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Cost functionals for large random trees
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Additive tree functionals allow to represent the cost of many divide-and-conquer algorithms. We give an invariance
principle for such tree functionals for the Catalan model (random tree uniformly distributed among the full binary
ordered tree with given number of internal nodes). This relies on the natural embedding of binary trees into the
Brownian excursion and then on elementaryL2 computations. We recover results first given by Fill and Kapur (2004)
and then by Fill and Janson (2009).

Keywords: random binary tree, cost functional, toll function, Brownian excursion, continuum random tree

1 Introduction
1.1 Additive functionals and toll functions
Additive functionals on binary trees allow to represent thecost of algorithms such as “divide and conquer”,
see Kapur’s PhD thesis [24] and Fill and Kapur [16]. ForT a rooted full binary ordered tree, we set|T |
its cardinal,∅ its root,L(T ) andR(T ) the left-sub-tree and right-sub-tree of the root ofT . A functional
F on binary trees is called an additive functional if it satisfies the following recurrence relation:

F (T ) = F (L(T )) + F (R(T )) + b|T |, (1)

for all treesT such that|T | ≥ 1 and withF (∅) = 0. The given sequence(bn, n ≥ 1) is called the toll
function. Notice that:

F (T ) =
∑

v∈T

b|Tv|, (2)

whereTv is the sub-tree abovev whose root isv.
We give some examples of commonly used toll functions or index functions related to additive func-

tional. Forv, w ∈ T , we say thatw is an ancestor ofv and writew ≤ v if v ∈ Tw. Foru, v ∈ T , we
denote byu ∧ v, the most recent common ancestor ofu andv: u ∧ v is the only element ofT such that:
w ≤ u andw ≤ v impliesw ≤ u ∧ v. We shall denote byd the graph distance inT .

• The total size of the treeT , |T |, corresponds to the additive functional with toll functionbn = 1.

†This work is partially supported by DIM RDMath IdF
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• The total path length ofT is defined byP (T ) =
∑

v∈T d(∅, v). We have thatP (T ) + |T | is the
additive functional with toll functionbn = n as

∑

w∈T

|Tw| =
∑

w∈T

∑

v∈T

1{w≤v} =
∑

v∈T

(
1 + d(∅, v)

)
= |T |+ P (T ).

• The shape functional of a treeT is the additive functional with toll functionbn = log(n). (This
functional will not be covered by the main results of this paper.)

• The Wiener index of the treeT is defined byW (T ) =
∑

u,v∈T d(u, v). Notice thatd(u, v) =

d(∅, u) + d(∅, v)− 2d(∅, u ∧ v). This implies thatW (T ) = 2|T |∑w∈T |Tw| − 2
∑

w∈T |Tw|2 as

∑

w∈T

|Tw|2 =
∑

w∈T

∑

u,v∈T

1{w≤u∧v} =
∑

u,v∈T

(
1 + d(∅, u ∧ v)

)
= |T |2 +

∑

u,v∈T

d(∅, u ∧ v).

According to (2), the functional
∑

w∈T |Tw|2 is an additive functional with toll functionbn = n2.
And thus the Wiener index of a full binary tree is a combination of two additive functionals.

• The Sackin index (or external path length) of the treeT , used to study the balance of the tree, is
similar to the total path length ofT when one considers only the leaves:S(T ) =

∑
v∈L(T ) d(∅, v),

where the set of leaves isL(T ) = {v ∈ T ; |Tv| = 1}. Using that for a full binary tree we
have|T | = 2|L(T )| − 1, we deduce that2S(T ) =

∑
w∈T |Tw| − 1. The Colless index of the

treeT is defined asC(T ) =
∑

v∈T

∣∣|L(Lv)| − |L(Rv)|
∣∣. SinceT is a full binary tree, we get

2|L(Lv)| − 2|L(Rv)| = |Lv| − |Rv| and |Lv| + |Rv| = |Tv| − 1. We obtain that2C(T ) =∑
w∈T |Tw| − |T | − 2

∑
v∈T min(|Lv|, |Rv|). The cophenetic index of the treeT , which is used in

[27] to study the balance of the tree, is defined byCo(T ) =
∑

u,v∈L(T ), u6=v d(∅, u∧v). Using again
thatT is a full binary tree, we get4Co = 4

∑
w |L(Tw)|(|L(Tw)| − 1) − 4|L(T )|(|L(T )| − 1) =∑

w∈T |Tw|2 − |T |2 − |T |+ 1.

1.2 Asymptotics for additive functionals in the Catalan model

We consider the Catalan model: letTn be a random tree uniformly distributed among the set of full binary
ordered trees withn internal nodes (and thusn+1 leaves), which has cardinalCn = (2n)!/[(n!2)(n+1)].
In particular, we have:

|Tn| = 2n+ 1.

Recall thatTn is a (full binary) Galton-Watson tree (also known as simply generated tree) conditioned
on havingn internal nodes. It is well known, see Takàcs [34], Aldous [3, 4] and Janson [21], that
|Tn|−3/2P (Tn) converges in distribution, asn goes to infinity, towards2

∫ 1

0 Bs ds, whereB = (Bs, 0 ≤
s ≤ 1) is the normalized Brownian excursion. This result can be seen as a consequence of the conver-
gence in distribution ofTn (in fact the contour process) properly scaled towards the Brownian continuum
tree whose contour process isB, see [3] and Duquesne [9], or Duquesne and Le Gall [10] in the setting
of Brownian excursion. For a combinatorial approach, whichcan be extended to other families of trees,
see also Fill and Kapur [15, 17] or Fill, Flajolet and Kapur [13].
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In [16], the authors considered the toll functionsbn = nβ with β > 0 and they proved that with a
suitable scaling the corresponding additive functionalFβ(Tn) converge in distribution to a limit, sayYβ .
The distribution ofYβ is characterized by its moments. (In [16], the authors consider also the toll function
bn = log(n).) See also Janson and Chassaing [23] for asymptotics of the Wiener index, which is a con-
sequence of the joint convergence in distribution of(F1(Tn), F2(Tn)) with a suitable scaling and Blum,
François and Janson [6] for the convergence of the Sackin and Colless indexes. It is announced in Fill
and Janson [14] that forβ > 1/2, Yβ can be represented as a functional of the normalized Brownian ex-
cursion. More precisely, forβ > 1/2, Yβ is distributed asφβ(B), where for any non-negative continuous
functionh defined on[0, 1]:

φβ(h) = β

∫ 1

0

[tβ−1 + (1− t)β−1]h(t) dt− 1

2
β(β − 1)

∫

[0,1]2
|t− s|β−2[h(t) + h(s)− 2mh(s, t)] dsdt,

with
mh(s, t) = inf

u∈[s∧t,s∨t]
h(u). (3)

Furthermore, forβ = 1, this reduces toφ1(h) =
∫ 1

0
h and forβ > 1 we also have:

φβ(h) = β(β − 1)

∫

[0,1]2
|t− s|β−2mh(s, t) dsdt. (4)

We use the natural embedding ofTn into the Brownian excursion, see [4], so that the convergence in
distribution of the additive functional is then an a.s. convergence (which holds simultaneously for all
β > 1/2) and also give the fluctuations for this a.s. convergence. From this convergence, we also provide
another representation ofφβ(h) which is a natural by-product of the a.s. convergence.

Remark 1.1 The method presented in this paper based on the embedding ofTn into a Brownian excursion
can not be extended directly to other models of trees such as binary search trees, recursive trees or simply
generated trees.

Concerning binary search trees (or random permutation model or Yule trees), see [31] and [32] for the
convergence of the external path length (which correspondsin our setting to the Sackin index), [28] for
toll functionbn = nβ, [29] for the Wiener index (and [21] for simply generated trees), [6] (and [18] for
other trees) for the Sacking and Colless indexes.

Concerning recursive trees, see [26], [8] for the convergence of the total path length and [29] for the
Wiener index. In the setting of recursive tree, then (1) is a stochastic fixed point equation, which can be
analyzed using the approach of [33].

Remark 1.2 One can replace the toll functionb|T | in (1) by a function of the tree, sayb(T ). For example,
if one considerb(T ) = 1{|T |=1}, then the corresponding additive functionalF (T ) = |L(T )| gives the
number of leaves. The case of “local” toll functionb (with finite support or fast decreasing rate) has been
considered in the study of fringe trees, see [2], [7] for binary search trees, and [22] for simply generated
trees and [19] for binary search trees and recursive trees.

See [20] for the study of the phase transition on asymptoticsof additive functionals with toll functions
bn = nβ on binary search trees between the “local” regime (corresponding toβ ≤ 1/2) and the “global”
regime (β > 1/2). The same phase transition is observed for the Catalan model, see [16]. Our main
result, see Theorem 3.1, concerns specifically the “global”regime.
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2 Binary trees in the Brownian excursion
We begin by recalling the definition of a real tree, see [12], and some elementary properties of the Brow-
nian continuum random tree, see [25]. A real tree is a metric space(T , d) which satisfies the following
two properties for everyx, y ∈ T :

(i) There exists a unique isometric mapfx,y from [0, d(x, y)] into T such thatfx,y(0) = x and
fx,y(d(x, y)) = y.

(ii) If φ is a continuous injective map from[0, 1] into T such thatφ(0) = x andφ(1) = y, then we have
φ([0, 1]) = fx,y([0, d(x, y)]).

Equivalently, a metric space(T , d) is a real tree if and only ifT is connected andd satisfies the four point
condition:

d(s, t) + d(x, y) ≤ max(d(s, x) + d(t, y), d(s, y) + d(t, x)) for all s, t, x, y ∈ T .

A rooted real tree is a real tree(T , d) with a distinguished vertex∅ called the root. In the following
paragraphs, we will only consider compact rooted real trees.

One can use continuous functions to encode compact rooted real trees as follows. Leth be a non-
negative continuous function defined on[0, 1] such thath(0) = h(1) = 0. For everyx, y ∈ [0, 1], we set
dh(x, y) = h(x)+ h(y)− 2mh(x, y), wheremh is defined in (3). It is easy to check thatdh is symmetric
and satisfies the triangle inequality. The relation∼h defined on[0, 1]2 by x ∼h y ⇔ dh(x, y) = 0 is an
equivalence relation. LetTh = [0, 1]/ ∼h be the corresponding quotient space. The functiondh on [0, 1]2

induces a function onT 2
h , which we still denoted bydh, and which is a distance onTh. It is not difficult

to check that(Th, dh) is then a compact real tree. We denote byp the canonical projection from[0, 1] into
Th. Thus, the metric space(Th, dh) is a compact real tree which can be viewed as a rooted real treeby
setting∅ = p(0).

Let B = (Bt, 0 ≤ t ≤ 1) be a normalized Brownian excursion. Informally,B is just a linear standard
Brownian path started from the origin and conditioned to stay positive on(0, 1) and to come back to0
at time1. Forα > 0, let e =

√
2/αB and letTe denote the Brownian tree. The continuum random

tree introduced by Aldous corresponds toα = 1/2 and the Brownian tree associated to the normalized
Brownian excursion corresponds toα = 2. We shall keep the parameterα so that the two previous cases
are easy to read on the results.

Let (Un, n ∈ N∗) be a sequence of independent random variables uniform on[0, 1], independent ofe.
We denote byTn the random tree spanned by then + 1 pointsp(U1), . . . ,p(Un+1) that is the smallest
connected subset ofTe that containsp(U1), . . . ,p(Un+1) and the root. The treeTn has exactly2n + 1
nodes. There is a natural order onTn given by the order of its external nodesp(U1), . . . ,p(Un+1). LetTn

be the corresponding trees when one forget about the branch lengths. It is well known thatTn is uniform
among the full binary ordered trees withn internal nodes. See Figure (1) for an example withn = 4.

Let (h1, . . . , h2n+1) be the branch lengths of the treeTn given in the lexicographical order. We recall,
see [4], [30] (Theorem 7.9) or [11], that the density of(h1, . . . , h2n+1) is given by:

fn(h1, . . . , h2n+1) = 2
(2n)!

n!

αn+1

Ln
e−αL2

n 1{h1>0,...,h2n+1>0},
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Fig. 1: The Brownian excursion,Tn (for n = 4) andTn.

whereLn =
∑2n+1

k=1 hk denotes the total length ofTn. Notice that the edge-lengths are independent of
the shape of the treeTn. It is then easy to deduce that the density ofLn is given by:

fLn(x) = 2
αn+1

n!
x2n+1 e−αx2

1{x>0}.

And we have, see [1] thatLn/
√
n converges a.s. towards1/

√
α. Furthermore, elementary computations

give that(h1, . . . , h2n+1) has the same distribution as(Ln∆1, . . . , Ln∆2n+1), where∆1, . . . ,∆2n+1

represents the lengths of the2n + 1 intervals obtained by cutting[0, 1] at 2n pointsV1, . . . , V2n, where
V1, . . . , V2n are2n independent uniform random variables on[0, 1] and independent ofLn. We thus
deduce the following elementary Lemma.

Lemma 2.1 The random vector(h1, . . . , h2n+1) has the same distribution as:
(
Ln

E1

S2n+1
, . . . , Ln

E2n+1

S2n+1

)
,

whereE1, . . . , E2n+1 are 2n + 1 independent exponential random variables, independent ofLn, and
S2n+1 =

∑2n+1
k=1 Ek.

We end this section with a result on the Brownian excursion. We setm for me defined in (3). For
s ∈ [0, 1] andr ∈ [0, es), the length of the excursion ofe abover straddlings is given by:

σr,s =

∫ 1

0

1{m(s,t)≥r}dt.

Forβ ≥ 0, we set:

Zβ =

∫ 1

0

ds

∫ es

0

dr σβ−1
r,s . (5)

The next result is proved using the representation of Brownian excursion from Biane [5].
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Lemma 2.2 Letβ > 0. We have:

P (Zβ < +∞) = { 0 if β ≤ 1/2,1 if β > 1/2.

The following result based on elementary computations allows to recover the formulation of our Corol-
lary 3.2 given in [16] and [14], see (4).

Lemma 2.3 We haveZ1 =
∫ 1

0
es ds and forβ > 1:

Zβ =
1

2
β(β − 1)

∫

[0,1]2
|t− s|β−2 m(s, t) ds dt.

3 Results
Inspired by (2), we consider the following random measureAn associated to the treeTn defined as follows.
For any non-negative function defined on[0, 1], we set:

An(f) = |Tn|−
3
2

∑

v∈Tn

|Tv|f
( |Tv|
|Tn|

)
,

where we recall thatTv is the sub-tree abovev with root v and|Tn| = 2n + 1. The casef(x) = xβ−1

corresponds to the additive functional onTn given by (2) with toll functionbn = nβ up to the scaling
factor|Tn|−( 1

2 +β).
We define the following random measure associated to the excursione:

Φ(f) =
√
2α

∫ 1

0

ds

∫ es

0

dr f(σr,s).

We now state our main result on the invariance principle.

Theorem 3.1 Almost surely, for allf ∈ C0((0, 1]) such thatlimx↓0 x
1
2−εf(x) = 0 for some0 < ε < 1

2 ,
we have:

lim
n→+∞

An(f) = Φ(f).

Proof: We only present the main ideas of the proof, as the detailed proofs will be given in a forthcoming
paper. Letf be a smooth enough function defined on[0, 1]. We first notice thatAn(f) is well approxi-
mated by:

An,1(f) = |Tn|−
3
2

∑

v∈Tn

(|Tv|+ 1)f

( |Tv|
|Tn|

)

= 2|Tn|−
3
2

∑

u∈L(Tn)

∑

v∈Tn, v≤u

f

( |Tv|
|Tn|

)
,

where we recall thatL(T ) denotes the leaves of the treeT and|T | = 2|L(T )| − 1 in a full binary tree.
The precise distribution of the heights(h1, . . . , h2n+1) given in Lemma 2.1 and the fact thatLn/

√
n
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converges a.s. towards1/
√
α gives thathv is close toLn/(2n+ 1) that is of1/(2

√
αn). In the spirit of

the law of the large number, usingL2 computations, we obtain thatAn,1(f) is well approximated by:

An,2(f) = 4
√
αn |Tn|−

3
2

∑

u∈L(Tn)

∑

v∈Tn, v≤u

f

( |Tv|
|Tn|

)
hv

= 4
√
αn |Tn|−

3
2

n+1∑

k=1

∫ eUk

0

dr f

(
2Xr,k + 1

|Tn|

)
,

whereXr,k + 1 denotes the number of integersi ∈ {1, . . . , n + 1} such that the random variableUi

belongs to the same excursion interval ofe above levelr asUk, that ism(eUi , eUk
) > r. Conditionally

one, the random variableXr,k is binomial with parameter(n, σr,Uk
). In particular, for largen, 2Xr,k+1

is close to2nσr,Uk
and thus(2Xr,k + 1)/|Tn| is close toσr,Uk

. Using|Tn| = 2n+ 1, the smoothness of
f andL2 computations, we get thatAn,2(f) is well approximated by:

An,3(f) =
√
2α

1

n+ 1

n+1∑

k=1

∫ eUk

0

dr f (σr,Uk
) .

Then use the law of large number (conditionally one) to get that a.s.

lim
n→+∞

An,3(f) =
√
2α

∫ 1

0

ds

∫ es

0

dr f (σr,s) .

We deduce that for all (smooth enough) functions, we have a.s. limn→+∞ An(f) = Φ(f). Since the
considered family of smooth functions is convergence determining, this implies that a.s.(An, n ∈ N∗)
converges towardsΦ (for the weak convergence or vague convergence of finite measure on[0, 1]). This
in turns gives that a.s. for all continuous functions,limn→+∞ An(f) = Φ(f). More work is required to
extend this result to the class of functions considered in the Theorem. ✷

According to Lemma 2.2, the random variableZβ defined by (5) is a.s. finite (resp. infinite) ifβ > 1/2
(resp.0 < β ≤ 1/2). Considering the functionf(x) = xβ−1 for β > 0, we easily deduce from Theorem
3.1 the following convergence. Forn ∈ N∗, we set:

Z
(n)
β =

1√
2α

|Tn|−(β+ 1
2 )

∑

v∈Tn

|Tv|β .

Corollary 3.2 We have almost surely, for allβ > 0,

lim
n→+∞

Z
(n)
β = Zβ.

Remark 3.3 Corollary 3.2 gives directly that(|Tn|−3/2
∑

v∈Tn
|Tv|, |Tn|−5/2

∑
v∈Tn

|Tv|2) is asymptot-

ically distributed as
√
2α (Z1, Z2). Since, according to [6] or [18], the quantity

∑
v∈Tn

min(|Lv|, |Rv|)
is of smaller magnitude than|Tn|3/2, we can directly recover the joint asymptotic distributionof the total
length path, the Wiener, Sackin, Colless and cophenetic indexes defined in Section 1.1 for the Catalan
model. More precisely, we have the following a.s. convergence asn goes to infinity:

(
P (Tn)

|Tn|3/2
,
W (Tn)

|Tn|5/2
,
S(Tn)

|Tn|3/2
,
C(Tn)

|Tn|3/2
,
Co(Tn)

|Tn|5/2
)

→
√
2α

(
Z1, 2(Z1 − Z2),

Z1

2
,
Z1

2
,
Z2

4

)
.
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The next proposition gives the fluctuations corresponding to the invariance principles of Corollary 3.2
whenβ ≥ 1. Notice the speed of convergence in the invariance principle is of order|Tn|−1/4 and the
limiting variance is (up to a multiplicative constant) given byZβ′ with β′ = 2β.

Proposition 3.4 For all β ≥ 1, we have the following convergence in distribution asn goes to infinity:

(
|Tn|1/4(Z(n)

β − Zβ), Z
(n)
β

)
→

(
(2α)−1/4

√
Z2β G,Zβ

)
,

whereG is a centered reduced Gaussian random variable independentof the excursione.

The contribution to the fluctuations is given by the error of approximation ofAn,1(f) byAn,2(f) with
f(x) = xβ−1, see notations from the proof of Theorem 3.1. This corresponds to the fluctuations coming
from the approximation of the branch lengths(hv, v ∈ Tn) by their mean, which relies on the explicit
representation on their joint distribution given in Lemma 2.1. In particular, there is no other contribution
to the fluctuations from the approximation of the continuum treeTe by the sub-treeTn.
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Fields, 131:553–603, 2005.

[12] S. Evans.Probability and real trees, volume 1920 ofLecture Notes in Math.Springer, 2008.

[13] J. A. Fill, P. Flajolet, and N. Kapur. Singularity analysis, Hadamard products, and tree recurrences.
J. Comput. Appl. Math., 174(2):271–313, 2005.

[14] J. A. Fill and S. Janson. Precise logarithmic asymptotics for the right tails of some limit random
variables for random trees.Ann. Comb., 12(4):403–416, 2009.

[15] J. A. Fill and N. Kapur. A repertoire for additive functionals of uniformly distributedm-ary search
trees (extended abstract). In2005 International Conference on Analysis of Algorithms, Discrete
Math. Theor. Comput. Sci. Proc., AD, pages 105–114 (electronic).

[16] J. A. Fill and N. Kapur. Limiting distributions for additive functionals on Catalan trees.Theoret.
Comput. Sci., 326(1-3):69–102, 2004.

[17] J. A. Fill and N. Kapur. Transfer theorems and asymptotic distributional results form-ary search
trees.Random Structures Algorithms, 26(4):359–391, 2005.

[18] D. J. Ford. Probabilities on cladograms: introductionto the alpha model.ArXiv preprint, 2005.

[19] C. Holmgren and S. Janson. Limit laws for functions of fringe trees for binary search trees and
random recursive trees.Elect. J. Probab., 20:1–51, 2005.

[20] H.-K. Hwang and R. Neininger. Phase change of limit lawsin the ”Quicksort” recurrence under
varying toll functions.SIAM J. Comput., 31(6):1687–1722, 2002.

[21] S. Janson. The Wiener index of simply generated random trees.Random Struct. Algo., 22(4):337–
358, 2003.

[22] S. Janson. Asymptotic normality of fringe subtrees andadditive functionals in conditioned Galton-
Watson trees.Random Struct. Algo., To appear.

[23] S. Janson and P. Chassaing. The center of mass of the ISE and the Wiener index of trees.Electron.
Comm. Probab., pages 178–187, 2004.

[24] N. Kapur.Additive functionals on random search trees. ProQuest LLC, Ann Arbor, MI, 2003. Thesis
(Ph.D.)–The Johns Hopkins University.

[25] J.-F. Le Gall. Random trees and applications.Probab. Surv., 2:245–311, 2005.

[26] H. M. Mahmoud. Limiting distribution for path lengths in recursive trees.Probab. Engin. Inform.
Sci., 5(1):53–59, 1991.
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Abstract: In 1960 Rényi asked for the number of random queries necessary to recover a hidden bijective labeling of
n distinct objects. In each query one selects a random subset of labels and asks, what is the set of objects that have
these labels? We consider here an asymmetric version of the problem in which in every query an object is chosen with
probabilityp > 1/2 and we ignore “inconclusive” queries. We study the number ofqueries needed to recover the
labeling in its entirety (theheight), to recover at least one single element (thefillup level), and to recover a randomly
chosen element (thetypical depth). This problem exhibits several remarkable behaviors: thedepthDn converges
in probability but not almost surely and while it satisfies the central limit theorem its local limit theorem doesn’t
hold; the heightHn and the fillup levelFn exhibit phase transitions with respect top in the second term. To obtain
these results, we take a unified approach via the analysis of theexternal profiledefined at levelk as the number of
elements recovered by thekth query. We first establish new precise asymptotic results for the average and variance,
and a central limit law, for the external profile in the regimewhere it grows polynomially withn. We then extend the
external profile results to the boundaries of the central region, leading to the solution of our problem for the height
and fillup level. As a bonus, our analysis implies novel results for random PATRICIA tries, as it turns out that the
problem is probabilistically equivalent to the analysis ofthe height, fillup level, typical depth, and external profileof
a PATRICIA trie built fromn independent binary sequences generated by a biased(p) memoryless source.

Keywords: Rényi problem, PATRICIA trie, profile, height, fillup level, analytic combinatorics, Mellin transform,
depoissonization

1 Introduction
In his lectures in the summer of 1960 at Michigan State University, Alfred Rényi discussed several prob-
lems related to random sets [21]. Among them there was a problem regarding recovering a labeling of
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a setX of n distinct objects by asking random subset questions of the form “which objects correspond
to the labels in the (random) setB?” For a given method of randomly selecting queries, Rényi’s original
problem asks for the typical behavior of the number of queries necessary to recover the hidden labeling.

Formally, the unknown labeling of the setX is a bijectionφ fromX to a setA of labels (necessarily
with equal cardinalityn), and a query takes the form of a subsetB ⊆ A. The response to a queryB is
φ−1(B) ⊆ X .

Our contribution in this paper is a precise analysis of several parameters of Rényi’s problem for a
particular natural probabilistic model on the query sequence. In order to formulate this model precisely,
it is convenient to first state a view of the process that elucidates its tree-like structure. In particular, a
sequence of queries corresponds to a refinement of partitions of the set of objects, where two objects are in
different partition elements if they have been distinguished by some sequence of queries. More precisely,
the refinement works as follows: before any questions are asked, we have a trivial partitionP0 = X
consisting of a single class (all objects). Inductively, ifPj−1 corresponds to the partition induced by the
first j − 1 queries, thenPj is constructed fromPj−1 by splitting each element ofPj−1 into at most two
disjoint subsets: those objects that are contained in the preimage of thejth query setBj and those that
are not. The hidden labeling is recovered precisely when thepartition ofX consists only of singleton
elements. An instance of this process may be viewed as a rooted binary tree (which we call thepartition
refinement tree) in which thejth level, forj ≥ 0, corresponds to the partition resulting fromj queries;
a node in a level corresponds to an element of that partition.A right child corresponds to a subset of a
parent partition element that is included in the subsequentquery, and a left child corresponds to a subset
that is not included. See Example 1 for an illustration.

Example 1 (Demonstration of partition refinement). Consider an instance of the problem whereX =
[5] = {1, ..., 5}, with labels(d, e, a, c, b) respectively (soA = {a, b, c, d, e}). Consider the following
sequence of queries:

1. B1 = {b, d} 7→ {1, 5}

2. B2 = {a, b, d} 7→ {1, 3, 5},

3. B3 = {a, c, d} 7→ {1, 3, 4},

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

{1, 5}

5 1

Each levelj ≥ 0 of the tree depicts the partitionPj , where a right child node corresponds to the subset
of objects in the parent set which are contained in the response to thejth query. Singletons are only
explicitly depicted in the first level in which they appear.

In this work we consider a version of the problem in which, in every query, each label is included
independently with probabilityp > 1/2 (the asymmetric case) and weignore inconclusive queries. In
particular, if a candidate query fails to nontrivially split some element of the previous partition, we modify
the query by deciding again independently whether or not to include each label of that partition element
with probability p. We perform this modification until the resulting query splits every element of the
previous partition nontrivially. See Example 2.
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Example 2 (Ignoring inconclusive queries). Continuing Example 1, the queryB2 fails to split the par-
tition element{1, 5}, so it is an example of an inconclusive query and would be modified in our model
to, say,B′

2 = φ({1, 3}). The resulting refinement of partitions is depicted as a treehere. Note that
the tree now does not contain non-branching paths and thatB2 is ignored in the final query sequence.

1. B1 = {b, d} 7→ {1, 5}

2. B′
2 = {a, d} 7→ {1, 3}

3. B3 = {a, c, d} 7→ {1, 3, 4}.

{1, 2, 3, 4, 5}

{2,3,4}

{2,4}

2 4

3

{1,5}

5 1

We study three parameters of this random process:Hn, the number of such queries needed to recover
the entire labeling;Fn, the number needed before at least one element is recovered;andDn, the number
needed to recover an element selected uniformly at random. Our objective is to present precise probabilis-
tic estimates of these parameters and to study the distributional behavior ofDn.

The symmetric version (i.e.,p = 1/2) of the problem (with a variation) was discussed by Pittel and
Rubin in [19], where they analyzed the typical value ofHn. In their model, a query is constructed by
deciding whether or not to include each label fromA independently with probabilityp = 1/2. To make
the problem interesting, they added a constraint similar toours: namely, a query is, as in our model,
admissible if and only if it splits every nontrivial elementof the current partition. In contrast with our
model, however, Pittel and Rubin completely discard inconclusive queries (rather than modifying their
inconclusive subsets as we do). Despite this difference, the model considered in [19] is probabilistically
equivalent to ours for the symmetric case. Our primary contribution is the analysis of the problem in the
asymmetric case (p > 1/2), but our methods of proof allow us to recover the results of Pittel and Rubin.

The question asked by Rényi brings some surprises. For the symmetric model (p = 1/2) Pittel and
Rubin [19] were able to prove that the number of necessary queries is with high probability (whp) (see
Theorem 1)

Hn = log2 n+
√
2 log2 n+ o(

√
logn). (1)

In this paper, we re-establish this result using a differentapproachandprove that forp > 1/2 the number
of queries grows whp as

Hn = log1/p n+
1

2
logp/q logn+ o(log logn), (2)

whereq := 1− p. Note a phase transition in the second term. We show that a similar phase transition
occurs in the asymptotics forFn (see Theorem 1):

Fn =

{
log1/q n− log1/q log logn+ o(log log logn) p > q

log2 n− log2 log n+ o(log log n) p = q = 1/2.
(3)
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We then prove in Theorem 2 some interesting probabilistic behaviors ofDn. We haveDn/ logn →
1/h(p) (in probability) whereh(p) := −p log p − q log q, but we do not have almost sure convergence.
Moreover,Dn appropriately normalized satisfies a central limit result,but not a local limit theorem due
to some oscillations discussed below.

We establish these results in a novel way by considering firsttheexternal profileBn,k, whose analysis
was, until recently, an open problem of its own (the second and third authors gave a precise analysis of the
external profile in an important range of parameters in [13, 15], but the present paper requires nontrivial
extensions). The external profile at levelk is the number of bijection elements revealed by thekth query
(one may also define theinternalprofile at levelk as the number of non-singleton elements of the partition
immediately after thekth query). Its study is motivated by the fact that many other parameters, including
all of those that we mention here, can be written in terms of it. Indeed,Pr[Dn = k] = E[Bn,k]/n,
Hn = max{k : Bn,k > 0}, andFn = min{k : Bn,k > 0} − 1.

We now discuss our new results concerning the probabilisticbehavior of the external profile. We
establish in [15, 13] precise asymptotic expressions for the expected value and variance ofBn,k in the
central range, that is, withk ∼ α log n, where, for any fixedǫ > 0, α ∈ (1/ log(1/q)+ǫ, 1/ log(1/p)−ǫ)
(the left and right endpoints of this interval are associated with Fn andHn, respectively). Specifically,
we show that both the mean and the variance are of the same (explicit) polynomial order of growth (with
respect ton) (see Theorem 3). More precisely, we show that both expectedvalue and variance grow for
k ∼ α logn as

H(ρ(α), logp/q(p
kn))

nβ(α)√
C logn

whereβ(α) ≤ 1 andρ(α) are complicated functions ofα, C is an explicit constant, andH(ρ, x) is
a function that is periodic inx. The oscillations come from infinitely many regularly spaced saddle
points that we observe when inverting the Mellin transform of the Poisson generating function ofE[Bn,k].
Finally, we prove a central limit theorem; that is,(Bn,k − E[Bn,k])/

√
Var[Bn,k] → N (0, 1) where

N (0, 1) represents the standard normal distribution.
In the present paper, we exploit the expected value analysisof Bn,k in the central range to give precise

distributional information aboutDn via the identityPr[Dn = k] = E[Bn,k]/n. Note that the oscillations
in E[Bn,k] are the source of the peculiar behavior ofDn.

In order to establish the most interesting results claimed in the present paper forHn andFn, the analysis
sketched above does not suffice: we need to estimate the mean and the variance of the external profile
beyondthe rangeα ∈ (1/ log(1/q)+ǫ, 1/ log(1/p)−ǫ); in particular, forFn andHn we need expansions
at the left and right side, respectively, of this range. This, it turns out, requires a novel approach and
analysis, as discussed in detail in our forthcoming journalpaper [5], leading to the announced results on
the Rényi problem in (2) and (3).

Having described most of our main results, we mention an important equivalence pointed out by Pittel
and Rubin [19]. They observed that their version of the Rényi process resembles the construction of a
digital tree known as a PATRICIA trie1 [12, 23]. In fact, the authors of [19] show thatHn is probabilisti-
cally equivalent to the height (longest path) of a PATRICIA trie built fromn binary sequences generated
independently by a memoryless source with biasp = 1/2 (that is, with a “1” generated with probabilityp;
this is often called theBernoulli model with biasp); the equivalence is true more generally, forp ≥ 1/2.
It is easy to see thatFn is equivalent to the fillup level (depth of the deepest full level),Dn to the typical

1 We recall that a PATRICIA trie is a trie in which non-branching paths arecompressed; that is, there are no unary paths.
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depth (depth of a randomly chosen leaf), andBn,k to the external profile of the tree (the number of leaves
at levelk; the internal profile at levelk is similarly defined as the number of non-leaf nodes at that level).
We spell out this equivalence in the following simple claim.

Lemma 1 (Equivalence of parameters of the Rényi problem with thoseof PATRICIA tries). Any parame-
ter (in particular,Hn, Fn, Dn, andBn,k) of the Ŕenyi process with biasp that is a function of the partition
refinement tree is equal in distribution to the same functionof a random PATRICIA trie generated byn
independent infinite binary strings from a memoryless source with biasp ≥ 1/2.

Proof. In a nutshell, we couple a random PATRICIA trie and the sequence of queries from the Rényi
process by constructing both from the same sequence of binary strings from a memoryless source. We do
this in such a way that the resulting PATRICIA trie and the partition refinement tree are isomorphic with
probability1, so that parameters defined in terms of either tree structureare equal in distribution.

More precisely, we start withn independent infinite binary stringsS1, ..., Sn generated according to a
memoryless source with biasp, where each string corresponds to a unique element of the setof labels (for
simplicity, we assume thatA = [n], andSj corresponds toj, for j ∈ [n]). These induce a PATRICIA
trie T , and our goal is to show that we can simulate a Rényi process using these strings, such that the
corresponding treeTR is isomorphic toT as a rooted plane– oriented tree (see Example 2). The basic idea
is as follows: we maintain for each stringSj an indexkj , initially set to1. Whenever the Rényi process
demands that we make a decision about whether or not to include labelj in a query, we include it if and
only if Sj,kj = 1, and then incrementkj by 1.

Clearly, this scheme induces the correct distribution on queries. Furthermore, the resulting partition
refinement tree (ignoring inconclusive queries) is easily seen to be isomorphic toT . Since the trees are
isomorphic, the parameters of interest are equal in each case.

Thus, our results on these parameters for the Rényi problemdirectly lead to novel results on PATRICIA
tries, and vice versa. In addition to their use as data structures, PATRICIA tries also arise as combinatorial
structures which capture the behavior of various processesof interest in computer science and information
theory (e.g., in leader election processes without trivialsplits [9] and in the solution to Rényi’s problem
which we study here [19, 2]).

Similarly, the version of the Rényi problem that allows inconclusive queries corresponds to results on
tries built onn binary strings from a memoryless source. We thus discuss them in the literature survey
below.

Now we briefly review known facts about PATRICIA tries and other digital trees when built overn
independent strings generated by a memoryless source. Profiles of tries in both the asymmetric and
symmetric cases were studied extensively in [16]. The expected profiles of digital search trees in both
cases were analyzed in [6], and the variance for the asymmetric case was treated in [10]. Some aspects
of trie and PATRICIA trie profiles (in particular, the concentration of their distributions) were studied
using probabilistic methods in [4, 3]. The depth in PATRICIAfor the symmetric model was analyzed
in [2, 12] while for the asymmetric model in [22]. The leadingasymptotics for the PATRICIA height
for the symmetric Bernoulli model was first analyzed by Pittel [17] (see also [23] for suffix trees). The
two-term expression for the height of PATRICIA for the symmetric model was first presented in [19] as
discussed above (see also [2]). Finally, in [13, 15], the second two authors of the present paper presented
a precise analysis of the external profile (including its mean, variance, and limiting distribution) in the
asymmetric case, for the range in which the profile grows polynomially. The present work relies on this
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previous analysis, but the analyses forHn andFn involve a significant extension, since they rely on
precise asymptotics for the external profile outside this central range.

Regarding methodology, the basic framework (which we use here) for analysis of digital tree recur-
rences by applying the Poisson transform to derive a functional equation, converting this to an algebraic
equation using the Mellin transform, and then inverting using the saddle point method/singularity analy-
sis followed by depoissonization, was worked out in [6] and followed in [16]. While this basic chain is
common, the challenges of applying it vary dramatically between the different digital trees, and this is
the case here. As we discuss later (see (7) and the surrounding text), this variation starts with the quite
different forms of the Poisson functional equations, whichlead to unique analytic challenges.

The plan for the paper is as follows. In the next section we formulate more precisely our problem and
present our main results regarding the external profile, height, fillup level, and depth. Sketches of proofs
are provided in the last section (the full proofs are provided in the journal version of this paper).

2 Main Results
In this section, we formulate precisely Rényi’s problem and present our main results. Our goal is to
provide precise asymptotics for three natural parameters of the Rényi problem onn objects with each
label in a given query being included with probabilityp ≥ 1/2: the numberFn of queries needed to
identify at least one single element of the bijection, the numberHn needed to recover the bijection in its
entirety, and the numberDn needed to recover an element of the bijection chosen uniformly at random
from then objects. If one wishes to determine the label for a particular object, these quantities correspond
to the best, worst, and average case performance, respectively, of the random subset strategy proposed by
Rényi. We call these parameters, the fillup levelFn, the heightHn, and the depthDn, respectively (these
names come from the corresponding quantities in random digital trees). One more parameter is relevant:
we can present a unified analysis of our main three parametersFn, Hn, andDn via theexternal profile
Bn,k, which is the number of elements of the bijection onn items identified by thekth query.

Our analysis reveals several remarkable behaviors: the depthDn converges in probability but not almost
surely and while it satisfies the central limit theorem its local limit theorem doesn’t hold. Perhaps most
interestingly, the heightHn and the fillup levelFn exhibit phase transitions with respect top in the second
term.

To begin, we recall the relations ofFn,Hn, andDn toBn,k:

Fn = min{k : Bn,k > 0} − 1 Hn = max{k : Bn,k > 0} Pr[Dn = k] = E[Bn,k]/n.

Using the first and second moment methods, we can then obtain upper and lower bounds onHn andFn
in terms of the moments ofBn,k:

Pr[Hn > k] ≤
∑

j>k

E[Bn,j ], Pr[Hn < k] ≤ Var[Bn,k]

E[Bn,k]2
,

and

Pr[Fn > k] ≤ Var[Bn,k]

E[Bn,k]2
, Pr[Fn < k] ≤ E[Bn,k].

The analysis of the distribution ofDn reduces simply to that ofE[Bn,k].
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In the next section, we show that the fillup levelFn and the heightHn have the following precise
asymptotic expansions. Both exhibit a phase transition with respect top in the second term. A complete
proof can be found in our journal version of this paper [5].

Theorem 1 (Asymptotics forFn andHn). With high probability,

Hn =

{
log1/p n+ 1

2 logp/q logn+ o(log logn) p > q

log2 n+
√
2 log2 n+ o(

√
logn) p = q

(4)

and

Fn =

{
log1/q n− log1/q log logn+ o(log log logn) p > q

log2 n− log2 logn+ o(log logn) p = q
(5)

for largen.

While the behavior of the fillup levelFn could be anticipated [18] (by comparing it to the corresponding
result in the version of Rényi’s problem allowing inconclusive queries), the behavior of the heightHn is
rather more unusual. It is difficult to compare the height result to the analogous quantity for tries or
digital search trees, because only the first term is given forp > 1/2 in the literature: for tries, it is

2
log(1/(p2+q2)) logn, while for digital search trees it islog1/p n, as in PATRICIA tries.

Focusing on the second term of each expression given in the theorem, this result says that the deviation
of the typical height fromlog1/p n is asymptotically larger whenp = 1/2 than whenp > 1/2. That is,
the height of the tallest fringe subtree (i.e., a subtree rooted nearlog1/p n) is asymptotically larger in the
symmetric case. A complete explanation of this phenomenon would likely require consideration of the
number of such subtrees (i.e., the internal profile at levellog1/p n) and the number of strings participating
in each of them. In the language of the Rényi problem, this latter parameter is the number of objects that
remain unidentified after approximatelylog1/p n queries.

Moving to the number of questionsDn needed to identify a random element of the bijection, we have
the following theorem (note that due to the evolution process of the random PATRICIA trie, all random
variables can be defined on the same probability space).

Theorem 2 (Asymptotics and distributional behavior ofDn). For p > 1/2, the normalized depthDn/ logn
converges in probability to1/h(p), whereh(p) := −p log p − q log q is the Bernoulli entropy function,
but not almost surely. In fact,

lim inf
n→∞

Dn/ logn = 1/ log(1/q) (a.s) lim sup
n→∞

Dn/ logn = 1/ log(1/p).

Furthermore,Dn satisfies a central limit theorem; that is,(Dn − E[Dn])/
√
Var[Dn] → N (0, 1), where

E[Dn] ∼ 1
h(p) log n andVar[Dn] ∼ c logn wherec is an explicit constant. Alocal limit theorem does

not hold: forx = O(1) andk = 1
h (logn+ x

√
κ∗(−1) logn/h), whereκ∗(−1) is some explicit constant

andh = h(p), we obtain

Pr [Dn = k] ∼ H
(
−1; logp/q p

kn
) e−x

2/2

√
2πC logn

for an oscillating functionH(−1; logp/q p
kn) (see Figure 1) defined in Theorem 3 below and an explicitly

known constantC.
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Fig. 1: Plots ofH(ρ, x) for ρ = −0.5, 0, 0.5.

Again, the depth exhibits a phase transition: forp = 1/2 we haveDn/ logn→ 1/ log 2 almost surely,
which doesn’t hold forp > 1/2. We note that some of the results on the depth (namely, the convergence
in probability and the central limit theorem) are already known (see [20]), but our contribution is a novel
derivation of these facts via the profile analysis. Qualitatively, the oscillatory behavior of the external
profile that is responsible for the lack of local limit theorem for the depth occurs also in both tries and
digital search trees.

We now explain our approach to the analysis of the moments ofBn,k in appropriate ranges (we follow
[13, 15]). For this, we take an analytic approach [8, 23]. We first explain it for the analysis relevant to
Dn, and then show how to extend it forHn andFn. More details can be found in the next section.

We start by deriving a recurrence for the average profile, which we denote byµn,k := E[Bn,k]. It
satisfies

µn,k = (pn + qn)µn,k +
n−1∑

j=1

(
n

j

)
pjqn−j(µj,k−1 + µn−j,k−1) (6)

for n ≥ 2 andk ≥ 1, with some initial/boundary conditions; most importantly, µn,k = 0 for k ≥ n
and anyn. Moreover,µn,k ≤ n for all n andk owing to the elimination of inconclusive queries. This
recurrence arises from conditioning on the numberj of objects that are included in the first query. If
1 ≤ j ≤ n − 1 objects are included, then the conditional expectation is asum of contributions from
those objects that are included and those that aren’t. If, onthe other hand, all objects are included or all
are excluded from the first potential query (which happens with probabilitypn + qn), then the partition
element splitting constraint on the queries applies, the potential query is ignored as inconclusive, and the
contribution isµn,k.

The tools that we use to solve this recurrence (for details see [13, 15]) are similar to those of the analyses
for digital trees [23] such as tries and digital search trees(though the analytical details differ significantly).
We first derive a functional equation for the Poisson transform G̃k(z) =

∑
m≥0 µm,k

zm

m! e
−z of µn,k,

which gives

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + e−pz(G̃k − G̃k−1)(qz) + e−qz(G̃k − G̃k−1)(pz).
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This we write as

G̃k(z) = G̃k−1(pz) + G̃k−1(qz) + W̃k,G(z), (7)

We contrast this functional equation with those for tries [16] and for digital search trees [6]: in tries, the
expressionW̃k,G(z) does not appear, which significantly simplifies the analysisin that case. In digital
search trees, the functional equation is a differential equation, and the analysis is consequently quite
different.

At this point the goal is to determine asymptotics forG̃k(z) asz → ∞ in a cone around the positive real
axis. When solving (7),̃Wk,G(z) complicates the analysis because it has no closed-form Mellin transform
(see below); we handle it via its Taylor series. Finally, depoissonization [23] will allow us to transfer the
asymptotic expansion for̃Gk(z) back to one forµn,k:

µn,k = G̃k(n)−
n

2
G̃′′
k(n) +O(nǫ−1).

To convert (7) to an algebraic equation, we use theMellin transform[7], which, for a functionf : R →
R is given by

f∗(s) =
∫ ∞

0

zs−1f(z) dz.

Using the Mellin transform identities and definingT (s) = p−s + q−s, we end up with an expression for
the Mellin transformG∗

k(s) of G̃k(z) of the form

G∗
k(s) = Γ(s+ 1)Ak(s)(p

−s + q−s)k = Γ(s+ 1)Ak(s)T (s)
k,

whereAk(s) (see (14) below) is an infinite series arising from the contributions coming from the function
W̃k,G(z):

Ak(s) =

k∑

j=0

T (s)−j
∞∑

m=j

T (−m)(µm,j − µm,j−1)
Γ(m+ s)

Γ(m+ 1)Γ(s+ 1)
, (8)

where we defineµm,−1 = 0 for all m. Note that it involvesµm,j − µm,j−1 for variousm andj (see
[13, 14]). Locating and characterizing the singularities of G∗

k(s) then becomes important. We find that, for
anyk,Ak(s) is entire, with zeros ats ∈ Z∩ [−k,−1], so thatG∗

k(s) is meromorphic, with possible simple
poles at the negative integers less than−k. The fundamental strip of̃Gk(z) then contains(−k− 1,∞). It
turns out that the main asymptotic contribution comes from an infinite number of saddle points (see (10)
below) defined by the kernelT (s) = p−s + q−s.

We then must asymptotically invert the Mellin transform to recoverG̃k(z). The Mellin inversion for-
mula forG∗

k(s) is given by

G̃k(z) =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sG∗

k(s) ds =
1

2πi

∫ ρ+i∞

ρ−i∞
z−sΓ(s+ 1)Ak(s)T (s)

k ds, (9)

whereρ is any real number inside the fundamental strip associated with G̃k(z). For k in the range in
which the profile grows polynomially (that coincides with the range of interest in our analysis ofDn), we
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evaluate this integral via the saddle point method [8]. Examining z−sT (s)k and solving the associated
saddle point equation

d

ds
[k logT (s)− s log z] = 0,

we find an explicit formula (12) below forρ(α), the real-valued saddle point of our integrand. The
multivaluedness of the complex logarithm then implies thatthere areinfinitely manyregularly spaced
saddle pointssj , j ∈ Z, on this vertical line:

sj = ρ(α) + i
2πj

log(p/q)
. (10)

These lead directly to oscillations in theΘ(1) factor in the final asymptotics forµn,k). The main challenge
in completing the saddle point analysis is then to elucidatethe behavior ofΓ(s + 1)Ak(s) for s → ∞
along vertical lines: it turns out that this function inherits the exponential decay ofΓ(s+1) along vertical
lines, and we prove it by splitting the sum definingAk(s) into two pieces, which decay exponentially for
different reasons (the first sum decays as a result of the superexponential decay ofµm,j for m = Θ(j),
which is outside the main range of interest). We end up with anasymptotic expansion for̃Gk(z) as
z → ∞ in terms ofAk(s).

Finally, we must analyze the convergence properties ofAk(s) ask → ∞. We find that it converges
uniformly on compact sets to a functionA(s) (see (14)) which is, because of the uniformity, entire. We
then apply Lebesgue’s dominated convergence theorem to conclude that we can replaceAk(s) with A(s)
in the final asymptotic expansion of̃Gk(z). All of this yields the following theorem which is proved in
[13, 15].

Theorem 3 (Moments and limiting distribution forBn,k for k in the central region). Let ǫ > 0 be

independent ofn andk, and fixα ∈
(

1
log(1/q) + ǫ, 1

log(1/p) − ǫ
)

. Then fork = kα,n ∼ α logn:

(i) The expected external profile becomes

E[Bn,k] = H(ρ(α), logp/q(p
kn)) · nβ(α)√

2πκ∗(ρ(α))α logn

(
1 +O(

√
logn)

)
, (11)

where

ρ(α) = − 1

log(p/q)
log

(
α log(1/q)− 1

1− α log(1/p)

)
, β(α) = α log(T (ρ(α))) − ρ(α), (12)

andκ∗(ρ) is an explicitly known function ofρ. Furthermore,H(ρ, x) (see Figure 1) is a non-zero periodic
function with period1 in x given by

H(ρ, x) =
∑

j∈Z
A(ρ+ itj)Γ(ρ+ 1 + itj)e

−2jπix, (13)

wheretj = 2πj/ log(p/q), and

A(s) =

∞∑

j=0

T (s)−j
∞∑

n=j

T (−n)(µn,j − µn,j−1)
φn(s)

n!
, (14)
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whereφn(s) =
∏n−1
j=1 (s + j) for n > 1 andφn(s) = 1 for n ≤ 1. We recall thatT (s) = p−s + q−s.

Here,A(s) is an entire function which is zero at the negative integers.
(ii) The variance of the profile isVar[Bn,k] = Θ(E[Bn,k]).
(iii) The limiting distribution of the normalized profile is Gaussian; that is,

Bn,k − µn,k√
Var[Bn,k]

D−→ N (0, 1)

whereN (0, 1) is the standard normal distribution.

We should point out that the unusual behavior ofDn in Rényi’s problem is a direct consequence of the
oscillatory behavior of the profile, which disappears for the symmetric case. Furthermore, for the height
and fillup level analyses we need to extend Theorem 3 beyond its original central range forα, as discussed
in the next section.

3 Proof sketches
Now we give sketches of the proofs of Theorems 1 and 2 with moredetails regarding the proof of The-
orem 1 in the forthcoming journal version [5]. In particular, in this conference version, we only sketch
derivations forHn and forFn by upper and lower bounding, respectively. As stated earlier, the proof of
Theorem 3 can be found in [13, 15].

3.1 Sketch of the proof of Theorem 1
To prove our results forHn andFn, we extend the analysis ofBn,k to the boundaries of the central region
(i.e.,k ∼ log1/p n andk ∼ log1/q n).

Derivation of Hn. Fixing anyǫ > 0, we write, for the lower bound on the height,

kL = log1/p n+ (1− ǫ)ψ(n)

and, for the upper bound,
kU = log1/p n+ (1 + ǫ)ψ(n),

for a functionψ(n) = o(logn) which we are to determine. In order for the first and second mo-
ment methods to work, we requireµn,kL

n→∞−−−−→ ∞ andµn,kU
n→∞−−−−→ 0. (We additionally need that

Var[Bn,kL ] = o(µ2
n,kL

), but this is not too hard to show by induction using the recurrence forṼk(z),
the Poisson variance ofBn,k.) In order to identify theψ(n) at which this transition occurs, we define
k = log1/p n+ψ(n), and the plan is to estimateE[Bn,k] via the integral representation (9) for its Poisson
transform. Specifically, we consider the inverse Mellin integrand for somes = ρ ∈ Z− + 1/2 to be set
later. This is sufficient for the upper bound, since, by the exponential decay of theΓ function, the entire
integral is at most of the same order of growth as the integrand on the real axis. We expand the integrand
in (9), that is,

Jk(n, s) :=

k∑

j=0

n−sT (s)k−j
∑

m≥j
T (−m)(µm,j − µm,j−1)

Γ(m+ s)

Γ(m+ 1)
, (15)

and apply a simple extension of Theorem 2.2, part (iii) of [14] to approximateµm,j − µm,j−1 when
j → ∞ and is close enough tom:
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Lemma 2 (Precise asymptotics forµn,k, k → ∞ andn neark). Let p ≥ q. For n → ∞ with 1 ≤ k < n
andlog2(n− k) = o(k),

µn,k ∼ (n− k)3/2+
log q
log p

n!

(n− k)!
pk

2/2+k/2qk · exp
(
− log2(n− k)

2 log(1/p)

)
Θ(1). (16)

Moreover, forn→ ∞ andk < n, for some constantC > 0,

µn,k ≤ C
n!

(n− k − 1)!
pk

2/2+k/2+O(log(n−k)2)qk.

Now, we continue with the evaluation of (15). Thejth term of (15) is then of orderpνj(n,s), where we
set

νj(n, s) = (j − ψ(n))2/2 + (j − ψ(n))(s+ log1/p(1 + (p/q)s) + ψ(n) + 1)

− log1/p n log1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2).

The factorT (s)k−j ensures that the boundedj terms are negligible.
Our next goal is to find thej which gives the dominant contribution to the sum in (15); that is, the

j for which the contributionspνj(n,s) dominate. By elementary calculus, we can find thej term which
minimizesνj(n, s):

j = −(s+ log1/p(1 + (p/q)s) + 1).

Thenνj(n, s) for this value ofj becomes

νj(n, s) = −
(s+ log1/p(1 + (p/q)s) + ψ(n) + 1)2

2

− log1/p n log1/p(1 + (p/q)s) + ψ(n)2/2 + o(ψ(n)2). (17)

We then minimize over alls, which requires us to split into the symmetric and asymmetric cases.

Symmetric case: Whenp = q = 1/2, we havelog1/p(1+(p/q)s) = log2(2) = 1, so that the expression
for νj(n, s) simplifies, and we gets = −ψ(n) +O(1). The optimal value forνj(n, s) then becomes

νj(n, s) = − log2 n+ ψ(n)2/2 + o(ψ(n)2). (18)

We have thus succeeded in finding a likely candidate for the range ofj terms that contribute maximally,
as well as an upper bound on their contribution. This gives a tight upper bound onJk(n, s) and, hence,
on G̃k(n), of Θ(2−νj(n,s)).

Now, to findψ(n) for which there is a phase transition in this bound from tending to∞ to tending to0,
we set the exponent in the above expression equal to zero and solve forψ(n). This gives

− log2 n+ ψ(n)2/2(1 + o(1)) = 0 =⇒ ψ(n) ∼
√
2 log2 n,

as expected.
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Asymmetric case: On the other hand, whenp > 1/2, the equation that we need to solve to find the
minimizing value ofs for (17) is a bit more complicated, owing to the fact thatlog1/p(1 + (p/q)s) now
depends ons: taking a derivative with respect tos in (17) and setting this equal to0, after some algebra,
we must solve

− (p/q)s log(p/q)

log(1/p)
log1/p n− ψ(n)(1 +O((p/q)s))− s(1 +O((p/q)s)) + O((p/q)s) = 0 (19)

for s. Here, we note that we used the approximation

log1/p(1 + (p/q)s) =
(p/q)s

log(1/p)
+O((p/q)2),

which is valid since we are looking fors→ −∞.
To find a solution to (19), we first note that it implies thats < −ψ(n) (since the first term involving

logn is negative), and, ifψ(n) > 0, this implies that

−ψ(n)− s = −O(s). (20)

The plan, then, is to use this to guess a solutions for (19), which we can then verify. The equality (20)
suggests that we replace−ψ(n)− s+O((p/q)s) with −C · s in (19), for some constantC > 0. Then the
equation becomes

−Cs− (p/q)s log(p/q)

log(1/p)
log1/p n = 0.

After some trivial rearrangement and multiplication of both sides bylog(p/q), we get

−s log(p/q) · e−s log(p/q) = Θ(logn).

SettingW = −s log(p/q) brings us to an expression of the form that defines the LambertW function [1]
(i.e., a functionW (z) satisfyingW (z)eW (z) = z).

Using the asymptotics of theW function for largez [1], we thus find that

s = − logp/q logn+ O(log log logn).

Note thats → −∞, as required. This may be plugged into (17) to see that it is indeed a solution to the
equation.

Now, to find the correct choice ofψ(n) for which there is a phase transition, we plug this choice ofs
into (17), set it equal to0, and solve forψ(n). This gives

ψ(n) = −s
2
=

1

2
logp/q logn+O(log log logn), (21)

as desired.
Note that replacingψ(n) in (17) with (1+ ǫ)ψ(n) yields a maximum contribution to the inverse Mellin

integral of

JkU (n, s) = O(p
ǫ
2 (logp/q logn)2+o((log logn)2)) → 0. (22)
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When we replaceψ(n) with (1− ǫ)ψ(n), we get

JkL(n, s) = O(p−
ǫ
2 (logp/q log n)2+o((log logn)2)), (23)

so that the upper bound tends to infinity (in [5], we prove a matching lower bound).
The above analysis gives asymptotic estimates forG̃k(n). We then apply analytic depoissonization

[23] to get

µn,k = G̃k(n)−
n

2
G̃′′
k(n) +O(nǫ−1),

(where the second term can be handled in the same way as the first). This gives the claimed result.

Derivation of Fn. We now setk = log1/q n+ ψ(n) and

kL = log1/q n+ (1 + ǫ)ψ(n), kU = log1/q n+ (1− ǫ)ψ(n). (24)

Here,ψ(n) = o(logn) is to be determined so as to satisfyµn,kL → 0 andµn,kU → ∞. We use a tech-
nique similar to that used in the height proof to determineψ(n), except now theΓ function asymptotics
play a role, since we will chooseρ ∈ R tending to∞. Our first task is to upper bound (as tightly as
possible), for eachj, the magnitude of thejth term of (15). First, we upper bound

T (−m)(µm,j − µm,j−1) ≤ 2pmµm,j ≤ 2pmm, (25)

using the boundary conditions onµm,j. Next, we apply Stirling’s formula to get

Γ(m+ ρ)

Γ(m+ 1)
∼

√
1 + ρ/m

(
m+ ρ

e

)m+ρ (
m+ 1

e

)−(m+1)

(26)

= e(m+ρ) log(m+ρ)−(m+ρ)+m+1−(m+1) log(m+1)+O(log ρ) (27)

= exp((m+ ρ) log(m+ ρ)− (m+ 1) log(m+ 1) +O(ρ)) (28)

= exp(m log(m(1 + ρ/m)) + ρ log(ρ(1 +m/ρ))−m logm− logm+O(ρ)) (29)

= exp(m log(1 + ρ/m) + ρ log(ρ) + ρ log(1 +m/ρ)− logm+O(ρ)). (30)

Multiplying (25) and (30), then optimizing over allm ≥ j, we find that the maximum term of them sum
occurs atm = ρp/q and has a value of

exp(ρ log ρ+O(ρ)). (31)

Now, observe that whenlogm ≫ log ρ, the contribution of themth term ispm+o(m) = e−Θ(m). Thus,
settingj′ = ρlog ρ (note thatlog j′ = (log ρ)2 ≫ log ρ), we split them sum into two parts:

∑

m≥j
2pmm

Γ(m+ ρ)

Γ(m+ 1)
=

j′∑

m=j

2pmm
Γ(m+ ρ)

Γ(m+ 1)
+

∞∑

m=j′+1

2pmm
Γ(m+ ρ)

Γ(m+ 1)
.

The terms of the initial part can be upper bounded by (31), while those of the final part are upper bounded
by e−Θ(m) (so that the final part is the tail of a geometric series). Thisgives an upper bound of

j′eρ log ρ+O(ρ) + e−Θ(j′) = e(log ρ)
2+ρ log ρ+O(ρ) = eρ log ρ+O(ρ),
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which holds for anyj.
Multiplying this byn−ρT (ρ)k−j = qρ·(j−ψ(n))+(j−ψ(n)−log1/q n) log1/q(1+(q/p)ρ) gives

qρ(j−ψ(n))+(j−ψ(n)−log1/q n) log1/q(1+(q/p)ρ)−ρ log1/q ρ+O(ρ). (32)

Maximizing over thej terms, we find that the largest contribution comes fromj = 0. Then, just as in the
height upper bound, the behavior with respect toρ depends on whether or notp = q, becauselog1/q(1 +
(q/p)ρ) = 1 whenp = q and is dependent onρ otherwise. Taking this into account and minimizing over
ρ gives that the maximum contribution to thej sum is minimized by settingρ = 2−ψ(n)−

1
log 2 whenp = q

andρ ∼ logp/q logn otherwise. Plugging these choices forρ into the exponent of (32), setting it equal to
0, and solving forψ(n) givesψ(n) = − log2 logn + O(1) whenp = q andψ(n) ∼ − log1/q log logn
whenp > q. The evaluation of the inverse Mellin integral withk = kL as defined in (24) and the
integration contour given byℜ(s) = ρ proceeds along lines similar to the height proof, and this yields the
desired result.

We remark that the lower bound forFn may also be derived by relating it to the analogous quantity in
regular tries: by definition of the fillup level, there are no unary paths above the fillup level in a standard
trie. Thus, when converting the corresponding PATRICIA trie, no path compression occurs above this
level, which implies thatFn for PATRICIA is lower bounded by that of tries (and the typical value for
tries is the same as in our theorem for PATRICIA). We include the lower bound forFn via the bounding
of the inverse Mellin integral because it is similar in flavorto the corresponding proof of the upper bound
(for which no short proof seems to exist).

The upper bound forFn can similarly be handled by an exact evaluation of the inverse Mellin transform.

3.2 Proof of Theorem 2
Using Theorem 3, we can prove Theorem 2.

Convergence in probability: For the typical value ofDn, we show that

Pr[Dn < (1 − ǫ)
1

h(p)
logn]

n→∞−−−−→ 0, Pr[Dn > (1 + ǫ)
1

h(p)
logn]

n→∞−−−−→ 0. (33)

For the lower bound, we have

Pr[Dn < (1− ǫ)
1

h(p)
logn] =

⌊(1−ǫ) 1
h(p)

logn⌋∑

k=0

Pr[Dn = k] =

⌊(1−ǫ) 1
h(p)

logn⌋∑

k=0

µn,k
n

.

We know from Theorem 3 and the analysis ofFn that, in the range of this sum,µn,k = O(n1−ǫ). Plugging
this in, we get

Pr[Dn < (1− ǫ)
1

h(p)
logn] =

⌊(1−ǫ) 1
h(p)

logn⌋∑

k=0

O(n−ǫ) = O(n−ǫ logn) = o(1).

The proof for the upper bound is very similar, except that we appeal to the analysis ofHn instead of
Fn.
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No almost sure convergence: To show thatDn/ logn does not converge almost surely, we show that

lim inf
n→∞

Dn/ logn = 1/ log(1/q), lim sup
n→∞

Dn/ logn = 1/ log(1/p). (34)

For this, we first show that, almost surely,Fn/ logn
n→∞−−−−→ 1/ log(1/q) andHn/ logn

n→∞−−−−→ 1/ log(1/p).
Knowing this, we consider the following sequences of events: An is the event thatDn = Fn + 1,
andA′

n is the event thatDn = Hn. We note that all elements of the sequences are independent,and
Pr[An],Pr[A

′
n] ≥ 1/n. This implies that

∑∞
n=1 Pr[An] =

∑∞
n=1 Pr[A

′
n] = ∞, so that the Borel-Cantelli

lemma tells us that bothAn andA′
n occur infinitely often almost surely (moreover,Fn < Dn ≤ Hn by

definition of the relevant quantities). This proves (34).
To show the claimed almost sure convergence ofFn/ logn andHn/ logn, we cannot apply the Borel-

Cantelli lemmas directly, because the relevant sums do not converge. Instead, we apply a trick which was
used in [17]. We observe that both(Fn) and(Hn) are non-decreasing sequences. Next, we show that, on
some appropriately chosen subsequence, both of these sequences, when divided bylogn, converge almost
surely to their respective limits. Combining this with the observed monotonicity yields the claimed almost
sure convergence, and, hence, the equalities in (34).

We illustrate this idea more precisely forHn. By our analysis above, we know that

Pr[|Hn/ logn− 1/ log(1/p)| > ǫ] = O(e−Θ(log logn)2).

Then we fixt, and we definenr,t = 2t
222r . On this subsequence, by the probability bound just stated,

we can apply the Borel-Cantelli lemma to conclude thatHnr,t/ log(nr,t)
r→∞−−−→ 1/ log(1/p) · (t+1)2/t2

almost surely. Moreover, for everyn, we can chooser such thatnr,t ≤ n ≤ nr,t+1. Then

Hn/ logn ≤ Hnr,t+1/ lognr,t,

which implies

lim sup
n→∞

Hn

logn
≤ lim sup

r→∞

Hnr,t+1

lognr,t+1

lognr,t+1

lognr,t
=

1

log(1/p)
· (t+ 1)2

t2
.

Taking t → ∞, this becomes1/ log(1/p), as desired. The argument for thelim inf is similar, and this
establishes the almost sure convergence ofHn. The derivation is entirely similar forFn.

Asymptotics for probability mass function of Dn: The asymptotic formula forPr[Dn = k] with k as
in the theorem follows directly from the fact thatPr[Dn = k] = E[Bn,k]/n, plugging in the expression
of Theorem 3 forE[Bn,k].
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Solutions of First Order Linear Partial
Differential Equations Related to Urn Models
and Central Limit Theorems
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Abstract. We study first order linear partial differential equations that appear, for example, in the analysis of dimish-
ing urn models with the help of the method of characteristicsand formulate sufficient conditions for a central limit
theorem.

Keywords: urn models, first order partial differential equations, central limit theorem, singularity analysis

1 Introduction and Main result
The purpose of this paper is to study solutionsH(z, w) of special first order linear partial differential
equations that appear in the analysis of dimishing urn models. In particular we follow the work of Kuba
and Panholzer (2007).

More precisely, we consider a Pólya-Eggenberger urn modelwith two kinds of balls and transition

matrixM =

(
a b
c d

)
. The process runs as follows. Suppose that the urn containsm balls of the first

kind andn balls of the second kind - we can interprete this state as the point (m,n) on the integer lattice.
Then with probabilitym/(n+m) we adda balls of the first kind andb balls of the second kind, whereas
with probabilityn/(n + m) we addc balls of the first kind andd balls of the second kind. (Of course,
adding a negative number of balls means taking away this number of balls.) An absorbing stateS is a
subsetS ⊂ N× N, where the process stops when we arrive inS. In what follows we will only consider
(special) dimishing urn-models, where the number of balls of the first kind eventually reaches zero, so
that they-axisS = {(0, n) : n ≥ 0} is a natural absorbing state.

Suppose now that the process starts at(m,n) ∈ N×N with m ≥ 1 and lethn,m(v) = E[vXn,m ] denote
the probability generating function of the random variableXn,m that describes the position(0, n0) of the
absorbing state inS when the process starts at(m,n).

†Partially supported by the Austrian Science Fund FWF, Project SFB F50-02
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By definition the probability generating functionshn,m(v) satisfy the recurrence

hn,m(v) =
n

n+m
hn+a,m+c(v) +

m

n+m
hn+c,m+d(v). (1)

for (m,n) 6∈ S. The boundary values at an absorbing state(m,n) ∈ S is hn,m(v) = vn.
By setting

H(z, w; v) =
∑

n≥0,m≥1

hn,m(v)znwm

it follows that this generating functionH(z, w; v) satisfies the partial differential equation

z(1− z−aw−b)Hz + w(1 − z−cw−d)Hw + (az−aw−b + dz−cw−d)H = F (z, w) (2)

with some inhomogeneous partF (z, w) that is given by the boundary values which are partly unknown
(for exampleH(0, w, v), see Kuba and Panholzer (2007).

We want to mention that first order linear partial differential equations related to urn models were
first systematically discussed by Flajolet et al. (2005), see also Morcrette (2012), where a special case is
detailly treated. On the other hand, it is possible to describe the probabilistic behavior of the development
of urn models very precisely, sse Janson (2004, 2006), even with absorbing states. Nevertheless the
analysis of dimishing urns with they-axis as the absorbing state is still quite special. Here we also refer
to Kuba (2011); Kuba and Panholzer (2012), where the analysis is based directly on the recurrence (1).
Another interesting paper that is related to dimishing urn models and lines as absorbing states is Kuba
et al. (2009). There the authors observe several different kinds of limiting behaviors (with five phase
changes).

It turns out that there are some special cases, where it is more convenient to study the generating
function

H(z, w; v) =
∑

n≥0,m≥1

(
n+m

m

)
hn,m(v)znwm (3)

that (also) satisfies a first order linear partial differential equation of the form

A(z, w)Hz +B(z, w)Hw − C(z, w)H = D(z, w; v), (4)

with analytic functionsA(z, w), B(z, w), C(z, w), D(z, w; v). (In the examples belowA(z, w), B(z, w),
andC(z, w) are polynomials.) For these particular cases it turns out that the unknown boundary conditions
are not needed since they cancel in the equation. Nevertheless the methods that we are developing below
are – although we do not work out the general case – suitable todeal with equations of the form (2).

Note that by definition
H(z, 0; v) = 0. (5)

Furthermore, ifv = 1 thenhn,m(1) = 1 so that

H(z, w; 1) =
1

1− z − w
− 1

1− z
.

This means thatD(z, w; 1) is determined by

D(z, w; 1) =
A(z, w) +B(z, w)− (1− z − w)C(z, w)

(1− z − w)2
− A(z, w)− (1− z)C(z, w)

(1 − z)2
.
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In the present context it is convenient to assume that the function

H0(z, w) =
∑

n,m≥0

(
n+m

m

)
znwm = 1/(1− z − w)

is a solution of the homogeneous differential equationA(z, w)Hz +B(z, w)Hw −C(z, w)H = 0 so that

A(z, w) +B(z, w) = (1− z − w)C(z, w) (6)

and, thus,

D(z, w; 1) = −A(z, w)− (1− z)C(z, w)

(1− z)2
(7)

We first state the following three examples from Kuba and Panholzer (2007) (that we present in a
slightly modified way).

Example 1 The pill’s problem (see Brennan and Prodinger (2003); Knuthand Mccarthy (1991)) has

transition matrixM =

(
−1 0
1 −1

)
and absorbing stateS = {(0, n) : n ≥ 0}, and the corresponding

differential equation is given by

(z − z2 − w)Hz + w(1 − z)Hw − zH =
wv

(1− vz)2
.

Here it follows thathn,m(v) is given by

hn,m(v) = mv

∫ 1

0

(1 + (v − 1)q)n(1− q − (v − 1)q log q)m−1dq.

Finally the corresponding random variableXn,m has limiting distribution

Xn,m
n
m + logm

→ X (m → ∞),

whereX has densitye−x, x ≥ 0, or

Xn,m

n
→ Beta(1,m) (fixedm ≥ 1, n → ∞),

where (the beta distribution)Beta(1,m) has densitym(1− x)m−1, 0 ≤ x ≤ 1.

Example 2 A variant of the pill’s problem has transition matrixM =

(
−1 0
1 −2

)
and absorbing state

S = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0}. Due to the parity condition inm (that is, only evenm occur), it
is convenient to consider the generating function

H(z, w; v) =
∑

n≥0,m≥1

(
n+ 2m

n

)
hn,2m(v)znwm
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that satisfies the differential equation

−wHz + 2w(1− z)Hw − (1− z)H =
wv

(1− vz)2
.

Here we obtain an explicit solution of the form

H(z, w) =
w

v ((1− z)2 − w − ((v − 1)/v))2) (1− z − (v − 1/v))

+
(v − 1)

√
w

v2 ((1 − z)2 − w − ((v − 1)/v))2)
3/2

arctan

(√
w
√
(1 − z)2 − w − ((v − 1)/v))2

(1 − z)2 − w − (1− z)(v − 1)/v)

)
.

which leads to the limiting behavior:

Xn,2m
n√
m

+ 2
√
m

→ R (m → ∞),

whereR has density2xe−x2

, x ≥ 0, or

Xn,2m

n
→
√
Beta(1,m), (m ≥ 1 fixed,n → ∞).

Example 3 The cannibal urn (see Pittel (1987); Kuba (2011)) has transition matrixM =

(
0 −1
1 −2

)

and absorbing stateS = {(0, n) : n ≥ 0} ∪ {(1, n) : n ≥ 0} and the generating function

H(z, w; v) =
∑

n≥0,m≥1

(
n+m

n

)
hn+1,m(v)

satisfies the differential equation

−(z + w)Hz +Hw −H =
(1 + wv)v

(1− vz)2
.

The solution is explicitly given by

H(z, w; v) =
vew

1− (1− ew(1− z − w))v
− v

1− vz

and we have a central limit theorem of the form

Xn,m − EXn,m√
VarXn,m

→ N(0, 1) (m+ n → ∞).

These three examples show that although the linear differential equations look very similar the limiting
behavior of the encoded random variableXn,m seems to be far from being universal. The main purpose of
the present paper is to shed some light on this phenomenon. Inparticular we detect a sufficient condition
that ensures a central limit theorem.
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Theorem 1 Suppose thatXn,m, n ≥ 0, m ≥ 1 are non-negative discrete random variables with proba-
bilty generating functionhn,m(v) = E[vXn,m ] such that the generating functionH(z, w; v), given by (3)
satisfies a first order linear differential equation of the form (4), where the coefficient functionsA,B,C
as well as the ratiosA(z, w)/B(z, w), C(z, w)/B(z, w) are analytic in an open set that containsz, w
with |z| + |w| ≤ 1 such that the ratioA(z, w)/B(z, w) is negative for non-negativez, w. Furthermore
we assume that (6) is satisfied (which also implies (7)) and thatD(z, w; v) can be represented as

D(z, w; v) =
a(z, w; v)

(1− b(z, w; v))2
,

where the functionsa, b are also in an open set that containsz, w with |z| + |w| ≤ 1. In particular in
accordance with (6) we havea(z, w; 1) = −A(z, w) + (1− z)C(z, w) andb(z, w; 1) = z.

Let f(c, s) be the solution of the differential equation∂f∂s = A(f, s)/B(f, s) with f(c, 0) = c and
let Q(z, w) denote the function that satisfiesf(Q(z, w), w) = z. We further assume that the function
f(Q(z, w), s) is analytic in an open set that containss, z, w with |z| + |w| ≤ 1 and |z| + |s| ≤ 1 and
non-decreasing for positive and realz andw,

Let z0(ρ; v) andw0(ρ; v) denote the solutions of the system of equations

b(f(Q(z, w), 0), 0; v) = 1, z
∂

∂z
b(f(Q(z, w), 0), 0; v) = ρw

∂

∂w
b(f(Q(z, w), 0), 0; v)

with z0(ρ; 1) = ρ/(1 + ρ) andw0(ρ; 1) = 1/(1 + ρ). Furthermore seth(ρ; v) = − log z0(ρ; v) −
ρ logw0(ρ; v), µ(ρ) = ∂

∂vh(ρ; v)
∣∣
v=1

andσ2(ρ) = ∂2

∂v2h(ρ; v)
∣∣∣
v=1

+ µ. If

µ(ρ) > 0 for ρ ∈ [α, β]

for some positiveα, β thenXn,m satisfies a central limit theorem of the form

Xn,m − EXn,m√
n

→ N(0, σ2(m/n))

uniformly form+ n → ∞, m/n ∈ [α, β], where

EXn,m ∼ µ(m/n)n and VarXn,m ∼ σ2(m/n)n.

This theorem does not provide a full answer to the problem. However, it is a first step that covers at least
a part, where we obtain a central limit theorem. In future work we will provide a more complete picture,
also covering the cases, where there is no central limit theorem. For example it is not clear whether it is

possible to formulate conditions that refer directly to theentries of the transition matrixM =

(
a b
c d

)
.

In particular it is an open question whether it is possible toadapt Theorem 1 so that all cases of (Kuba
(2011)) are covered.

Nevertheless, we will discuss the three examples (from above) and another one in the next section. We
also present a (short version of the) proof of Theorem 1 in theremaining parts of the paper.
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2 Discussion of Examples
We do not work out the details here but inExamples 1 and2 several conditions of Theorem 1 are not
satisfied, in particular we haveµ(ρ) = 0.

The most interesting example isExample 3. Here we haveA(z, w) = −z −w, B(z, w) = C(z, w) =
1, andD(z, w; v) = (1 +wv)v/(1− vz)2, that isa(z, w; v) = (1 +wv)v andb(z, w; v) = vz. It is easy
to check that the conditions of Theorem 1 are satisfied.

In particular it follows thatf(c, s) = 1 − s − e−s(1 − c), Q(z, w) = 1 − ew(1 − z − w), and
f(Q(z, w), s) = 1−s−ew−s(1−z−w). From that we obtainb(f(Q(z, w, 0), 0; v) = (1−ew(1−z−w))v.
Hence the functionsz = z0(ρ; v) andw = w0(ρ; v) satisfy the system of equations

(1− ew(1− z − w))v = 1, z = ρw(z + w)

from which we obtain (by implicit differentiation)

µ(ρ) = −z0,v(ρ; 1)

z0(ρ; 1)
− ρ

w0,v(ρ; 1)

w0(ρ; 1)
= 2e−1/(1+ρ) > 0.

Thus, the central limit theorem follows automatically.

We add a new example in order to demonstrate the applicabiltyof Theorem 1 (even if this example is
not related to an urn model). By the way this example can be easily generalized. Suppose thatH(z, w; z)
satisfies the differential equation

−(z + 2w)Hz + (1 + w)Hw −H =
(1 + 2w)v

(1− vz)2
.

Then again all assumptions of Theorem 1 are satisfied. Here wehaveA(z, w) = −z − 2w, B(z, w) =
1 + w, C(z, w) = 1, andD(z, w; v) = (1 + 2w)v/(1 − vz)2, that isa(z, w; v) = (1 + 2w)v and
b(z, w; v) = vz.

From this it follows that

f(c, s) =
c

1 + s
− s2

1 + s
and Q(z, w) = (1 + w)z + w2

and consequently

f(Q(z, w), s) =
(1 + w)z + w2 − s2

1 + s
.

The functionsz = z0(ρ; v) andw = w0(ρ; v) satisfy the system of equations

((1 + w)z + w2)v = 1, z(1 + w) = ρw(z + 2w)

from which we obtain (by implicit differentiation)

µ(ρ) = −z0,v(ρ; 1)

z0(ρ; 1)
− ρ

w0,v(ρ; 1)

w0(ρ; 1)
= 2

(1 + ρ)2

(2 + ρ)2
> 0.

Thus, the central limit theorem follows (again) automatically.
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3 The method of characteristics
The first step of the proof is to use the theory of characteristics to provide an integral representation (13)
of the solution of the partial differential equation (4).

We start with the inhomogeneous differential equation (4),wherev is considered as a parameter. It is
a standard procedure to transform (4) into a homogeneous equation. LetQ = Q(z, w,H ; v) denote the
solution of the linear differential equation

A(z, w)Qz +B(z, w)Qw + (C(z, w)H +D(z, w; v))QH = 0. (8)

Then the solutionH(z, w; v) of the original equation (4) satisfies the implicit equation

Q(z, w,H(z, w; v); v) = const. (9)

Thus, if we can solve (8) then we also get the solution of (4). The advantage of the equation (8) is that it
can be handled with the method of characteristics (see Hellwig (1977)).

First we translate (8) into a system of first order ordinary differential equations:

dz

dt
= A(z, w),

dw

dt
= B(z, w),

dH

dt
= C(z, w)H +D(z, w; v), (10)

wherez = z(t),w = w(t), H = H(t) are functions int. A characteristic of (10) is a functionF (z, w,H)
for which we haveQ(z(t), w(t), H(t)) = const. Clearly, every characteristicQ is a solution of (8). It
is well known that a system of three equations has two independent characteristicsQ1, Q2 as a basis and
every characteristicQ can be expressed asQ = F (Q1, Q2) for an arbitrary (differentiable) functionF .
In the present case we have to solve the equation (9) which simplifies the situation. More precisely we
can rewrite (9) to an equation of the form

Q2(z, w,H) = F̃ (Q1(z, w,H)), (11)

whereF̃ is an arbitrary (differentiable) function.
In order to calculate two independent characteristics it isconvenient toeliminatet from the system (10)

which gives rise to a simpler system of differential equation:

dz

dw
=

A(z, w)

B(z, w)
,

dH

dw
=

C(z, w)

B(z, w)
H +

D(z, w; v)

B(z, w)
, (12)

wherez = z(w) andH = H(w) are now considered as functions isw.
Let z = f(c1, w) be a one-parametric solution of the differential equationdz

dw = A(z,w)
B(z,w) , wherec1 is,

for example, the initial valuec1 = z(0). If we expressc1 from the expressionz = f(c1, w), that is,
c1 = Q1(z, w) thenQ1 is a characteristic of the system (10). Note thatQ1 does not depend onH and
also not onv. Actually Q1 just solves the equationA(z, w)Qz + B(z, w)Qw = 0. Nevertheless it is a
non-trivial characteristic of (10).

In order to obtain a second characteristic we have to solve the second equation of (12) which is a first
order linear differential equation. Note that we can substitutez = f(c1, w) and obtain as a solution

H = exp

(∫ w

0

C(f(c1, s), s)

B(f(c1, s), s)
ds

)(∫ w

0

D(f(c1, s), s; v)

B(f(c1, s), s)
exp

(
−
∫ s

0

C(f(c1, t), t)

B(f(c1, t), t)
dt

)
ds+ c2

)
,
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wherec2 is some constant. Again if we expressc2 explicitly (and eliminatec1 with the help ofc1 =
Q1(z, w)) we get another characteristic:

c2 = Q2(z, w,H)

= H exp

(
−
∫ w

0

C(f(Q1(z, w), s), s)

B(f(Q1(z, w), s), s)
ds

)

−
∫ w

0

D(f(Q1(z, w), s), s; v)

B(f(Q1(z, w), s), s)
exp

(
−
∫ s

0

C(f(Q1(z, w), t), t)

B(f(Q1(z, w), t), t)
dt

)
ds.

Now if we apply (11) we obtain the following representation forH :

H = exp

(∫ w

0

C(f(Q1(z, w), s), s)

B(f(Q1(z, w), s), s)
ds

)

×
(∫ w

0

D(f(Q1(z, w), s), s; v)

B(f(Q1(z, w), s), s)
exp

(
−
∫ s

0

C(f(Q1(z, w), t), t)

B(f(Q1(z, w), t), t)
dt

)
ds+ F̃ (Q1(z, w))

)
.

In our context we will assume that (5) holds, that is,H(z, 0; v) = 0, which implies thatF̃ (x) = 0.
Consequently we have

H(z, w; v) = exp

(∫ w

0

C(f(Q1(z, w), s), s)

B(f(Q1(z, w), s), s)
ds

)
(13)

×
(∫ w

0

D(f(Q1(z, w), s), s; v)

B(f(Q1(z, w), s), s)
exp

(
−
∫ s

0

C(f(Q1(z, w), t), t)

B(f(Q1(z, w), t), t)
dt

)
ds

)
.

4 Singularity analysis
Next we assume that the assumptions of Theorem 1 are satisfiedso that we can analyze the analytic
properties of the solution functionH(z, w; v) that is given by (13). Actually we will show that ifv is
close to1 that the dominant singularity comes from a curve that is a pertubation of the curvez + w = 1.

First we note that by assumption the functionf(Q1(z, w), s) is regular as well as the fractionC(z, w)/B(z, w).
Consequently the function

(z, w) 7→ K(z, w) =

∫ w

0

C(f(Q1(z, w), s), s)

B(f(Q1(z, w), s), s)
ds

is analytic, too. Thus, it remains to consider the integral
∫ w

0

D(f(Q1(z, w), s), s; v)

B(f(Q1(z, w), s), s)
exp (−K(z, s))ds

=

∫ w

0

a(f(Q1(z, w), s), s; v) exp (−K(z, s)) /B(f(Q1(z, w), s), s)

(1− b(f(Q1(z, w), s), s; v))2
ds.

First let us assume thatv = 1. In this case we know by assumption thatH(z, w; 1) = 1/(1 − z − w) −
1/(1− z). Furthermore we haveb(z, w; 1) = z. Thus the above integral simplifies to

∫ w

0

L(z, w, s)

(1 − f(Q1(z, w), s))2
ds,
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whereL(z, w, s) is a non-zero regular function. As long asf(Q1(z, w), s) 6= 1 for 0 ≤ s ≤ w then the
integral represents a regular function inz andw. Hence, we have to detects for whichf(Q1(z, w), s) =
1. Let us first assume thatz andw are real and positive. We also recall that by assumption∂f

∂s =
A(f, s)/B(f, s) < 0. Thus, if we start withz, w close to zero and increase them we observe that the
first critical instance occurs whenf(Q1(z, w), 0) = 1. Of course this has to coincide with the condition
z + w = 1 and we have to recover the (known) singular behaviour1/(1− z − w).

Actually we can use the following easy lemma (which follows from partial integration).

Lemma 1 Suppose thatN(s) andD(s) are three times continuously differentiable functions such that
D(s) 6= 0 andD′(s) 6= 0 Then we have

∫
N(s)

D(s)2
ds = − N(s)

D(s)D′(s)
+

logD(s)

D′(s)

(
N(s)

D′(s)

)′

−
∫

logD(s)

(
1

D′(s)

(
N(s)

D′(s)

)′)′

ds.

If we apply this lemma in our context it follows that

∫ w

0

L(z, w, s)

(1 − f(Q1(z, w), s))2
ds =

L̃1(z, w)

1− f(Q1(z, w), 0)
+O (log |1− f(Q1(z, w), 0)|)

for positive realz, w with z + w → 1 (and a proper non-zero analytic functionL̃1(z, w)). Summing up
we obtain for positive realz, w with z + w → 1 the asymptotic representation

H(z, w; 1) =
L̃2(z, w)

1− f(Q1(z, w), 0)
+O (log |1− f(Q1(z, w), 0)|)

for some non-zero analytic functioñL2(z, w). In particular it follows that1 − f(Q1(z, w), 0) can be
written as

1− f(Q1(z, w), 0) = L̃2(z, w)(1 − z − w).

Of course the same kind of analysis applies ifz andw are complex numbers close to the positive real line.
Furthermore we observe that the integral representation for H(z, w; 1) will not get singular ifz +w 6= 1.
By continuity this also holds ifv is close to1 and|1− z − w| ≥ δ for someδ > 0.

Finally if v is close (but different) to1 andz andw satisfy|1− z−w| < δ then we just have to modify
the above analysis slightly and observe thatH(z, w; v) can be represented as

H(z, w; v) =
L̃2(z, w; v)

1− b(f(Q1(z, w), 0), 0; v)
+O (log |1− b(f(Q1(z, w), 0), 0; v)|) .

Thus, the equation
b(f(Q1(z, w), 0), 0; v) = 1 (14)

determines the dominant singularity ofH(z, w; v). By the implicit function theorem it follows that there
exists a solution of (14) of the formz = z0(w; v) with z0(w; 1) = 1−w (if w is close to the positive real
line segment[0, 1]).
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5 A central limit theorem
We start with a lemma on bivariate asymptotics for generating functions in two variables which is a slight
generalization of the smooth case in Pemantle and Wilson’s book Pemantle and Wilson (2013).

Lemma 2 Suppose thatf(z, w) is a generating function in two variables that can be writtenin the form

f(z, w) =
N(z, w)

D(z, w)
,

whereN andD are regular functions such that the system of equations

D(z, w) = 0, wDw(z, w) = ρzDz(z, w) (15)

has a unique positive and analytic solutionz = z0(ρ), w = w0(ρ) for ρ in a positive interval[α, β] such
thatDw(z0(ρ), w0(ρ)) 6= 0 in this range and thatD(z, w) = 0 has no other solutions for|z| ≤ z0(ρ),
|w| ≤ w0(ρ). Furthermore we assume thatN(z0(ρ), w0(ρ)) 6= 0.

Then we have uniformly form/n ∈ [α, β]

[znwm]f(z, w) ∼ N(z0(m/n), w0(m/n))

−z0(m/n)w0(m/n)Dz(z0(m/n), w0(m/n))

z0(m/n)−nw0(m/n)−m

√
2πn∆(m/n)

, (16)

where

∆(ρ) =
DzzD

2
w − 2DzwDzDw +DwwD

2
z

zD3
z

+
D2

w

z2D2
z

+
Dw

zwDz

∣∣∣∣
z=z0(ρ),w=w0(ρ)

.

Proof: By assumption the mapz 7→ f(z, w) has a unique polar singularity atz = z(w), wherez(w) is
determined byD(z(w), w) = 0 (for w close to the real interval[w0(a), w0(b)]) which implies

[zn]f(z, w) ∼ N(z(w), w)

−z(w)Dz(z(w), w)
z(w)−n.

Finally we fix the ratiom/n = ρ and a direct application of the saddle point method on the Cauchy
integral evaluating

[wmzn]f(z, w) =
1

2πi

∫

|w|=w0(ρ)

([zn]f(z, w))w−m−1 dw

leads to the result. Note that the saddle pointw = w0(ρ) that comes from the powerz(w)−nw−ρn has to
satisfy (15). ✷

We now apply this procedure to a slightly more general situation, namely when there is a further pa-
rameterv (that is assumed to be close to1):

f(z, w; v) =
N(z, w; v)

D(z, w; v)
.
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In our context we have to identifyf(z, w; v)withH(z, w; v) andD(z, w; v)with 1−b(f(Q1(z, w), 0), 0; v).
Of course we have to formulate proper assumptions (similar to the above which are actually satisfied for
H(z, w; v)) and, hence, by (16) we obtain an asymptotic expansion of theform

[znwm]H(z, w; v) ∼ C(m/n; v)√
2πn

z0(m/n; v)−nw0(m/n; v)−m

that is uniform inv (for v sufficiently close to1).
If we fix the ratioρ = m/n the leading asymptotics is then just a power inn:

z0(ρ; v)
−nw0(ρ; v)

−ρn = eh(ρ;v)n

with h(ρ; v) = − log z0(ρ; v) − ρ logw0(ρ; v). Actually we have a so-calledquasi-power, where we can
expect that (after proper normalization) a central limit theorem should hold.

In our context we obtain

E[vXρn,n ] =
[znwρn]H(z, w; v)

[znwρn]H(z, w; 1)
∼ C(ρ; v)

C(ρ; 1)

(
z0(ρ; 1)w0(ρ; 1)

ρ

z0(ρ; v)w0(ρ; v)ρ

)n

.

And this is precisely the assumption that is needed in order to apply Hwang’sQuasi-Power Theorem
Hwang (1994).

Lemma 3 LetXn be a random variable with the property that

E vXn = eλn·A(v)+B(v)

(
1 +O

(
1

ϕn

))
(17)

holds uniformly in a complex neighbourhood ofv = 1, whereλn andϕn are sequences of positive real
numbers withλn → ∞ andϕn → ∞, andA(v) andB(v) are analytic functions in this neighbourhood
of v = 1 withA(1) = B(1) = 0. ThenXn satisfies a central limit theorem of the form

1√
λn

(Xn − EXn) → N
(
0, σ2

)
(18)

and we have
EXn = λnµ+O (1 + λn/ϕn)

and
VarXn = λnσ

2 +O
(
(1 + λn/ϕn)

2
)
,

where
µ = A′(1)

and
σ2 = A′′(1) +A′(1).

Recall thatA(v) = h(ρ; v) = − log z0(ρ; v) − ρ logw0(ρ; v) so that

µ = µ(ρ) = −z0,v(ρ; 1)

z0(ρ; 1)
− ρ

w0,v(ρ; 1)

w0(ρ; 1)
.

Since we have assumed thatXn,m are non-negative random variables we can only expect a central limit
theorem ifµ > 0, since forµ = 0 it would follow thatXn,m is negative with probability1/2.

Finally we mention that since the convergence is uniform inρ ∈ [a, b] we also get a central limit
theorem forn,m → ∞ if m/n ∈ [a, b]. This completes the proof of our main Theorem 1.
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Abstract. Random walks in the quarter plane are an important object both of combinatorics and probability theory.
Of particular interest for their study, there is an analytic approach initiated by Fayolle, Iasnogorodski and Malyšev,
and further developed by the last two authors of this note. The outcomes of this method are explicit expressions
for the generating functions of interest, asymptotic analysis of their coefficients, etc. Although there is an important
literature on reflected Brownian motion in the quarter plane (the continuous counterpart of quadrant random walks),
an analogue of the analytic approach has not been fully developed to that context. The aim of this note is twofold: it
is first an extended abstract of two recent articles of the authors of this paper, which propose such an approach; we
further compare various aspects of the discrete and continuous analytic approaches.

Keywords: Reflected Brownian motion in the quadrant; (Random) Walks in the quarter plane; Stationary distribution;
Laplace transform; Generating function; Boundary value problem; Asymptotic analysis

1 Introduction
1.1 Random walks in the quarter plane
Since the seventies and the pioneered papers Malyšev (1972); Fayolle and Iasnogorodski (1979), random
walks in the quarter plane (cf. Figure 1) are extensively studied. They are indeed an important object
of probability theory and have been studied for their recurrence/transience, for their links with queueing
systems (Fayolle and Iasnogorodski (1979)), representation theory (Biane (1992)), potential theory. More-
over, the state space N2 = {0, 1, 2, . . .}2 offers a natural framework for studying any two-dimensional
population; accordingly, quadrant walks appear as models in biology and in finance (Cont and de Lar-
rard (2013)). Another interest of random walks in the quarter plane is that in the large class of random
processes in cones, they form a family for which remarkable exact formulas exist. Moreover, quadrant
walks are popular in combinatorics, see Bousquet-Mélou and Mishna (2010); Bostan and Kauers (2010);
Kurkova and Raschel (2012). Indeed, many models of walks are in bijection with other combinatorial
objects: maps, permutations, trees, Young tableaux, etc. In combinatorics again, famous models have
emerged from quadrant walks, as Kreweras’ or Gessel’s ones, see Bousquet-Mélou and Mishna (2010);
Bostan and Kauers (2010). Finally, walks in the quarter plane are interesting for the numerous tools used
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2 S. Franceschi, I. Kurkova and K. Raschel

for their analysis: combinatorial (Bousquet-Mélou and Mishna (2010)), from complex analysis (Malyšev
(1972); Fayolle and Iasnogorodski (1979); Fayolle et al. (1999); Kurkova and Raschel (2011, 2012);
Bernardi et al. (2015)), computer algebra (Bostan and Kauers (2010)), for instance.

1.2 Issues and technicalities of the analytic approach
In the literature (see, e.g., Malyšev (1972); Fayolle and Iasnogorodski (1979); Fayolle et al. (1999);
Kurkova and Raschel (2011, 2012)), the analytic approach relies on six key steps:

(i) Finding a functional equation between the generating functions of interest;

(ii) Reducing the functional equation to boundary value problems (BVP);

(iii) Solving the BVP;

(iv) Introducing the group of the walk;

(v) Defining the Riemann surface naturally associated with the model, continuing meromorphically the
generating functions and finding the conformal gluing function;

(vi) Deriving the asymptotics of the (multivariate) coefficients.

Before commenting these different steps, let us note that altogether, they allow for studying the following
three main problems:

(P1) Explicit expression for the generating functions of interest (needs (i), (ii), (iii) and (v));

(P2) Algebraic nature of these functions (needs (iv) and (v));

(P3) Asymptotics of their coefficients in various regimes (needs (iii), (v) and (vi)).

The point (i) reflects the inherent properties of the model and is easily obtained. Point (ii), first shown in
Fayolle and Iasnogorodski (1979), is now standard (see Fayolle et al. (1999)) and follows from algebraic
manipulations of the functional equation of (i). Item (iii) uses specific literature devoted to BVP (our main
reference for BVP is the book of Litvinchuk (2000)). The idea of introducing the group of the model (iv)
was proposed in Malyšev (1972), and brought up to light in the combinatorial context in Bousquet-Mélou
and Mishna (2010). Point (v) is the most technical a priori; it is however absolutely crucial, as it allows
to access key quantities (as a certain conformal gluing function which appears in the exact formulation
of (iii)). Finally, (vi) uses a double refinement of the classical saddle point method: the uniform steepest
descent method.

1.3 Reflected Brownian motion in the quarter plane
There is a large literature on reflected Brownian motion in quadrants (and also in orthants, generaliza-
tion to higher dimension of the quadrant), to be rigorously introduced in Section 3. First, it serves as
an approximation of large queuing networks (see Foddy (1984); Baccelli and Fayolle (1987)); this was
the initial motivation for its study. In the same vein, it is the continuous counterpart of (random) walks
in the quarter plane. In other directions, it is studied for its Lyapunov functions in Dupuis and Williams
(1994), cone points of Brownian motion in Le Gall (1987), intertwining relations and crossing proba-
bilities in Dubédat (2004), and of particular interest for us, for its recurrence/transience in Hobson and
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Rogers (1993). The asymptotic behavior of the stationary distribution (when it exists) is now well known,
see Harrison and Hasenbein (2009); Dai and Miyazawa (2011); Franceschi and Kurkova (2016). There
exist, however, very few results giving exact expressions for the stationary distribution. Let us mention
Foddy (1984) (dealing with the particular case of a Brownian motion with identity covariance matrix),
Baccelli and Fayolle (1987) (on a diffusion having a quite special behavior on the boundary), Harrison
and Williams (1987b); Dieker and Moriarty (2009) (on the special case when stationary densities are ex-
ponential) and Franceschi and Raschel (2016) (on the particular case of an orthogonal reflection). We also
refer to Burdzy et al. (2015) for the analysis of reflected Brownian motion in bounded planar domains by
complex analysis techniques.

1.4 Main results and plan
This note is an extended abstract of the papers Franceschi and Kurkova (2016); Franceschi and Raschel
(2016), whose main contributions are precisely to export the analytic method for reflected Brownian
motion in the quarter plane. Our study constitutes one of the first attempts to apply these techniques to
the continuous setting, after Foddy (1984); Baccelli and Fayolle (1987). In addition of reporting about the
works Franceschi and Kurkova (2016); Franceschi and Raschel (2016), we also propose a comparative
study of the discrete/continuous cases.

Our paper is organized as follows: Section 2 concerns random walks and Section 3 Brownian motion.
For clarity of exposition we have given the same structure to Sections 2 and 3: in Section 2.1/3.1 we first
state the key functional equation (a kernel equation), which is the starting point of our entire analysis.
We study the kernel (a second degree polynomial in two variables). In Section 2.2/3.2 we state and solve
the BVP satisfied by the generating functions. We then move to asymptotic results (Section 2.3/3.3). In
Section 2.4/3.4 we introduce the Riemann surface of the model and some important related facts.

2 Random walks in the quarter plane
This section is devoted to the discrete case and is based mainly on Fayolle et al. (1999).

2.1 Functional equation
One considers a piecewise homogeneous random walk with sample paths in N2. There are four domains
of spatial homogeneity (the interior of N2, the horizontal and vertical axes, the origin), inside of which
the transition probabilities (of unit size) are denoted by pi,j , p′i,j , p

′′
i,j and p0

i,j , respectively. See Figure 1.
The inventory polynomial of the inner domain is called the kernel and equals

K(x, y) = xy{∑−16i,j61 pi,jx
iyj − 1}. (1)

The inventory polynomials associated to the other homogeneity domains are

k(x, y) = x{∑ p′i,jx
iyj − 1}, k̃(x, y) = y{∑ p′′i;jx

iyj − 1}, k0(x, y) = {∑ p0
i,jx

iyj − 1}.

Assuming the random walk ergodic (we refer to (Fayolle et al., 1999, Theorem 1.2.1) for necessary and
sufficient conditions), we denote the invariant measure by {πi,j}i,j>0 and introduce the generating func-
tions

π(x, y) =
∑
i,j>1 πi,jx

i−1yj−1, π(x) =
∑
i>1 πi,0x

i−1, π̃(y) =
∑
j>1 π0,jy

j−1.
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Fig. 1: Transition probabilities of the reflected random walk in the quarter plane, with four domains of spatial homo-
geneity

Writing the balance equations at the generating function level, we have (see (Fayolle et al., 1999, Equa-
tion (1.3.6)) for the original statement):

Lemma 1 The fundamental functional equation holds

−K(x, y)π(x, y) = k(x, y)π(x) + k̃(x, y)π̃(y) + k0(x, y)π0,0. (2)

Equation (2) holds a priori in the region {(x, y) ∈ C2 : |x| 6 1, |y| 6 1}. Indeed, the πi,j sum up to 1, so
that the generating functions π(x, y), π(x) and π̃(y) are well defined on the (bi)disc. The identity (2) is a
kernel equation, and a crucial role will be played by the kernel (1). This polynomial K is of second order
in both x and y; its roots X(y) and Y (x) defined by

K(X(y), y) = K(x, Y (x)) = 0 (3)

are thus algebraic of degree 2. Writing the kernel as K(x, y) = a(y)x2 + b(y)x + c(y) and defining its
discriminant d(y) = b(y)2 − 4a(y)c(y), one has obviously

X(y) =
−b(y)±

√
d(y)

2a(y)
.

The polynomial d has three or four roots, and exactly two of them are located in the unit disc, see (Fayolle
et al., 1999, Lemma 2.3.8). They are named y1, y2, cf. Figure 2. On (y1, y2) one has d(y) < 0, so that
the two values (or branches) of X(y) (that we shall call X0(y) and X1(y)) are complex conjugate of one
another. In particular, the set

M = X([y1, y2]) = {x ∈ C : K(x, y) = 0 and y ∈ [y1, y2]}

is symmetrical w.r.t. the real axis (Figure 2). This curve will be used to set a boundary condition for the
unknown function π (Lemma 2).
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2.2 Statement and resolution of the BVP
The analytic approach of Malyšev (1972); Fayolle and Iasnogorodski (1979); Fayolle et al. (1999) pro-
poses a way for solving the functional equation (2), by reduction to a BVP. Generally speaking, a BVP
consists of a regularity condition and a boundary condition.

Lemma 2 The function π satisfies the following BVP:

• π is meromorphic in the bounded domain delimitated by M and has there identified poles;

• for any x ∈M,

k(x, Y0(x))

k̃(x, Y0(x))
π(x)− k(x, Y0(x))

k̃(x, Y0(x))
π(x) =

k0(x, Y0(x))

k̃(x, Y0(x))
π0,0 −

k0(x, Y0(x))

k̃(x, Y0(x))
π0,0.

Proof: The regularity condition follows from Theorem 5, which provides a (maximal) meromorphic
continuation of the function π. We now turn to the boundary condition. For i ∈ {0, 1}, we evaluate
the functional equation (2) at (Xi(y), y) and divide by k̃(Xi(y), y). We then make the difference of the
identities corresponding to i = 0 and i = 1. Finally, we substitute X0(y) = x and X1(y) = x, noting that
when y ∈ [y1, y2], x ∈M by construction. Notice that we have chosen the segment [y1, y2] connecting the
points inside of the unit disc (Figure 2), in which we know that the generating function π̃ is well defined.
2

-

6

1y1 y2 y3 y4tt t t t -

6

M

t

t

t

t

Fig. 2: Left: the polynomial d has three or four roots, denoted by y1, y2, y3, y4; exactly two of them are inside the
unit disc. Right: the curve M = X([y1, y2]) is symmetrical w.r.t. the horizontal axis

Although Lemma 2 could be written more precisely (by giving the number and the location of the poles
of π), we shall prefer the above version, since we focus in this note on the main ideas of the analytic
approach.

Lemma 2 happens to characterize the generating functions, as it eventually leads to an explicit ex-
pression for π, see Theorem 3. Before stating this central result (borrowed from (Fayolle et al., 1999,
Theorem 5.4.3)), we need to introduce a function w called a conformal gluing function. By definition it
satisfies w(x) = w(x) for x ∈ M and is one-to-one inside of M. This function will be constructed in
Theorem 6 of Section 2.4.
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Theorem 3 There exist two functions f and g, constructed from k, k̃, k0 and w, such that the following
integral formulation for π holds:

π(x) = f(x)

∫

M

g(u)
w′(u)

w(u)− w(x)
du.

A similar contour integral representation exists for π̃, and eventually the functional equation (2) provides
us with an explicit expression for the bivariate function π(x, y).

2.3 Asymptotics of the stationary probabilities
The asymptotics of coefficients πi,j of unknown generating functions satisfying the functional equation
(2) has been obtained by Malyšev (1973) via analytic arguments. He computed the asymptotics of the
stationary probabilities πi,j as i, j → ∞ and j/i = tanα, for any given α ∈ (0, π/2). Let us briefly
present these results. It is assumed in Malyšev (1973) that the random walk is simple, meaning that

p−1,1 = p1,1 = p−1,−1 = p1,−1 = 0. (4)

It is also assumed that both coordinates of the interior drift vector are negative (as in Figure 3). For
α ∈ (0, π/2), we define the point (x(α), y(α)) as follows. Introducing as in Kurkova and Raschel (2011)
the function P (u, v) =

∑
i,j pi,je

iuejv on R2, the mapping

(u, v) 7→ ∇P (u, v)

|P (u, v)|

is a homeomorphism between {(u, v) ∈ R2 : P (u, v) = 1} and the unit circle. The point (u(α), v(α)) is
the unique solution to ∇P (u,v)

|P (u,v)| = (cosα, sinα). Finally, (x(α), y(α)) = (eu(α), ev(α)).
Following Malyšev (1973), we introduce the sets of parameters

P−− =
{

({pi,j}, α) : k(ψ(x(α), y(α))) 6 0 and k̃(φ(x(α), y(α))) 6 0
}
,

P+− =
{

({pi,j}, α) : k(ψ(x(α), y(α))) > 0 and k̃(φ(x(α), y(α))) 6 0
}
,

and P−+ and P++ accordingly. The automorphisms ψ and φ are defined in Section 2.4 by (8). The
following theorem is proven in Malyšev (1973).

Theorem 4 Let (i, j) = (r cosα, r sinα) with α ∈ (0, π/2). Then as r →∞ we have

πi,j = (1 + o(1)) ·





C0(α)√
r
x−i(α)y−j(α) in P−−,

C1p
−i
1 q−j1 in P−+,

C2p
−i
2 q−j2 in P+−,

C1p
−i
1 q−j1 + C2p

−i
2 q−j2 in P++,

(5)

where C0, C1 and C2 are constants that can be expressed in terms of the functions π and π̃. The point
(p1, q1) is a solution of the system {K(x, y) = 0, k(ψ(x, y)) = 0} and similarly, (p2, q2) is a solution of
{K(x, y) = 0, k̃(φ(x, y)) = 0}.
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Proof: The stationary probabilities πi,j are first written as two-dimensional Cauchy integrals, then re-
duced via the residue theorem to one-dimensional integrals along some contours. The asymptotics of
these integrals is characterized either by the saddle point (x(α), y(α)) in the case of the set of parame-
ters P−− or by a pole (p1, q1) or (p2, q2) that is encountered when moving the integration contour to the
saddle point; this happens for the sets of parameters P−+, P+− and P++. 2

This approach has been applied for the analysis of the join the shortest queue problem in Kurkova and
Suhov (2003), and for computing the asymptotics of Green functions for transient random walks in the
quarter plane reflected at the axes (see Kurkova and Malyshev (1998)) or killed at the axes (cf. Kurkova
and Raschel (2011)). Moreover, as illustrated in Kurkova and Raschel (2011); Kurkova and Suhov (2003),
the assumption (4) is not crucial for the applicability of the method. The limiting cases α = 0 and
α = π/2 can also be treated via this approach, with some additional technical details (the saddle point
then coincides with a branch point of the integrand), it is done in Kurkova and Raschel (2011).

2.4 Riemann surface and related facts
In Section 2.1 the set

K = {(x, y) ∈ C2 : K(x, y) = 0} = {(x, y) ∈ C2 :
∑
pi,jx

iyj = 1}

has appeared very naturally, since in order to state the BVP (our Lemma 2), we introduced the functions
X(y) and Y (x), which by construction cancel the kernel, see (3).

In this section the central idea is to consider the (global) complex structure of K. The set K turns out to
be a Riemann surface of genus 1, i.e., a torus. This simply comes from the reformulation of the identity
K(x, y) = 0 as

{2a(y)x+ b(y)}2 = d(y).

Moreover, the Riemann surface of the square root of a polynomial of degree 3 or 4 is classically a torus
(with this terminology, the roots of the discriminant are branch points).

This new point of view on K brings powerful tools. Of particular interest is a parametrization of K in
terms of Weierstrass elliptic functions:

K = {(x(ω), y(ω)) : ω ∈ C/(ω1Z + ω2Z)}. (6)

This parametrization is totally explicit: x(ω) and y(ω) are rational functions in the ℘-Weierstrass function
and its derivative ℘′ (see (Fayolle et al., 1999, Lemma 3.3.1)); the periods ω1 and ω2 admit expressions
as elliptic integrals in terms of {pi,j} (cf. (Fayolle et al., 1999, Lemma 3.3.2)), etc. Moreover, as any
functions of x and/or y, the functions π(x) and π̃(y) can be lifted on K by setting

Π(ω) = π(x(ω)), Π̃(ω) = π̃(y(ω)). (7)

Group of the walk
Introduced in Malyšev (1972) in a probabilistic context and further used in Fayolle et al. (1999); Bousquet-
Mélou and Mishna (2010), the group of the walk is a dihedral group generated by

ζ(x, y) =

(
x,

∑
i pi,−1x

i

∑
i pi,+1xi

1

y

)
, η(x, y) =

(∑
j p−1,jy

j

∑
j p+1,jyj

1

x
, y

)
. (8)
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(One easily verifies that these generators are idempotent: ζ2 = η2 = 1.) The group 〈ζ, η〉 can be finite
or infinite, according to the order of the element ζ ◦ η. The generator ζ (resp. η) exchanges the roots in
y (resp. in x) of K(x, y) = 0. Viewed as a group of birational transformations in Bousquet-Mélou and
Mishna (2010), we shall rather see it as a group of automorphisms of the Riemann surface K.

This group has many applications. First, it allows for a continuation of the functions π(x) and π̃(y)
(Theorem 5 below). It further connects the algebraic nature of the generating functions to the (in)finiteness
of the group (Theorem 7). Finally, in the finite group case, elementary algebraic manipulations of the func-
tional equations can be performed (typically, via the computation of certain orbit-sums) so as to eventually
obtain D-finite expressions for the unknowns, see (Fayolle et al., 1999, Chapter 4) and Bousquet-Mélou
and Mishna (2010).

Using the structure of the automorphisms of a torus, the lifted versions of ζ and η admit simple expres-
sions (Fayolle et al., 1999, Section 3.1.2):

ζ(ω) = −ω + ω1 + ω2, η(ω) = −ω + ω1 + ω2 + ω3, (9)

where, as the periods ω1 and ω2, ω3 ∈ (0, ω2) is an elliptic integral (Fayolle et al., 1999, Lemma 3.3.3).
Accordingly, the group is finite if and only if ω2/ω3 ∈ Q, which provides a nice criterion in terms of
elliptic integrals.

Continuation
While the generating function π(x) is defined through its power series in the unit disc, it is a priori unclear
how to continue it to a larger domain. This is however crucial, since the curve M on which it satisfies a
BVP (Lemma 2) is not included in the unit disc in general.

Theorem 5 The function π can be continued as a meromorphic function to C \ [x3, x4].

We notice that M does not intersect [x3, x4] by (Fayolle et al., 1999, Theorem 5.3.3), so that Theorem 5
indeed provides a continuation of the generating function in the domain delimitated by M.

Proof: This result, stated as Theorem 3.2.3 in Fayolle et al. (1999), is a consequence of a continuation of
the lifted generating functions (7) on the Riemann surface (or, better, on its universal covering — but we
shall not go into these details here). The continuation on K uses the (lifted) functional equation (2) and
the group of the walk 〈ζ, η〉. 2

Conformal mapping
In the integral expression of Theorem 3, the conformal gluing function w is all-present, as it appears in
the integrand and in f and g as well. The introduction of the Riemann surface K allows to derive an
expression for this function (this is another major interest of introducing K). Let us recall that ω1 and
ω2 are the periods of the elliptic functions of the parametrization (6), while ω3 comes out in the lifted
expression (9) of the automorphisms.

Theorem 6 The conformal gluing function w admits the expression:

w(x) = ℘(℘−1(x;ω1, ω2);ω1, ω3),

where for i ∈ {2, 3}, ℘( · ;ω1, ωi) is the ℘-Weierstrass elliptic function with periods ω1 and ωi.
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Proof: While on the complex plane, M is a quartic curve, it becomes on K much simpler (typically, a
segment). This remark (which again illustrates all the benefit of having introduced the Riemann surface)
is used in (Fayolle et al., 1999, Section 5.5.2) so as to obtain the above expression for w. 2

Algebraic nature of the generating functions
Recall that a function of one variable is D-finite if it satisfies a linear differential equation with polynomial
coefficients.

Theorem 7 If the group is finite, the generating functions π(x) and π̃(y) are D-finite.

Proof: This follows from manipulations on the Riemann surface, see (Fayolle et al., 1999, Chapter 4).
The D-finiteness is proved on R; refined results (in the combinatorial context of the enumeration of paths)
can be found in Bousquet-Mélou and Mishna (2010), where the D-finiteness is proved on Q. 2

The converse of Theorem 7 is not shown in full generality. It is true in combinatorics, see Kurkova and
Raschel (2012).

3 Reflected Brownian motion in the quadrant
Defining reflected Brownian motion in the quadrant
The object of study here is the reflected Brownian motion with drift in the quarter plane R2

+

Z(t) = Z0 +W (t) + µt+RL(t), ∀t > 0, (10)

associated to the triplet (Σ, µ,R), composed of a non-singular covariance matrix, a drift and a reflection
matrix, see Figure 3:

Σ =

(
σ11 σ21

σ12 σ22

)
, µ =

(
µ1

µ2

)
, R = (R1, R2) =

(
r11 r21

r12 r22

)
.

In Equation (10), Z0 is any initial point in R2
+, the process (W (t))t>0 is an unconstrained planar Brownian

motion starting from the origin, and for i ∈ {1, 2}, Li(t) is a continuous non-decreasing process, that
increases only at time t such that Zi(t) = 0, namely

∫ t
0
1{Zi(s) 6=0}dL

i(s) = 0. The columns R1 and R2

represent the directions in which the Brownian motion is pushed when the axes are reached.
The reflected Brownian motion (Z(t))t>0 associated with (Σ, µ,R) is well defined, see for instance

Williams (1995). Its stationary distribution exists and is unique if and only if the following (geometric
flavored) conditions are satisfied (see, e.g., Harrison and Williams (1987a); Hobson and Rogers (1993))

r11 > 0, r22 > 0, r11r22 − r12r21 > 0, r22µ1 − r12µ2 < 0, r11µ2 − r21µ1 < 0. (11)

More that the Brownian motion in the quadrant, all results presented below concern the Brownian mo-
tion in two-dimensional cones (by a simple linear transformation of the cones). This is a major difference
and interest of the continuous case, which also illustrates that the analytic approach is very well suited to
that context.
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Fig. 3: Drift µ and reflection vectors R1 and R2

3.1 Functional equation
Laplace transform of the stationary distribution
The continuous analogues of the generating functions are the Laplace transforms. As their discrete coun-
terparts, they characterize the stationary distribution. Under assumption (11), that we shall do throughout
the manuscript, the stationary distribution is absolutely continuous w.r.t. the Lebesgue measure, see Har-
rison and Williams (1987a); Dai (1990). We denote its density by π(x) = π(x1, x2). Let the Laplace
transform of π be defined by

ϕ(θ) = Eπ[e〈θ|Z〉] =

∫∫

R2
+

e〈θ|x〉π(x)dx.

We further define two finite boundary measures ν1 and ν2 with support on the axes, by mean of the formula

νi(B) = Eπ
[ ∫ 1

0

1{Z(t)∈B}dL
i(t)

]
.

The measures νi are continuous w.r.t. the Lebesgue measure by Harrison and Williams (1987a), and may
be viewed as boundary invariant measures. We define their moment Laplace transform by

ϕ2(θ1) =

∫

R+

eθ1x1ν2(x1)dx1, ϕ1(θ2) =

∫

R+

eθ2x2ν1(x2)dx2.

Functional equation
There is a functional equation between the Laplace transformsϕ, ϕ1 andϕ2, see (12), which is reminiscent
of the discrete functional equation (2).

Lemma 8 The following key functional equation between the Laplace transforms holds

−γ(θ)ϕ(θ) = γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1), (12)

where 



γ(θ) = 1
2 〈θ|σθ〉+ 〈θ|µ〉 = 1

2 (σ11θ
2
1 + σ22θ

2
2 + 2σ12θ1θ2) + µ1θ1 + µ2θ2,

γ1(θ) = 〈R1|θ〉 = r11θ1 + r21θ2,

γ2(θ) = 〈R2|θ〉 = r12θ1 + r22θ2.
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By definition of the Laplace transforms, this equation holds at least for any θ = (θ1, θ2) with < θ1 6 0
and < θ2 6 0. The polynomial γ in (12) is the kernel and is the continuous analogue of the kernel (1) in
the discrete case. Polynomials γ1 and γ2 are the counterparts of k and k̃.

Proof: To show (12), the main idea is to use an identity called a basic adjoint relationship (first proved in
Harrison and Williams (1987a) in some particular cases, then extended in Dai and Harrison (1992)), which
characterizes the stationary distribution. (It is the continuous analogue of the well-known equation πQ =
0, where π is the stationary distribution of a recurrent continuous-time Markov chain with infinitesimal
generator Q.) This basic adjoint relationship connects the stationary distribution π and the corresponding
boundary measures ν1 and ν2. We refer to Foddy (1984); Dai and Miyazawa (2011) for the details. 2

Elementary properties of the kernel
The kernel γ in (12) can be alternatively written as

γ(θ1, θ2) = ã(θ2)θ2
1 + b̃(θ2)θ1 + c̃(θ2) = a(θ1)θ2

2 + b(θ1)θ2 + c(θ1). (13)

The equation γ(θ1, θ2) = 0 defines a two-valued algebraic function Θ1(θ2) by γ(Θ1(θ2), θ2) = 0, and
similarly Θ2(θ1) such that γ(θ1,Θ2(θ1)) = 0. Expressions of their branches are given by

Θ±2 (θ1) =
−b(θ1)±

√
d(θ1)

2a(θ1)
,

where d(θ1) = b2(θ1) − 4a(θ1)c(θ1) is the discriminant. The polynomial d has two zeros, real and of
opposite signs; they are denoted by θ±1 and are branch points of the algebraic function Θ2. In the same
way we define Θ±1 and its branch points θ±2 .

Finally, notice that d is negative on R\ [θ−1 , θ
+
1 ]. Accordingly, the branches Θ±2 take complex conjugate

values on this set.

3.2 Statement and resolution of the BVP

An important hyperbola
For further use, we need to introduce the curve

R = {θ2 ∈ C : γ(θ1, θ2) = 0 and θ1 ∈ (−∞, θ−1 )} = Θ±2 ((−∞, θ−1 )). (14)

It is the analogue of the curve M in Section 2.1. The curve R is symmetrical w.r.t. the real axis, see
Figure 4 (this is a consequence of d being negative on (−∞, θ−1 ), see above). Furthermore, it is a (branch
of a) hyperbola by Baccelli and Fayolle (1987). We shall denote by GR the open domain of C bounded by
R and containing 0, see Figure 4. Obviously GR, the closure of GR, is equal to GR ∪ R.

BVP for orthogonal reflections
In the case of orthogonal reflections (see Figure 3),R is the identity matrix in (10), and we have γ1(θ1, θ2) =
θ1 and γ2(θ1, θ2) = θ2. We set

ψ1(θ2) =
1

θ2
ϕ1(θ2), ψ2(θ1) =

1

θ1
ϕ2(θ1). (15)
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Fig. 4: Left: the discriminant d has two roots θ−1 and θ+1 of opposite signs. Right: the curve R in (14) is symmetric
w.r.t. the horizontal axis and GR is the domain in blue

Lemma 9 The function ψ1 in (15) satisfies the following BVP:

(i) ψ1 is meromorphic on GR with a single pole at 0, of order 1 and residue ϕ1(0), and vanishes at
infinity;

(ii) ψ1 is continuous on GR \ {0} and

ψ1(θ2) = ψ1(θ2), ∀θ2 ∈ R. (16)

Proof: The regularity condition of point (i) follows from Theorem 15, which provides a (maximal) mero-
morphic continuation of the function. Let us now consider (ii). Evaluating the (continued) functional
equation (12) at (θ1,Θ

±
2 (θ1)), we obtain ψ1(Θ±2 (θ1)) + ψ2(θ1) = 0, which immediately implies that

ψ1(Θ+
2 (θ1)) = ψ1(Θ−2 (θ1)). (17)

Choosing θ1 ∈ (−∞, θ−1 ), the two quantities Θ+
2 (θ1) and Θ−2 (θ1) are complex conjugate the one of the

other, see Section 3.1. Equation (17) can then be reformulated as (16), using the definition (14) of the
curve R. 2

The BVP stated in Lemma 9 is called a homogeneous BVP with shift (the shift stands here for the
complex conjugation, but the theory applies to more general shifts, see Litvinchuk (2000)). It has a
simpler form than the BVP in Lemma 2 for the discrete case, because there is no inhomogeneous term (as
π0,0) and also because in the coefficients in front of the unknowns there is no algebraic function (as Y0)
involved. Due to its particularly simple form, we can solve it in an explicit way, using the two following
steps:

• Using a certain conformal mapping w (to be introduced below), we can construct a particular solu-
tion to the BVP of Lemma 9.

• The solution to the BVP of Lemma 9 is unique (see the invariant Lemma 2 in (Litvinchuk, 2000,
Section 10.2)). In other words, two different solutions must coincide, and the explicit solution
constructed above must be the function ψ1.
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In Franceschi and Raschel (2016) it is explained that the above method may be viewed as a variation
of Tutte’s invariant approach, first introduced by Tutte for solving a functional equation arising in the
enumeration of properly colored triangulations, see Tutte (1995).

The function w glues together the upper and lower parts of the hyperbola R. There are at least two
ways to find such a w. First, it turns out that in the literature there exist expressions for conformal gluing
functions for relatively simple curves as hyperbolas, see (Baccelli and Fayolle, 1987, Equation (4.6)).
Here (based on Franceschi and Raschel (2016)), we use instead the Riemann sphere S, as we will see in
Section 3.4. Indeed, many technical aspects (and in particular finding the conformal mapping) happen to
be quite simpler on that surface.

We will deduce from Section 3.4 that function w can be expressed in terms of the generalized Cheby-
shev polynomial

Ta(x) = cos(a arccos(x)) =
1

2

{(
x+

√
x2 − 1

)a
+
(
x−

√
x2 − 1

)a}

as follows:

w(θ2) = Tπ
β

(
− 2θ2 − (θ+

2 + θ−2 )

θ+
2 − θ−2

)
, (18)

where we have noted
β = arccos− σ12√

σ11σ22
. (19)

In the case of orthogonal reflection, this methods leads to the main result of Franceschi and Raschel
(2016), which is:

Theorem 10 Let R be the identity matrix in (10). The Laplace transform ϕ1 is equal to

ϕ1(θ2) =
−µ1w

′(0)

w(θ2)− w(0)
θ2.

Statement of the BVP in the general case
We would like to close Section 3.2 by stating the BVP in the case of arbitrary reflections (non-necessarily
orthogonal). Let us define for θ2 ∈ R

G(θ2) =
γ1

γ2
(Θ−1 (θ2), θ2)

γ2

γ1
(Θ−1 (θ2), θ2).

Similarly to Lemma 9, there is the following result:

Lemma 11 The function ϕ1 satisfies the following BVP:

(i) ϕ1 is meromorphic on GR with at most one pole p of order 1 and is bounded at infinity;

(ii) ϕ1 is continuous on GR \ {p} and

ϕ1(θ2) = G(θ2)ϕ1(θ2), ∀θ2 ∈ R. (20)

Due to the presence of the function G 6= 1 in (20), this BVP (still homogeneous with shift) is more
complicated than the one encountered in Lemma 9 and cannot be solved thanks to an invariant lemma.
Instead, the resolution is less combinatorial and far more technical, and the solution should be expressed
in terms of both Cauchy integrals and the conformal mapping w of Theorem 10. This will be achieved in
a future work.
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3.3 Asymptotics of the stationary probabilities

Overview
Let Π be a random vector that has the stationary distribution of the reflected Brownian motion. Dai and
Miyazawa (2011) obtain the following asymptotic result: for a given directional vector c ∈ R2

+ they find
(up to a multiplicative constant) a function fc(x) such that

lim
x→∞

P[〈c|Π〉 > x]

fc(x)
= 1.

In Franceschi and Kurkova (2016) we solve a harder problem arisen in (Dai and Miyazawa, 2011, §8),
namely computing the asymptotics of P[Π ∈ xc+B] as x→∞, where c ∈ R2

+ is any directional vector
and B ⊂ R2

+ any compact subset. Furthermore, we are able to find the full asymptotic expansion of the
density π(x1, x2) of Π as x1, x2 →∞ and x2/x1 → tan(α), for any given angle α ∈ (0, π/2).

Main results
First we need to introduce some notations. The equation γ(θ) = 0 determines an ellipse E on R2 passing
through the origin, see Figure 5. Here we restrict ourselves to the case µ1 < 0 and µ2 < 0, although our
methods can be applied without additional difficulty to other cases. For a given angle α ∈ [0, π/2], let us

Fig. 5: Left: representation of the ellipse E, straight lines {γ1(θ) = 0}, {γ2(θ) = 0}, and points θ∗, θ∗∗, ηθ∗ and
ζθ∗∗. Right: geometric interpretation of the point θ(α) in (21) on E

define the point θ(α) on the ellipse E by

θ(α) = argmaxθ∈E〈θ|eα〉, where eα = (cosα, sinα). (21)

The coordinates of θ(α) can be given explicitly. One can also construct θ(α) geometrically as on Figure 5.
Secondly, consider the straight lines {γ1(θ) = 0} and {γ2(θ) = 0}, depending on the reflection matrix

R only. They cross the ellipse E at the origin. The line {γ1(θ) = 0} (resp. {γ2(θ) = 0}) intersects the
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ellipse at a second point called θ∗ (resp. θ∗∗). To present our results, we need to define the images on E

of these points via the so-called Galois automorphisms ζ and η, to be introduced in Section 3.4. Namely,
for the point θ∗ = (θ∗1 , θ

∗
2) ∈ E there exists a unique point ηθ∗ = (ηθ∗1 , θ

∗
2) ∈ E with the same second

coordinate. Likewise, there exists a unique point ζθ∗∗ = (θ∗∗1 , ζθ∗∗2 ) ∈ E with the same first coordinate
as θ∗∗ = (θ∗∗1 , θ∗∗2 ) ∈ E. Points θ∗, θ∗∗, ηθ∗ and ζθ∗∗ are pictured on Figure 5. Their coordinates can be
made explicit.

Similarly to the discrete case, we introduce the set of parameters

Q−− =
{

((Σ, µ,R), α) : γ1(ηθ(α)) < 0 and γ2(ζθ(α)) < 0
}

and Q+−, Q−+ and Q++ accordingly. The following theorem provides the main term in the asymptotic
expansion of π(r cosα, r sinα).

Theorem 12 Let (x, y) = (r cosα, r sinα) with α ∈ (0, π/2). We assume that θ(α) ∈ R2
+. Then as

r →∞ we have

π(reα) = (1 + o(1)) ·





C0√
r
e−r〈eα|θ(α)〉 in Q−−,

C1e
−r〈eα|ηθ∗〉 in Q+−,

C2e
−r〈eα|ζθ∗∗〉 in Q−+,

C1e
−r〈eα|ηθ∗〉 + C2e

−r〈eα|ζθ∗∗〉 in Q++,

(22)

where C0, C1 and C2 are constants that can be expressed in terms of functions ϕ1 and ϕ2 and the
parameters.

In Franceschi and Kurkova (2016) the constants mentioned in Theorem 12 are specified in terms of func-
tions ϕ1 and ϕ2. But these functions are for now unknown. As we explained in Section 3.2, in a next work
we are going to obtain ϕ1 and ϕ2 as solutions of BVP, thereby determining the constants in Theorem 12.

Proof of the key step of Theorem 12: Theorem 12 is proven in Franceschi and Kurkova (2016). The
first step consists in continuing meromorphically the functions ϕ1 and ϕ2 on C \ [θ+

2 ,∞) or on the
Riemann surface S, see Section 3.4. Then by the functional equation (12) and the inversion formula of
Laplace transform (we refer to Doetsch (1974) and Brychkov et al. (1992)), the density π(x1, x2) can
be represented as a double integral. Using standard computations from complex analysis, we are able to
reduce it to a sum of single integrals. We obtain the following (with the notation (13)):

π(x1, x2) =
−1

(2πi)2

∫ i∞

−i∞

∫ i∞

−i∞
e−x1θ1−x2θ2

γ1(θ)ϕ1(θ2) + γ2(θ)ϕ2(θ1)

γ(θ)
dθ1dθ2

=
1

2πi

∫ i∞

−i∞
ϕ2(θ1)γ2(θ1,Θ

+
2 (θ1))e−x1θ1−x2Θ+

2 (θ1) dθ1√
d(θ1)

+
1

2πi

∫ i∞

−i∞
ϕ1(θ2)γ1(Θ+

1 (θ2), θ2)e−x1Θ+
1 (θ2)−x2θ2

dθ2√
d̃(θ2)

.

These integrals are typical to apply the saddle point method, see Fedoryuk (1986). The coordinates of the
saddle point are the critical points of the functions

cos(α)θ1 + sin(α)Θ+
2 (θ1) and cos(α)Θ+

1 (θ2) + sin(α)θ2.
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It is the point θ(α). Then we have to shift the integration contour up to new contours which coincide
with the steepest-descent contour near the saddle point. When we shift the contours we have to take into
account the poles of the integrands and their residues. The asymptotics will be determined by the pole if
we cross a pole when we shift the contour and by the saddle point otherwise. 2

3.4 Riemann surface and related facts

Riemann surface
The Riemann surface

S = {(θ1, θ2) ∈ C2 : γ(θ1, θ2) = 0}
may be viewed as the set of zeros of the kernel (equivalently, it is the Riemann surface of the algebraic
functions Θ2 and Θ1). Due to the degree of γ, the surface S has genus 0 and is a Riemann sphere,
i.e., homeomorphic to C ∪ {∞}, see Franceschi and Kurkova (2016). It admits a very useful rational
parametrization, given by

θ1(s) =
θ+

1 + θ−1
2

+
θ+

1 − θ−1
4

(
s+

1

s

)
, θ2(s) =

θ+
2 + θ−2

2
+
θ+

2 − θ−2
4

(
s

eiβ
+
eiβ

s

)
, (23)

with β as in (19). The equation γ(θ1(s), θ2(s)) = 0 holds and S = {(θ1(s), θ2(s)) : s ∈ C ∪ {∞}}.

Group of the process
We finally introduce the notion of group of the model, similar to the notion of group of the walk in the
discrete setting (see Malyšev (1972); Fayolle et al. (1999); Bousquet-Mélou and Mishna (2010)). This
group 〈ζ, η〉 is generated by ζ and η, given by (with the notation (13))

ζ(θ1, θ2) =

(
θ1,

c(θ1)

a(θ1)

1

θ2

)
, η(θ1, θ2) =

(
c̃(θ2)

ã(θ2)

1

θ1
, θ2

)
.

By construction, the generators satisfy γ(ζ(θ1, θ2)) = γ(η(θ1, θ2)) = 0 as soon as γ(θ1, θ2) = 0. In
other words, there are (covering) automorphisms of the surface S. Since ζ2 = η2 = 1, the group 〈ζ, η〉 is
a dihedral group, which is finite if and only if the element ζ ◦ η (or equivalently η ◦ ζ) has finite order.

Algebraic nature of the Laplace transforms
With the above definition, it is not clear how to see if the group is finite, nor to see it its finiteness would
have any implication on the problem. In fact, we have, with β defined in (19):

Lemma 13 The group 〈ζ, η〉 is finite if and only if π/β ∈ Q.

The proof of Lemma 13 is simple, once the elements ζ and η have been lifted and reformulated on the
sphere S:

ζ(s) =
1

s
, η(s) =

e2iβ

s
.

These transformations leave invariant θ1(s) and θ2(s), respectively, see (23). In particular, we have the
following result (see Franceschi and Raschel (2016)), which connects the nature of the solution of the BVP
to the finiteness of the group. Such a result holds for discrete walks, see our Theorem 7 and Bousquet-
Mélou and Mishna (2010); Bernardi et al. (2015).
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Theorem 14 The solution ϕ1 given in Theorem 10 and the conformal gluing function w in (18) are
algebraic if and only if the group 〈ζ, η〉 is finite.

Conformal mapping
The conformal gluing function w introduced in Section 3.2 may be lifted on S. In fact its expression is
even simpler using the parametrization of S. We show in Franceschi and Raschel (2016) that

w(θ2(s)) = − i
2

{
(−s)πβ + (−s)−πβ

}
= − i

2

{
e
π
β log(−s) + e−

π
β log(−s)}, (24)

where we make use of the principal determination of the logarithm.

Continuation of the Laplace transforms
To establish the BVP, we have stated a boundary condition for the functions ϕ1 and ϕ2, on curves which
lie outside their natural domains of definition (the half-plane with negative real-part), see Figure 4. In the
same way, in the asymptotic study we use the steepest descent method on some curves outside of the initial
domain of definition. We therefore need to extend the domain of definition of the Laplace transforms.

Theorem 15 The function ϕ1 can be continued meromorphically on the cut plane C \ [θ+
2 ,∞).

Proof: The first step is to continue meromorphically ϕ1(θ2) to the open and simply connected set {θ2 ∈
C : < θ2 6 0 or <Θ−1 (θ2) < 0}, by setting

ϕ1(θ2) =
γ2

γ1
(Θ−1 (θ2), θ2)ϕ2(Θ−1 (θ2)).

This is immediate (see Franceschi and Kurkova (2016) for the details). It is then possible to pursue the
extension to the whole S using the invariance properties by the automorphisms ζ and η satisfied by the
lifted Laplace transforms on S. 2
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Abstract.

We study the size and the external path length of random tries and show that they are asymptotically independent in the
asymmetric case but strongly dependent with small periodic fluctuations in the symmetric case. Such an unexpected
behavior is in sharp contrast to the previously known results that the internal path length is totally positively correlated
to the size and that both tend to the same normal limit law. These two examples provide concrete instances of bivariate
normal distributions (as limit laws) whose correlation is 0, 1 and periodically oscillating.

Keywords: Random tries, Pearson’s correlation coefficient, asymptotic normality, Poissonization/de-Poissonization,
Mellin transform, contraction method

1 Introduction
Tries are one of the most fundamental tree-type data structures in computer algorithms. Their general
efficiency depends on several shape parameters, the principal ones including the depth, the height, the size,
the internal path-length (IPL), and the external path-length (EPL); see below for a more precise description
of those studied in this paper. While most of these measures have been extensively investigated in the
literature, we are concerned here with the question: how does the EPL depend on the size in a random
trie? Surprisingly, while the IPL and the size are known to have asymptotic correlation coefficient tending
to one and to have the same normal limit law after each being properly normalized (see [4, 6]), this paper
aims to show that the EPL exhibits a completely different behavior depending on the parameter of the
underlying random bits being biased or unbiased. This is a companion paper to [1].

Given a sequence of binary strings (or keys), one can construct a (binary) trie as follows. If n = 1,
then the trie consists of a single root-node holding the sole string; otherwise, the root is used to direct the
strings into the corresponding subtree: if the first bit of the input string is 0 (or 1), then the string goes to
the left (or right) subtree; strings going to the same subtree are then constructed recursively in the same
manner but instead of splitting according to the first bit, the second bit of each string is then used. In
this way, a binary dictionary-type tree with two types of nodes is constructed: external nodes for storing
strings and internal nodes for splitting the strings; see Figure 1 for a trie of seven strings.
†Partially supported by MOST under the grant MOST-104-2923-M-009-006-MY3
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Fig. 1: A trie with n = 7 records: the (filled) circles represent internal nodes and rectangles holding the binary
strings are external nodes. In this example, Sn = 8, Kn = 27, and Nn = 18.

The random trie model we consider here assumes that each of the n binary keys is an infinite sequence
consisting of independent Bernoulli bits each with success probability 0 < p < 1. Then the trie con-
structed from this sequence is a random trie. We define three shape parameters in a random trie of n
strings:

• size Sn: the total number of internal nodes used;

• IPL (or node path-length, NPL) Nn: the sum of the distances between the root to each internal
node;

• EPL (or key path-length, KPL)Kn: the sum of the distances between the root to each external node.

We will use mostly NPL in place of IPL, and KPL in place of EPL, the reason being an easier comparison
with the corresponding results in random m-ary search trees in the companion paper [1]; see below for
more details.

By the recursive definition, we have the following recurrence relations




Sn
d
= SBn + S∗n−Bn + 1,

Kn
d
= KBn +K∗n−Bn + n,

Nn
d
= NBn +N∗n−Bn + SBn + S∗n−Bn ,

(n ≥ 2), (1)

where Bn = Binom(n, p) and S0 = S1 = K0 = K1 = N0 = N1 = 0. Here (S∗n), (K∗n), and (N∗n)
are independent copies of (Sn), (Kn) and (Nn), respectively. While many stochastic properties of these
random variables are known (see [4] and the references therein), much less attention has been paid to their
correlation and dependence structure.

The asymptotic behaviors of the moments of random variables defined on tries typically depend on the
ratio log p

log q being rational or irrational, where q = 1− p. So we introduce, similar to [4], the notation

F [g](z) =

{∑
k∈Z gkz

−χk , if log p
log q ∈ Q;

g0, if log p
log q 6∈ Q,

(2)
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where gk represents a sequence of coefficients and χk = 2rkπi
log p when log p

log q = r
l with r and l coprime. In

simpler words, F [g](z) is a periodic function in the rational case, and a constant in the irrational case.
We also use F [·](z) as a generic symbol if the exact form of underlying sequence matters less, and in this
case each occurrence may not represent the same function.

With this notation, the asymptotics of the mean and the variance of the above three shape parameters
are summarized in the following table; see [4] and the references therein for more information.

Shape parameters 1
n (mean) ∼ 1

n (variance) ∼
Size Sn F [·](n) F [g(1)](n)

NPL Nn
E(Sn)
n · logn

h
V(Sn)
n · (logn)2

h2

KPL Kn
logn
h + F [·](n)

pq log2 p
q

h2 · logn
h + F [g(3)](n)

Depth Dn E(Dn) = E(Kn)
n V(Dn) = V(Kn)

n +O(1)

Tab. 1: Asymptotic patterns of the means and the variances of the shape parameters discussed in this paper. Here
F [·](n) differs from one occurrence to another and h = −p log p− q log q denotes the entropy. Expressions for g(1)k

and g(3)k will be given below. Asymptotic normality holds for all three random variables Sn, Nn,Kn.

Note specially that the leading constant

λ = λp :=
pq log2 p

q

h3
=

(p log2 p+ q log2 q)− h2

h3

in the asymptotic approximation to V(Kn) equals zero when p = q, implying that V(Kn) is not of order
n log n but of linear order in the symmetric case. This change of order can be regarded as the source
property distinguishing the dependence and independence of Kn on Sn.

On the other hand, if we denote by Dn the depth, which is defined to be the distance between the root
and a randomly chosen external node (each with the same probability), then we have not only the relation
E(Dn)n = E(Kn), but also the asymptotic equivalent V(Dn)n ∼ V(Kn) when p 6= 1/2 (or λ > 0), and
a central limit theorem holds; see Devroye [2].

From Table 1, we see roughly that each internal node contributes logn
h to Nn, namely, that Nn ≈

Sn · logn
h . Indeed, it was proved in [4] that the correlation coefficient of Sn and Nn satisfies

ρ(Sn, Nn) ∼ 1 (0 < p < 1). (3)

Such a linear correlation was further strengthened in [6], where it was proved that both random variables
tend to the same normal limit law N1 (with zero mean and unit variance)

(
Sn − E(Sn)√

V(Sn)
,
Nn − E(Nn)√

V(Nn)

)
d−→ (N1,N1),

where d−→ denotes convergence in distribution. In terms of the bivariate normal law N2 (see Tong [16]),
we can write (

Sn − E(Sn)√
V(Sn)

,
Nn − E(Nn)√

V(Nn)

)ᵀ
d−→ N2(0, E2),
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where E2 =
(

1 1
1 1

)
is a singular matrix and Aᵀ denotes the transpose of matrix A.

We show that the correlation and dependence of Kn on Sn are drastically different. We start with their
correlation coefficient.

Theorem A The covariance of the number of internal nodes and KPL in a random trie of n strings
satisfies

Cov(Sn,Kn) ∼ nF [g(2)](n),

where g(2)
k is given in Proposition A below, and their correlation coefficient satisfies

ρ(Sn,Kn) ∼
{

0, if p 6= 1
2

F (n), if p = 1
2 .

(4)

Here F (n) = F [g(2)](n)√
F [g(1)](n)F [g(3)](n)

is a periodic function with average value 0.927 · · · .

The result (4) is to be compared with (3) (which holds for all p ∈ (0, 1)): the surprising difference here
comes not only from the (common) distinction between p = 1

2 and p 6= 1
2 but also from the (less expected)

intrinsic asymptotic nature.

Fig. 2: p = 1
2

: periodic fluctuations of (i) ρ(Sn,Kn) (left) for n = 32, . . . , 1024, (ii) Cov(Sn,Kn)√
V(Sn)(V(Kn)+1.046)

(middle)

in logarithmic scale, and (iii) F (n) by its Fourier series expansion (right). Note that the fluctuations are only visible
by proper corrections either in the denominator or in the numerator because the amplitude of F is very small:
|F (·)| ≤ 1.5× 10−5.

Furthermore, we show that this different behavior cannot be ascribed to the weak measurability of
nonlinear dependence of Pearson’s correlation coefficient ρ since the same dependence is also present in
the limiting distribution. (For the univariate central limit theorems implied by the result below, see Jacquet
and Régnier [8] where such results were first established.)

Theorem B (i) For p 6= 1
2 , we have
(
Sn − E(Sn)√

V(Sn)
,
Kn − E(Kn)√

V(Kn)

)ᵀ
d−→ N2(0, I2),

where I2 denotes the 2× 2 identity matrix.
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(ii) For p = 1
2 , we have

Σ
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2),

where Σn denotes the (asymptotic) covariance matrix of Sn and Kn:

Σn := n

(
F [g(1)](n) F [g(2)](n)
F [g(2)](n) F [g(3)](n)

)
.

Alternatively, we may define Σn := n

(
F [g(1)](n) F [g(2)](n)
F [g(2)](n) λ log n+ F [g(3)](n)

)
. Then both cases can be

stated in one as Σ
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2). On the other hand, since for bivariate normal

distribution, zero correlation implies independence (see [16]), it is more transparent to split the statement
into two cases. See Figure 3 for 3D-plots of the joint distributions of (Sn,Kn) when n = 107.

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

Sn
Kn Sn

Kn Sn
Kn

p = 0.4 p = 0.5 p = 0.6

p = 0.1 p = 0.2 p = 0.3

p = 0.7 p = 0.8 p = 0.9

Fig. 3: Joint distributions of (Sn,Kn) by Monte-Carlo simulations for n = 107 and varying p: the case p = 0.5 is
seen to have stronger dependence than the others.

These results are to be compared with the corresponding ones for randomm-ary search trees [1], and the
differences for correlation coefficients are summarized in Table 2. Furthermore, the joint distribution for
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trees ρ(Sn,Kn) ρ(Sn, Nn)

tries
{
p 6= q :→ 0
p = q : periodic ∼ 1

m-ary
search trees

{
3 ≤ m ≤ 26 :→ 0
m ≥ 27 : periodic

Tab. 2: A comparison of the correlation coefficients for random tries and random m-ary search trees: the size of
m-ary search trees corresponds to the space requirement, and the KPL and NPL are defined similarly as in tries.

m-ary search trees undergoes a phase change at m = 26: if the branching factor m satisfies 3 ≤ m ≤ 26,
then the space requirement is asymptotically independent from KPL and NPL, while for m ≥ 27, their
limiting joint distributions contain periodic fluctuations and are dependent; see [1] for more information.

Finally, similar results as those in this paper also hold for other digital families of trees, but for simplic-
ity we focus on tries in this paper; see [7, 4] for more references.

2 Covariance and Correlation Coefficient
In this section, we sketch the main ideas leading to the proof of Theorem A on the asymptotics of the
covariance and correlation coefficient of Sn and Kn. For the latter, we also need the variances of Sn and
Kn which have been known for a long time; see Jacquet and Régnier [8], Kirschenhofer and Prodinger
[10], Kirschenhofer et al. [11], Régnier and Jacquet [14] or the recent paper [4]. (See also Table 1 for a
summary of these results.)

Our method of proof is based on the by-now standard two-stage approach relying on the theory of
analytic de-Poissonization and Mellin transform whose origin can be traced back to Jacquet and Régnier
[8]. See Flajolet et al. [3] for a survey on Mellin transform, and Jacquet and Szpankowski [9] for a survey
on analytic de-Poissonization. For the computation of the covariance, the manipulation can be largely
simplified by the additional notions of Poissonized variance and admissible functions further developed
in our previous papers [4, 7].

The starting point of our analysis is the recurrence satisfied by Sn and Kn in (1). A standard means
in the computation of moments of Sn and Kn is the Poisson generating function, which corresponds to
the moments of Sn and Kn with n replaced by a Poisson random variable with parameter z (this step is
called Poissonization).

More precisely, define the Poisson generating function of E(Sn) and that of E(Kn): f̃1,0(z) :=

e−z
∑
n≥0 E(Sn) z

n

n! and f̃0,1(z) := e−z
∑
n≥0 E(Kn) z

n

n! . Then the recurrences (1) lead to the func-
tional equations

{
f̃1,0(z) = f̃1,0(pz) + f̃1,0(qz) + 1− (1 + z)e−z,

f̃0,1(z) = f̃0,1(pz) + f̃0,1(qz) + z(1− e−z). (5)

From these equations, we obtain, by Mellin transform techniques [3],

f̃1,0(z) ∼ zF [·](z), and f̃0,1(z) ∼ h−1z log z + zF [·](z), (6)

for large |z| in the half-plane <(z) ≥ ε > 0, where h denotes the entropy of Bernoulli(p). Then, by
Cauchy’s integral representation and analytic de-Poissonization techniques [9], we obtain precise asymp-
totic approximations to E(Sn) and to E(Kn).
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Similarly, for the variances V(Sn) and V(Kn), we introduce the Poisson generating functions of the
second moments: f̃2,0(z) := e−z

∑
n≥0 E(S2

n) z
n

n! and f̃0,2(z) := e−z
∑
n≥0 E(K2

n) z
n

n! , which then
satisfy, by (1), the same type of functional equations as in (5) but with different non-homogeneous parts.
Instead of computing directly asymptotic approximations to the second moments, it proves computational
more advantageous to consider the Poissonized variances

{
ṼS(z) := f̃2,0(z)− f̃1,0(z)2 − zf̃ ′1,0(z)2,

ṼK(z) := f̃0,2(z)− f̃0,1(z)2 − zf̃ ′0,1(z)2,
(7)

and then following the same Mellin-de-Poissonization approach (as for the means) to derive the first and
the third asymptotic estimate in the second column of Table 1. It remains to derive the claimed esti-
mate for the covariance. For that purpose, we then introduce the Poisson generating function f̃1,1(z) :=
e−z

∑
n≥0 E(SnKn) z

n

n! , which satisfies, again by (1),

f̃1,1(z) = f̃1,1(pz) + f̃1,1(qz) + f̃1,0(pz)
(
f̃0,1(qz) + z

)
+ f̃1,0(qz)

(
f̃0,1(pz) + z

)

+ pzf̃ ′1,0(pz) + qzf̃ ′1,0(qz) + f̃0,1(pz) + f̃0,1(qz) + z(1− e−z).

To compute the covariance, it is beneficial to introduce now the Poissonized covariance (see (7) or [4] for
similar details)

C̃(z) = f̃1,1(z)− f̃1,0(z)f̃0,1(z)− zf̃ ′1,0(z)f̃ ′0,1(z),

which satisfies

C̃(z) = C̃(pz) + C̃(qz) + h̃1(z) + h̃2(z), (8)

where
h̃1(z) = pqz

(
f̃ ′1,0(pz)− f̃ ′1,0(qz)

)(
f̃ ′0,1(pz)− f̃ ′0,1(qz)

)
,

and

h̃2(z) = ze−z
(
f̃1,0(pz) + f̃1,0(qz) + p(1− z)f̃ ′1,0(pz) + q(1− z)f̃ ′1,0(qz)

)

+ e−z
(
(1 + z)f̃0,1(pz) + (1 + z)f̃0,1(qz)− pz2f̃ ′0,1(pz)− qz2f̃ ′0,1(qz)

)

+ ze−z
(
1− (1 + z2)e−z

)
.

Note that h̃1 is zero when p = 1
2 . Furthermore, from (6) (which can be differentiated since they hold in a

sector S = {z ∈ C : <(z) ≥ ε, |Arg(z)| ≤ θ0} with 0 < θ0 < π/2 in the complex plane), we obtain
that h̃1(z) = O(|z|) and h̃2(z) is exponentially small for large |z| in <(z) > 0. Also h̃1(z) + h̃2(z) =
O(|z|2) as z → 0. Thus the Mellin transform of h̃1(z) + h̃2(z) exists in the strip 〈−2, 0〉, and we have
then the inverse Mellin integral representation

C̃(z) =
1

2πi

∫ − 3
2 +i∞

− 3
2−i∞

M [h̃1(z) + h̃2(z); s]

1− p−s − q−s z−sds,

where M [φ(z); s] :=
∫∞

0
φ(z)zs−1dz denotes the Mellin transform of φ.
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We then show that M [h̃1(z); s] can be analytically continued to the vertical line <(s) = −1 and has
no singularities there. This is the most complicated part of the proof because h̃1(z) contains the product
of the two terms f̃ ′1,0(pz) − f̃ ′1,0(qz) and f̃ ′0,1(pz) − f̃ ′0,1(qz) and thus M [h̃1(z); s] becomes a Mellin
convolution integral. In [4], a general procedure was given for the simplification of such integrals (see [4,
p. 24 et seq.]). This simplification procedure and a direct application of the theory of admissible functions
of analytic de-Poissonization now yield

Proposition A The covariance of Sn and Kn is asymptotically linear:

Cov(Sn,Kn) ∼ nF [g(2)](n).

Here

g
(2)
k =

Γ(χk)

h

(
1− χk + 2

2χk+1

)
− 1

h2

∑

j∈Z\{0}
Γ(χk−j + 1)(χj − 1)Γ(χj)

− Γ(χk + 1)

h2

(
γ + 1 + ψ(χk + 1)− p log2 p+ q log2 q

2h

)

+
1

h

∑

`≥2

(−1)`(p` + q`)

`!(1− p` − q`) Γ(χk + `− 1)(2`2 − 2`+ 1 + χk(2`− 1)),

(9)

where γ denotes Euler’s constant, ψ(z) is the digamma function and χk is defined in (2).

Remark 1 If log p
log q 6∈ Q, then only k = 0 is relevant and the second term (the sum over j) on the right-

hand side of (9) has to be dropped. Also the first term here Γ(χk)
h

(
1 − χk+2

2χk+1

)
is taken to be its limit

1
h (log 2 + 1

2 ) as χk → 0 when k = 0.

The asymptotic estimate for the correlation coefficient in Theorem A now follows from this and the
results for the the variances of Sn and Kn (see Table 1), where expressions for g(1)

k and g(3)
k can be

found, e.g., in [4]. For convenience, we give below the expressions in the unbiased case. Note that both
F [g(1)](n) and F [g(3)](n) are strictly positive; see Schachinger [15] for details.

When p = 1
2 , an alternative expression to (9) (avoiding the convolution of two Fourier series) is

g
(2)
k =

Γ(χk)
(

1− χ2
k+χk+4

2χk+2

)

log 2
+

1

log 2

∑

`≥1

(−1)`Γ(χk + `)
(
`(2`+ 1)(χk + `)− (`+ 1)2

)

(`+ 1)!(2` − 1)
;

see the discussion of the size of tries in [4], where a similar alternative expression was given for g(1)
k ,

which reads

g
(1)
k = −Γ(χk − 1)χk(χk + 1)2

4 log 2
+

2

log 2

∑

`≥1

(−1)`Γ(χk + `)`
(
`(χk + `)− 1

)

(`+ 1)!(2` − 1)
.

Moreover, also in [4], the following expression for g(3)
k can be found

g
(3)
k =

Γ(χk)
(

1− χ2
k−χk+4

2χk+2

)

log 2
+

2

log 2

∑

`≥1

(−1)`Γ(χk + `)(`(χk + `− 1)− 1)

`!(2` − 1)
.
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Note that χk = 2kπi
log 2 and 2χk = 1, and the reason of retaining 2χk+2 in the denominator is to give

a uniform expression for all k (notably k = 0). These provide an explicit expression for the periodic
function F (n) in Theorem A. Also, since all the periodic functions have very small amplitude, the average
value of the periodic function F (z) can be well-approximated by

g
(2)
0√

g
(1)
0 g

(3)
0

≈ 0.9272416035 · · · .

3 Limit Law
In this section, we prove Theorem B, part (i); the proof of part (ii) is similar and skipped here. The key
tool of the proof is the multivariate version of the contraction method; see Neininger and Rüschendorf
[13]. More precisely, we will use Theorem 3.1 in [13].

We first recall the expression for the square-root of a positive-definite 2× 2 matrix M =

(
a b
b c

)
. It is

well-known that such a matrix has exactly one positive-definite square root which is given by

M
1
2 =

1√
a+ c+ 2

√
ac− b2

(
a+
√
ac− b2 b

b c+
√
ac− b2

)
,

with the inverse

M−
1
2 =

1√
(ac− b2)

(
a+ c+ 2

√
ac− b2

)
(
c+
√
ac− b2 −b
−b a+

√
ac− b2

)
. (10)

Now we sketch the proof of Theorem B, Part (i).

Proof of Theorem B, Part (i). First note that
(
Sn
Kn

)
d
=

(
1 0
0 1

)(
SBn
KBn

)
+

(
1 0
0 1

)(
S∗n−Bn
K∗n−Bn

)
+

(
1
n

)
,

where the notation is as in Section 1. The contraction method was specially developed for obtaining
limiting distribution results for such recurrences; see [13].

We need some notation. First, define

Σ̂n :=

(
V(Sn) Cov(Sn,Kn)

Cov(Sn,Kn) V(Kn)

)
. (11)

This matrix is clearly positive-definite for all n sufficiently large. Next define

M (1)
n := Σ̂

− 1
2

n Σ̂
1
2

Bn
, M (2)

n := Σ̂
− 1

2
n Σ̂

1
2

n−Bn

and (
b
(1)
n

b
(2)
n

)
= Σ̂

− 1
2

n

(
1− µ(n) + µ(Bn) + µ(n−Bn)
n− ν(n) + ν(Bn) + ν(n−Bn)

)
,
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where µ(n) = E(Sn) and ν(n) = E(Kn).
Now to apply the contraction method in [13], it suffices to show that the following conditions hold

b(i)n
L3−→ 0, M (i)

n
L3−→Mi, (12)

E
(
‖M1‖3op + ‖M2‖3op

)
< 1, E

(
‖M (i)

n ‖3opχ{B(i)
n ≤j}∪{B(i)

n =n}
)
−→ 0 (13)

for i = 1, 2 and j ∈ N, where L3−→ denotes convergence in the L3-norm, ‖ · ‖op is the operator norm, χS
denotes the characteristic function of set S, B(1)

n = Bn, B
(2)
n = n−Bn and

M1 =

(√
p 0

0
√
p

)
, M2 =

(√
q 0

0
√
q

)
.

Then the contraction method in [13] guarantees that (Sn,Kn) (centralized and normalized) converges in
distribution to the unique fixed-point with mean 0, covariance matrix the unity matrix and finite L3-norm
of (

X1

X2

)
d
=

(√
p 0

0
√
p

)(
X1

X2

)
+

(√
q 0

0
√
q

)(
X∗1
X∗2

)
,

where (X∗1 , X
∗
2 ) is an independent copy of (X1, X2). Obviously, the bivariate normal distribution is the

solution. All this is summarized as follows.

Proposition B The following convergence in distribution holds:

Σ̂
− 1

2
n

(
Sn − E(Sn)
Kn − E(Kn)

)
d−→ N2(0, I2).

Proof: We only check (12) because the second condition of (13) follows along similar lines and the first
condition of (13) follows from (12) in view of

‖M1‖op =
√
p and ‖M2‖op =

√
q.

We start with proving the claimed property for b(i)n for which we use the notations

Ω1(n) = V(Sn), Ω2(n) = Cov(Sn,Kn), Ω3(n) = V(Kn)

and
D(n) = Ω1(n)Ω3(n)− Ω2(n)2.

Also define
R(n) = Ω1(n) + Ω3(n) + 2

√
D(n).

Then, by (10), we see that

b(1)
n = (1− µ(n) + µ(Bn) + µ(n−Bn))

Ω3(n) +
√
D(n)√

D(n)R(n)

− (n− ν(n) + ν(Bn) + ν(n−Bn))
Ω2(n)√
D(n)R(n)
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and a similar expression for b(2)
n holds. From the normality of both Sn and Kn (proved for Sn via the

contraction method in [5] and a similar method of proof also applies to Kn), we have

1− µ(n) + µ(Bn) + µ(n−Bn)√
n

L3−→ 0 and
n− ν(n) + ν(Bn) + ν(n−Bn)√

n log n

L3−→ 0.

Moreover, we have
√
n

Ω3(n) +
√
D(n)√

D(n)R(n)
∼ 1√

F [g(1)](n)
,

and
√
n log n

Ω2(n)√
D(n)R(n)

∼ F [g(2)](n)

λ
√

log nF [g(1)](n)
,

where g(1), g(2) and λ are as above. Thus, both sequences are bounded and, consequently, we obtain the
claimed result with L3-convergence above. Similarly, one proves the claimed result for b(2)

n .
Next, we consider M (i)

n . Here, we only show the claim for the (1, 1) entry of M (1)
n (denoted by

M
(1)
n (1, 1)) all other cases being treated similarly. First, observe that by definition and matrix square-

root, we have

M (1)
n (1, 1) =

√
R(n)√
R(Bn)

· (Ω3(n) +
√
D(n))(Ω1(Bn) +

√
D(Bn))− Ω2(n)Ω2(Bn)√

D(n)R(n)
.

Now, from the strong law of large numbers for the binomial distribution

Bn
n

a.s.−→ p

and from Taylor series expansion (note that all periodic functions are infinitely differentiable), we have
√
R(n)√
R(Bn)

a.s.−→ 1√
p
,

and
(Ω3(n) +

√
D(n))(Ω1(Bn) +

√
D(Bn))− Ω2(n)Ω2(Bn)√

D(n)R(n)

a.s.−→ p.

Thus, M (1)
n (1, 1)

a.s.−→ √p from which the claim follows by the dominated convergence theorem. 2

Next, set

Σ̃n :=

(
nF [g(1)](n) 0

0 λn log n

)
.

Then, we have the following simple lemma.

Lemma 1 We have, as n→∞,
Σ̂
− 1

2
n Σ̃

1
2
n → I2.

Proof: This follows by a straightforward computation using the expressions of the matrix square-root and
its inverse from above. 2

From this lemma and Proposition B our claimed result now follows.
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Variance of the Internal Profile in Suffix Trees
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The precise analysis of the variance of the profile of a suffix tree has been a longstanding open problem. We analyze
three regimes of the asymptotic growth of the variance of theprofile of a suffix tree built from a randomly gener-
ated binary string, in the nonuniform case. We utilize combinatorics on words, singularity analysis, and the Mellin
transform.

Keywords: suffix tree, asymptotic analysis, combinatorics on words, singularity analysis, Mellin transform

1 Introduction
One open problem about suffix trees is how to characterize thenumber of internal nodes on thekth level of
a suffix tree that hasn leaves. Park et al. [PHNS09] precisely analyzed the profile of retrieval tries in 2009.
Ward has been working on the analogous problem in suffix treesfor a decade; see, e.g., [NW11, War07].
While the mean profile of retrieval trees and suffix trees are the same (asymptotically, up to first order, in
the main range of interest of the parameters), the variancesof the profiles of these two classes of trees are
different. The goal of this paper is to precisely analyze thevariance of the profile of suffix trees.

In retrieval trees, the strings inserted into the tree structure are often considered to be independent; such
was the case in [PHNS09]. In contrast to this, in suffix trees,the strings inserted into the tree are suffixes
of a common string, so these strings are overlapping. The overlaps make the corresponding analysis much
trickier, as compared to [PHNS09].

We analyze a suffix tree built from the suffixes of a common string S = S1S2S3 . . ., where theSj ’s
are randomly generated, independent, and identically distributed. We view eachSj as a letter from the
alphabetA = {a, b}, whereP (Sj = a) = p andP (Sj = b) = q. (Without loss of generality, we assume
throughout thatp > q.) We useAℓ to denote the set of words of lengthℓ. For a wordu that consists ofi
occurrences of lettera andj occurrences of letterb, we useP(u) to denote the probability that a randomly
chosen word of length|u| is exactly equal tou, i.e.,P(u) := piqj .

Thejth string to be inserted into the suffix tree isS(j) := SjSj+1Sj+2 . . .. We consider a randomly
generated suffix treeTn built over the firstn suffixes ofS, i.e., built from the suffixesS(1) throughS(n).
Briefly, all n of these suffixes can be viewed as initially being placed at the root of the suffix tree. The
n suffixes are then filtered down to the left or right children ofthe root, making the classification of the

†M. D. Ward’s work is supported by the Center for Science of Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370; his work is also supported by NSF DMS-124681 and NSF DMS-1560332.
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suffixes according to whether the first letter of each suffix is“a” or “ b”, respectively. The filtering contin-
ues down through the tree, with splitting at thejth level according to thejth letter in the corresponding
suffixes in that portion of the tree.

For each wordu ∈ Ak, the suffix treeTn will contain the internal node corresponding tou if and
only if the base-stringS contains at least two copies of the wordu within its firstn + k − 1 characters.
(Equivalently,Tn contains the internal node corresponding tou if and only if at least two of the suffixes
S(1) throughS(n) haveu as a prefix.) For this reason, we defineIn,u := 1 if u appears at least twice in
S1S2 . . . Sn+k−1, or In,u := 0 otherwise. We useXn,k to denote the number of internal nodes inTn at
levelk. With the above notation in place, we observe thatXn,k =

∑
u∈Ak In,u. This decomposition will

be crucial to our proofs, which start in Section 3.
Finally, following the lead of [PHNS09], we assume that the limit α := limn→∞ k/ log(n) exists.

2 Main Results
The value ofVar(Xn,k) depends qualitatively on the quantityα, which describes the relationship be-
tweenn andk via the relationk/ log(n) → α. It turns out that there are two particular alpha-values of
importance,

α1 = − 1

log(q)
, α2 = − p2 + q2

p2 log(p) + q2 log(q)
.

We do not attempt, as Park et al. did in [PHNS09], to analyze the cases whereα is exactly equal to one of
theseαi, but instead assume that both|α−αi| are strictly positive. Given this restriction, it is permissible
to take the approximationk = α log(n), which we do henceforth without comment.

The variance obeys different laws depending on where the value ofα falls in the ranges defined by
theseαi. The range of most interest is (perhaps) the range in whichα1 < α < α2; we discuss this case in
Theorem 2. (The caseα < α1 is discussed in Theorem 1; and the caseα2 < α is handled in Theorem 3.)

Whenα is small, we have an easy and very strong bound on the decay ofVar(Xn,k).

Theorem 1 Whenα < α1, there existsB > 0 such that

Var(Xn,k) = O(e−nB

).

The proof of Theorem 1 follows from lemmas that mimic the techniques of [War05]; we omit it from
this shortened version. The intuitive meaning behind Theorem 1 is that levelk of the suffix tree is ex-
tremely likely to be completely filled (meaning the variancewill be extremely small) iflog(n) is suffi-
ciently large in comparison tok.

Our main results deal with the less trivial case whenα > α1. We first introduce the functions involved
in our main estimates, and provide a word on how we obtain them.

2.1 Functions Involved in Main Results; Methodology
Our basic device for computing the variance of the internal profile is to writeXn,k as a sum of indicator
variablesIn,u, and then evaluate

Var(Xn,k) = Var(
∑

u∈Ak

In,u) =
∑

u∈Ak

Var(In,u) +
∑

u,v∈Ak

u6=v

Cov(In,u, In,v). (1)
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Our final analysis of the sum of theVar(In,u) will be fairly simple: we will ultimately just have to
evaluate the inverse Mellin integral

1

2πi

∫ c+i∞

c−i∞
n−sf(s)

∑

u∈Ak

P(u)−s ds =
1

2πi

∫ c+i∞

c−i∞
f(s) nh(s) ds, (2)

where the functionh(s) will be given by

h(s) := −s+ α log(p−s + q−s).

(See [FGD95] for more details about the Mellin transform.) The functionh(s) is the same as analyzed
in [PHNS09], and their arguments extend seamlessly to our case.

On the other hand, the termsCov(In,u, In,v) for u 6= v will be novel and much more interesting.
To deal with them, we will consider all possible overlappingdecompositions(σw,wθ) of (u, v). To
accomplish this, we observe that

n−s
k−1∑

ℓ=1

∑

w∈Ak−ℓ

σ,θ∈Aℓ

P(w)−s(P(σ) + P(θ))−s =

k−1∑

ℓ=1

ℓ∑

i,j=0

(
ℓ

i

)(
ℓ

j

)
nH(s, (k−ℓ)/k, i/ℓ, j/ℓ), (3)

whereH(s, r, c, d) is defined as

H(s, r, c, d) := −s+ α(1 − r) log(p−s + q−s)− s
(α
k

)
log((pcq1−c)kr + (pdq1−d)kr).

Note: For ease of the (already cumbersome) notation, we havenot writtenα nor k as a parameter ofH .
We will substitute the right hand side of (3) forn−s

∑
u∈Ak P(u)−s into equation (2). We will use a

technique forH similar to that used forh, namely, summing over all possible valuespiqℓ−i andpjqℓ−j

of P(σ) andP(θ) respectively, and summingP(w) into a closed form, as was done at (2).
The dominant contribution to (3) comes from terms with smallr. Sincelimr→0H(s, r, c, d) = h(s),

this implies that
∑

u,v Cov(In,u, In,v) and
∑

u Var(In,u) have the same first-order asymptotic growth, as
functions ofn.

We will evaluate the inverse Mellin integral at (2) (and the analogous integral forH) by using either
the saddle point method or by taking the residue of the pole ofΓ(s+ 2) at s = −2; which device we use
will depend on the value ofα. Before giving our main results, we list the saddle points ofthe functions
h(s) andH(s, r, c, d), which are

ρ :=

(
− α log(p) + 1

α log(q) + 1

)

log(p/q)
,

ρr,c,d :=

(
− α(1− r) log(p) + 1 + (α/k) log((pcq1−c)kr + (pdq1−d)kr)

α(1− r) log(q) + 1 + (α/k) log((pcq1−c)kr + (pdq1−d)kr)

)

log(p/q)
. (4)

It is also easy to verify that for anyy ∈ Z, the values = ρ+ 2πiy/ log(p/q) is also a saddle point ofh,
and similarly,s = ρr,c,d + 2πiy/ log(p/q) is a saddle point ofH .

These saddle points will (at last) allow us to express an asymptotic value forVar(Xn,k) in the case
whereα1 < α < α2.
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2.2 Behavior in the main regime
Theorem 2 Assumeα satisfiesα1 < α < α2. Letρ andρr,c,d be as in (4). Then we have

Var(Xn,k) =
nh(ρ)(C1(n) + 2C2(n))√

log(n)
×
(
1 +O(log(n)−1)

)
.

TheC1(n) is given by

C1(n) =
∑

y∈Z

niℑ(h(ρ+iyK))f1(ρ+ iyK)Γ(ρ+ iyK + 1)√
2πh′′(ρ+ iyK)

,

whereK := 2π/ log(p/q) and wheref1(s) := 1 − 2−s − s2−s−2. RegardingC2(n), we definer = ℓ
k ,

c = i
ℓ , d = j

ℓ , and thenC2(n) is given by

C2(n) =
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
nH(ρr,c,d,r,c,d)

nh(ρ)

∑

y∈Z

niℑ(H(ρr,c,d+iyK,r,c,d))f2(ρr,c,d + iyK, ℓ, i, j)Γ(ρr,c,d + iyK + 2)√
2π ∂H

∂s (ρr,c,d + iyK, r, c, d)

× (1 +O(log(n)−1)).

with the functionf2(s, ℓ, i, j) given by

f2(s, ℓ, i, j) =
∑

m≥2

( piqℓ−ipjqℓ−j

piqℓ−i + pjqℓ−j

)m−1 Γ(s+m)

Γ(s+ 2)m!
Lm

( piqℓ−ipjqℓ−j

piqℓ−i + pjqℓ−j
,

piqℓ−ipjqℓ−j

(piqℓ−i + pjqℓ−j)2
, s+m

)
,

with

Lm(a, b, x) = a(m− 1)2 +m(2−m) + bmx.

Furthermore, the outer sum inC2(n) satisfies the decay condition that for any positive integerℓ0, the sum
over all ℓ > ℓ0 and1 ≤ i, j ≤ ℓ isO(n−(ℓ0/k)×β) for a fixedβ > 0.

2.3 Behavior in the polar regime
In the finalα-regime, whereα > α2, the asymptotics arise from the pole ats = −2, as the following
theorem states.

Theorem 3 Assume the parameterα satisfiesα > α2. Then for someǫ > 0, we have

Var(Xn,k) = nh(−2)(C1(n) + 2C2(n))× (1 +O(n−ǫ))

with f1, f2 as defined in Theorem 2, andC1(n), C2(n) are given by

C1(n) = f1(−2), C2(n) = f2(−2)
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
nH(−2,r,c,d)

nh(−2)

with the decay ofC2(n) as in Theorem 2.

Having stated our main results, we now proceed to the proof ofTheorems 2 and 3, which will occupy
the remainder of the paper.
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3 An Expression for the Variance
Our first task in proving Theorems 2 and 3 is to obtain an exact expression for the variance of the internal
profileXn,k. Recalling equation (1), we need to derive the values ofVar(In,u) andCov(In,u, In,v), so we
letUn denote the number of occurrences ofu in the firstn characters ofS, and we defineVn analogously.
Then inclusions-exclusion yields the representations

Var(In,u) =
(
1−

1∑

i=0

P(Un+k−1 = i)
)
−
(
1−

1∑

i=0

P(Un+k−1 = i)
)2

Cov(In,u, In,v) =
∑

0≤i,j≤1

(
P(Un+k−1 = i, Vn+k−1 = j)− P(Un+k−1 = i)× P(Vn+k−1 = j)

)
(5)

where we requireu andv to be distinct. Thus, to obtain an expression forVar(Xn,k), we just have to
evaluate all the probabilities in (5).

4 Explicit Expressions for Word-Occurrence Probabilities
To estimate the probabilities in (5), we use generating functions, and complex analysis. Motivated
by [BCN12], we define

ψ(z) = Cu,u(z)Cv,v(z)− Cu,v(z)Cv,u(z), and φu(z) = Cv,v(z)− Cu,v(z), (6)

where the functionsCx,y(z) arecorrelation polynomials, the fundamental device for dealing with the
phenomenon of word-overlaps. With these functions in hand,we can define generating-functions for all
the probabilities in (5). We summarize the result in the following proposition.

Proposition 1 Letψ(z) andφu(z) be as defined at (6), and define the functions

Du(z) = (1− z)Cu,u(z) + zkP(u), δu,v(z) = (1− z)ψ(z) + zk(φu(z)P(u) + φv(z)P(v)),

G
(u)
0 (z) = Cu,u(z), G

(u)
1 (z) = P(u)zk, G(u,v)

0,0 (z) = ψ(z), G
(u,v)
1,0 (z) = δu,v(z)Cv,v(z)− ψ(z)Dv(z),

G
(u,v)
1,1 (z) = δu,v(z)

2 − δu,v(z)
(
Cv,v(z)Du(z) + Cu,u(z)Dv(z) + (1 − z)ψ(z)

)
+ 2ψ(z)Du(z)Dv(z),

(7)

with all v-counting functions defined in a manner analogous to theu-counting functions. Then we have
the closed-form power series expressions

G
(u)
i (z)

Du(z)i+1
=

∑

n≥0

znP(Un = i), and
G

(u,v)
i,j (z)

δu,v(z)i+j+1
=

∑

n≥0

znP(Un = i, Vn = j), 0 ≤ i, j ≤ 1.

(8)

Now we must derive the(n + k − 1)st coefficients of these generating functions. To do this, we
use Cauchy’s Integral Formula, following a standard argument in combinatorics on words. Our specific
methodology will rely on a vital fact about the denominatorsDu(z), Dv(z) andδu,v(z) of the probability
generating functions in (8).



6 J. Gaither and M. D. Ward

Lemma 1 There existK, ρ > 0 such that for allk > K and all u, v ∈ Ak, each of the polynomials
Du(z), Dv(z), and δu,v(z) has a unique root (defined respectively asRu, Rv andRu,v) in the disc
|z| ≤ ρ.

The proof forDu(z) andDv(z) is given in [JS05]; spatial constraints prevent us from giving the proof for
theδu,v(z) portion.

Armed with Lemma 1, we can estimate the word-counting coefficients of our generating functions to
within a factor ofO(ρ−n) by applying Cauchy’s Theorem to the contourz = |ρ|. The following theorem
gives the resultant estimates.

Theorem 4 Let the polynomialsDu, Dv, δu,v andG(u)
0 , G

(u)
1 , etc. be as in (7) and (8). If we define

c
(u)
0,0 = −Cu,u(Ru)

D′
u(Ru)

, c
(u)
1,0 =

P(u)D′′
u(Ru)

D′
u(Ru)3

, c
(u)
1,1 =

P(u)
D′

u(Ru)2
,

then we have the following estimates

P(Un+k−1 = 0) ≈ c
(u)
0,0

1

Rn+k
u

, and P(Un+k−1 = 1) ≈ c
(u)
1,0

1

Rn
u

+ c
(u)
1,1

n

Rn+1
u

,

and the error in each case isO(ρ−n).
Similarly, for the joint events(Un+k−1 = i, Vn+k−1 = j), and

a
(u,v)
0,0 = − ψ′(Ru,v)

δ′u,v(Ru,v)
, a

(u,v)
1,0,u = −

G
(u,v)
1,0 (Ru,v)δ

′′
u,v(Ru,v)

δ′(Ru,v)3
, a

(u,v)
1,1,u =

G
(u,v)
1,0 (Ru,v)

δ′(Ru,v)2
,

a
(u,v)
2,0 = −

G
(u,v)
1,1

′′(Ru,v)

2δ′u,v(Ru,v)3
+

3G
(u,v)
1,1

′(Ru,v)δu,v
′′(Ru,v)

2δ′u,v(Ru,v)4

−
G

(u,v)
1,1 (Ru,v)(−δ′u,v(Ru,v)δ

′′′
u,v(Ru,v) + 3δ′′u,v(Ru,v)

2)

2δ′u,v(Ru,v)5
,

a
(u,v)
2,1 =

G
(u,v)
1,1

′(Ru,v)

δu,v ′(Ru,v)3
−

3G
(u,v)
0,0 (Ru,v)δu,v

′′(Ru,v)

2δu,v ′(Ru,v)4
, a

(u,v)
2,2 = −

G
(u,v)
1,1 (Ru,v)

2δ′u,v(Ru,v)3
,

withG(u,v)
i,j (z) as in (8), we also obtain these estimates, where again, the error in each case isO(ρ−n):

P(Un+k−1 = 0, Vn+k−1 = 0) ≈ a
(u,v)
0,0

1

Rn+k
u,v

,

P(Un+k−1 = 1, Vn+k−1 = 0) ≈ a
(u,v)
1,0,u

1

Rn+k
u,v

+ a
(u,v)
1,1,u +

(n+ k)

Rn+k+1
u,v

,

P(Un+k−1 = 1, Vn+k−1 = 1) ≈ a
(u,v)
2,0

1

Rn+k
u,v

+ a
(u,v)
2,1

(n+ k)

Rn+k+1
u,v

+ a
(u,v)
2,2

(n+ k)(n+ k + 1)

Rn+k+2
u,v

.

Using these expressions, we can evaluate the expressions for Var(In,u) andCov(In,u, In,v) at (5) to
within a factor ofO(ρ−n). In doing this, however, it will be helpful to break up our estimates from
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Theorem 4 so that terms of common order inn are denoted under a single variable. We therefore define
the upper-case constants (we suppress the dependence onu andv in the notation)

C0 =
c
(u)
0,0 + c

(u)
1,0

Rk
u

+
kc

(u)
1,1

Rk+1
u

, C1 =
c
(u)
1,1

Rk+1
u

,

A0 =
a
(u,v)
0,0 + a

(u,v)
1,0,u + a

(u,v)
1,0,v + a

(u,v)
2,0

Rk
u,v

+

(
a
(u,v)
1,1,u + a

(u,v)
1,1,v

)
k

Rk+1
u,v

+
a
(u,v)
1,1 k(k + 1)

Rk+2
u,v

,

A1 =
a
(u,v)
1,1,u + a

(u,v)
1,1,v + a

(u,v)
2,1

Rk+1
u,v

+
a
(u,v)
2,2 (2k + 1)

Rk+2
u,v

, A2 =
a2,2

Rk+2
u,v

, B0 =
c
(v)
0,0c

(u)
0,0

(RuRv)k
,

B1 =
(
c
(u)
1,0 +

c
(u)
1,1

Ru

)c(u)0,0

Rk
v

+
(
c
(v)
1,0 +

c
(v)
1,1

Rv

)c(u)0,0

Rk
u

, B2 =
(
c
(u)
1,0 +

c
(u)
1,1

Ru

)(
c
(v)
1,0 +

c
(v)
1,1

Rv

)
. (9)

Returning to the expressionVar(Xn,k) =
∑

u∈Ak Var(In,u) +
∑

u,v∈Ak

u6=v

Cov(In,v), we obtain an ex-

pression for our ultimate desired quantity.

Corollary 1 LetAi, Bi, Ci be as defined in (9). WithAi, Bi andCi as in (9), we have the estimate

Var(Xn,k) =
∑

u∈Ak

(
1−C0 + nC1

Rn
u

)
−
(
1−C0 + nC1

Rn
u

)2

+
∑

u,v∈Ak

u6=v

2∑

i=0

( Ai

Rn
u,v

− Bi

(RuRv)n

)
ni+O(ρ−n).

4.1 High-Probability Approximations

Our task is now to approximate the expression from Corollary1. To achieve this, we follow the usual
suffix-tree strategy: we compare the terms to simpler ones which will be accurate with very high proba-
bility, and use Mellin transforms to show that sum of the the differences between the old terms and the
new ones is negligible. Our two main tools for demonstratingthis negligibility are bounds provided by
the following lemma.

Lemma 2 We have the bounds

∑

u∈Ak

P(u)(Cu,u(1)− 1) = O(pk/2),
∑

u,v∈Ak

u6=v

P(u)Cu,v(1)Cv,u(1) = O(pk/2)

The first portion of Lemma 2 is proved in [JS05]; spatial constraints prevent us from proving the second
portion here. However, by rigorously expanding on the heuristicCu,u(1) ≈ 1 andCu,v(1)Cv,u(1) ≈ 0,
we obtain the following theorem which is one of the major steps of the proof.

Theorem 5 We define the termsPu,v := P(u)+P(v),, Θu,v := P(u)Cu,v(1)+P(v)Cv,u(1), andKu,v =
(2k − 1)P(u)P(v), and the expressions
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V1(n) :=
∑

u∈Ak

1− (1 + nP(u))e−nP(u) −
(
1− (1 + nP(u))e−nP(u))2,

V2(n) :=
∑

u,v∈Ak

u6=v

n3P(u)P(v)Ku,ve
−n(Pu,v−Θu,v),

V3(n) :=
∑

u,v∈Ak

u6=v

e−nPu,v (enΘu,v − 1)
(
1 + nPu,v + n2P(u)P(v))− e−n(Pu,v−Θu,v)nΘu,v

(
1 + n(Pu,v −Θu,v)

)
.

Then, for everyǫ > 0, we have the estimate

Var(Xn,k) = V1(n)− V2(n) + 2V3(n) +O
(
n1+(α/2) log(p)+ǫ

)
.

We mention that the termV1(n) has already been analyzed in Park [PHNS09]. It gives the asymptotic
variance of the internal profile in atrie. The termV2(n) is negligible. Thus, after proving Theorem 5, all
that will remain will be to analyzeV3(n).

5 Distilling Essence of Estimate
We must now analyze the estimate from Theorem 5, which consists of the termsV1(n), V2(n) andV3(n).
We can deal with the first two of these terms in two quick theorems. Theorem 6 was proven in [PHNS09].
Theorem 7 has a short proof, which we omit in this concise version.

Theorem 6 An asymptotic expression forV1(n) is given by theC1(n) portions from Theorems 2 and 3.

Theorem 7 The termV2(n) from Theorem 8 satisfiesV2(n) = Var(Xn,k)O(n
−ǫ) for someǫ > 0.

For the rest of the paper, then, we concentrate on the portionV3(n), which contains the termΘu,v =
P(u)Cu,v(1) + P(v)Cv,u(1) and constitutes the really novel part of the whole enterprise. We deal
with Θu,v by nothing that, by Lemma 2, the quantitiesCu,v(1) andCv,u(1) are unlikely to simul-
taneously be large, so the approximationΘu,v ≈ P(u)Cu,v(1) is reasonable. From here, we note
that for Θu,v to be nonzero we must haveCu,v(1) > 0, in which case there exists some maximal
suffix of u which is also a prefix ofv. If we call this wordw, and then have the precise equality
P(u)Cu,v(1) = P(σ)P(w)P(θ)Cw,w(1). whereσ, θ ∈ Ak−|w| are such thatu = σw and v = wθ.
Then we employ the estimateCw,w(1) ≈ 1, again as suggested by Lemma 2. We thus have the central
estimateΘu,v ≈ P(σ)P(w)P(θ). Our strategy, then, is to make the substitutionsu = σw, v = wθ,
andΘu,v = P(σ)P(w)P(θ) in the summand ofV3(n), and then sum over all possible such decompo-
sitions. In the proof and final result it will be helpful to have the shorthandQσ,θ := P(σ) + P(θ) and
Tσ,θ := P(σ)P(θ), The following theorem states that this heuristic can be rigorously justified.

Theorem 8 Let Qσ,θ,Tσ,θ be as defined above, and define the functions

gw,σ,θ(n) = e−nP(w)Qσ,θ(exP(w)Tσ,θ − 1)
(
1 + xP(w)Qσ,θ + n2P(w)2Tσ,θ)

− e−xP(w)(Qσ,θ−Tσ,θ)xP(w)Tσ,θ

(
1 + xP(w)(Qσ,θ − Tσ,θ)

)
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andṼ3(n) :=
∑k−1

ℓ=1

∑
w∈Ak−ℓ

σ,θ∈Aℓ

gw,σ,θ(n). Then forV3(n) as given in Theorem 5, we have the estimate

V3(n) = 2Ṽ3(n) +O
(
n1+(α/2) log(p)+ǫ

)
.

One proves Theorem 8 by making the substitutionsP(w)Qσ,θ ≈ Pu,v andP(w)Tσ,θ ≈ Θu,v, and then
using Mellin transforms and Lemma 2 to show that the derived error-bound is satisfied.

6 Derivation of Asymptotics

To complete the main proof, it remains only to analyzeṼ3(n). We present the key results in this process
in a series of subsections.

6.1 Partitioning the Sum

Our first step is to partition the sum which comprisesṼ3(n). into subsets which share a common value for
the ordered pair(P(σ),P(θ)). We can rewrite the functiongw,σ,θ(n) from Thereom 8 as an infinite sum,

gw,σ,θ(x) = e−xP(w)Qσ,θ

∑

m≥2

(xP(w))mTm−1
σ,θ Qσ,θ

m!
Lm

(Tσ,θ

Qσ,θ

,
P(w)Tσ,θ

Qσ,θ

, x
)
.

with the functionLm given byLm(a, b, x) := a(m− 1)2 +m(2−m) + bmx. The termsQσ,θ andTσ,θ

only depend on theprobabilitiesof σ andθ; their internal composition does not matter. This allows a
great reduction in the number of terms to handle. With some abuse of notation, we define the terms

Q(k)
r,c,d := Qakrcbkr(1−c),akrdbkr(1−d) = pkrcqkr(1−c) + pkrdqkr(1−d),

T(k)
r,c,d := Takrcbkr(1−c),akrdbkr(1−d) = pkrcqkr(1−c) × pkrdqkr(1−d)

and then define the atom of all our remaining analysis, which is

g(x, r, c, d) =
∑

w∈Ak(1−r)

e−xP(w)Q(k)
r,c,d

∑

m≥2

(xP(w))mT(k)
r,c,d

m−1Q(k)
r,c,d

m!
Lm

(T(k)
r,c,d

Q(k)
r,c,d

,
P(w)T(k)

r,c,d

Q(k)
r,c,d

, x
)
.

(10)

With this notation, we have the following proposition.

Proposition 2 Letg(x, r, c, d) be as in (10). TheñV3(n) from Theorem 8 admits the representation

Ṽ3(n) =
∑

0<ℓ<k
0≤i,j≤ℓ

(
ℓ

i

)(
ℓ

j

)
g(n, ℓ

k ,
i
ℓ ,

j
ℓ ). (11)

Now we analyzeg.
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6.2 Analysis of g(n, r, c, d)
All our final estimates rest on our analysis of the functiong given in Proposition 2. To begin that analysis,
we take the Mellin transform ofg and, specifying the bounded portion

W (s, r, c, d) =
∑

m≥2

(T(k)
r,c,d

Q(k)
r,c,d

)m−1 Γ(s+m)

Γ(s+ 2)m!
Lm

(T(k)
r,c,d

Q(k)
r,c,d

,
T(k)
r,c,d

Q(k)
r,c,d

2
, s+m

)
,

we obtain

g∗(s, r, c, d) = Γ(s+ 2)W (s, r, c, d)Q(k)
r,c,d

−s
∑

w∈Ak(1−r)

P(w)−s

= Γ(s+ 2)W (s, r, c, d)Q(k)
r,c,d

−s(p−s + q−s)k(1−r).

We then consider the value ofn−sg∗(s, r, c, d), which will be the integrand of our inverse Mellin inte-
gral. Using the relationk = α log(n), we can writen−sg∗(s, r, c, d) = Γ(s + 2)W (s, r, c, d)nH(s,r,c,d),
where the functionH is as defined in Section 2.1. From here, we can recover the value ofg(n, r, c, d) via
an inverse Mellin transform. We summarize the results in thefollowing theorem.

Theorem 9 Define the discriminant

A(r, c, d) =
α(1 − r)

(α/k) log(Q(k)
r,c,d) + 1

.

Then the functiong(n, r, c, d) defined in (10) obeys the following asymptotic scheme.
If A(r, c, d) < α1, theng(n, r, c, d) = O(n−M ) for everyM > 0.
If α1 < A(r, c, d) < α2, then

g(n, r, c, d) =
nH(ρr,c,d,r,c,d)

√
log(n)

∑

y∈Z

niℑ(H(ρr,c,d+iyK,r,c,d))W (ρr,c,d + iyK, r, c, d)Γ(ρr,c,d + iyK + 2)√
2π ∂H

∂s (ρr,c,d + iyK, r, c, d)

× (1 +O(log(n)−1/2)).

If A(r, c, d) > α2, theng(n, r, c, d) = nH(−2,r,c,d)W (−2, r, c, d)(1 +O(n−ǫ)) for someǫ > 0.

The estimates of Theorem 9 can be derived using techniques that are standard (albeit pretty technical) in
the analysis of tree structures. In the first regime, one can show thatH(s, r, c, d) is always decreasing in
s, so integrating alongℜ(s) = s0 for H(s0) = −M gives the desired bound. In the second regime we
use the saddle-point method, and in the final regime, we derive the asymptotics by taking the residue from
the pole ofΓ(s+ 2) ats = −2.

Theorem 9, though certainly essential, is not in itself sufficient for our purposes, since we have to sum
g(n, ℓ

k ,
i
ℓ ,

j
ℓ ) over a set of triplets(ℓ, i, j) that will grow unboundedly large asn → ∞. The next lemma

gives the needed statement about uniform convergence.

Lemma 3 Supposeα1 < α < α2. Then there existsr0 > 0 such that for all triplets(r, c, d) in the rect-
angleR0 = [0, r0] × [0, 1]2, we haveα1 < A(r, c, d) < α2, and the saddle-point estimate of Theorem 9
holds uniformly. Furthermore, the analogous result holds in the polar case, whenα > α2.
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The claims aboutA(r, c, d) lying in particular ranges follow easily from the definitionof A(r, c, d). To
show uniformity in the saddle point case, we use bounds from [Olv70], which are uniform on the compact
setR0. In the polar regime, we again use the compactness ofR0 to show that thes-partial ofH(s, r, c, d)
ats = 0 is bounded below by a positive constant, meaning that for someǫ > 0, we can uniformly take the
left-hand side our Mellin box to beℜ(s) = −2− ǫ, thereby obtaining an error that isO(nH(−2−ǫ,r,c,d)),
with the(r, c, d) portion controlled by compactness.

7 Bounding the Tail
Theorem 9 justifies the content ofC2(n) in the main Theorems 2 and 3. However, we still have to justify
the uniform(1 + O(·)) error-bounds given in the leading equations of those theorems (which amounts
to showing that our estimates forg(n, r, c, d) are uniform outside the compact rectangleR0) as well as
prove our claim about the decay of the outer sum inC2(n).

We can accomplish both these tasks using the same argument. First, we unify thes-arguments forH in
the polar and saddle-point cases into a single term,

ρ̂r,c,d :=

{
ρr,c,d : α1 < α < α2

−1 : α > α2.
(12)

Then we note that if we define

G(r, c, d) = αr(−c log(c)− (1− c) log(1− c)− d log(d) − (1− d) log(1 − d)) +H(ρ̂r,c,d, r, c, d),
(13)

then by Stirling’s Formula we have
(
kr

krc

)(
kr

krd

)
g(n, r, c, d) = nG(r,c,d) × Y (log(n)),

where the functionY (log(n)) is unimportant except for the fact that its growth/decay arein log(n). We
now state an important and somewhat surprising result aboutthe functionG.

Lemma 4 Let the functionG(r, c, d) be as in (13), andA(r, c, d) the discriminant from Theorem 9. Then
for any fixedr such that the setΩr := {(c, d) : A(r, c, d) > α1} is nonempty, the map(c, d) →
G(r, c, d) attains its maximum at a unique ordered pair(cm(r), cm(r)) on the diagonal ofΩr.

The proof of Lemma 4, although not exceedingly difficult or technical, is rather long and (to us) not very
intuitive. We therefore omit it. Lemma 4 allows us to define the function

F (r) = G(r, cm(r), cm(r)) (14)

for everyr on which the setΩr defined in Lemma 4 is nonempty. We now state two vital facts about this
F , which are exactly the results needed complete the proof.

Lemma 5 The functionF (r) defined at (14) is concave, and moreoverlimr→0F
′(r) < 0.

The statements in Theorems 2 and 3 about the decay ofC2(n) immediately follow from Lemma 5, since
we havenF (0)−(ℓ/k)F ′(0) ≥ nF (ℓ/k) ≥

(
ℓ
i

)(
ℓ
j

)
nH(ρ̂r,c,d,r,c,d), and one readily verifies thatF (0) = h(ρ)

in the saddle-point case andh(0) in the polar case. It remains only to justify the globalO-bounds at the
beginning of Theorems 2 and 3 for those(r, c, d) outside the rectangleR0 given in Lemma 3, which the
following achieves.
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Lemma 6 WithF as defined at (14) andg as at (10), for all sufficiently smallr0 there existsC such that
(
kr

krc

)(
kr

krd

)
g(n, r, c, d) ≤ CnF (0)−(r0/2)F

′(0)

for all r > r0 and all (c, d) ∈ [0, 1].

The main tool in proving Lemma 6 is Lemma 5, although some workis required in proving uniformity in
(for example) cases where the saddle pointρ̂r,c,d is very close to the pole ats = −2.
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Locally Restricted Sequential Structures and
Runs of a Subcomposition in Integer
Compositions
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We study part sizes of supercritical locally restricted sequential structures. This extends previous results about locally
restricted integer compositions and part sizes in smooth supercritical compositional structures. Applications are given
for runs of subcompositions. The problems are formulated asenumerating directed walks in sized infinite digraphs
and the proofs depend heavily on earlier results by Bender and Canfield about infinite transfer matrices.

Keywords: sequential structure, local restriction, infinite transfer matrix, composition, run

1 Introduction
In [4] part sizes of compositional structures were studied.It was shown that if the composition is smooth
supercritical then the numbers of parts of large sizes are asymptotically Poisson and an asymptotic expres-
sion was obtained for the expected value of the maximum part size which is accurate up too(1). In [3],
part sizes of locally restricted nearly free integer compositions were studied. We will extend some of the
major results of [3, 4] to locally restricted supercriticalsequential structures. Runs of a single letter/part
in words/compositions have been studied extensively; see e.g. [4, 6, 12]. In locally restricted structures,
such as Carlitz compositions and Smirnov words, runs of a single part may not be allowed, and hence
it is natural to consider runs of a substructure. Our main results on large part size distributions will be
applied to maximum run length of a subcomposition in severalclasses of locally restricted compositions.
Our approach follows that in [2, 3] using directed walks in sized infinite digraphs and properties of the
corresponding infinite transfer matrices. Our proofs rely heavily on results in [2, 3] about infinite transfer
matrices and large part size distributions.

2 Definitions
Definition 1 (Sequential structures) LetP be a class of combinatorial structures, calledparts.

†Research supported by NSERC
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• Each partp has a positive integersize, denoted|p|.

• We usePn to denote the set of parts of sizen and assumePn := |Pn| < ∞ for eachn ∈ N.

• For each integerk ≥ 0, we denote the class consisting of sequences ofk parts by

SEQk(P) := {p1p2 . . . pk : pj ∈ P}.

ThusSEQ0(P) contains only the empty sequence which has size and length 0.Throughout this
paper ε denotes the empty sequence.

• LetSEQ<k(P) denote the class of sequences of at mostk − 1 parts.
LetSEQ(P) := ∪k≥0SEQk(P), the set of all sequences.

• If a = p1p2 . . . pk ∈ SEQ(P), then thelengthof a is k and we writelen(a) = k. Thesizeof a is

|a| = |p1|+ |p2|+ · · ·+ |pk|

and thedistancefrompi to pj is |i− j|.

Example 1 (Generalized compositions)When studyingSEQ(P), only the values ofPn are important.
Thus we could think ofP as parts in a generalized composition where the partn comes inPn “colors”,
or whatever you choose to call them. IfPn = 0, there are no parts of sizen. Thus, ordinary compositions
correspond toPn = 1 for all n and words on ak-letter alphabet correspond toP1 = k andPn = 0 for
n > 1. When parts of sizen occur inn colors,Pn = n and we haven-colored compositions, which were
studied in [1, 9, 11]. We may also consider colored compositions where a part of sizen corresponds to a
multiset ofn colored balls withN colors available. Here we havePn =

(
n+N−1
N−1

)
.

Let A ⊆ SEQ(P). It is called locally restricted if the parts of a structure in A within a fixed distance
satisfy certain restrictions. Locally restricted integercompositions were studied in [2], where local re-
strictions are defined in terms of local restriction functions. The function was then used to construct a
digraph. In this paper, we define local restrictions directly in terms of the digraph. Readers wishing to see
the connection between local restriction functions and thedigraph should consult [2].

Definition 2 (Locally restricted structures) Letm ∈ N, S,F ⊆ SEQ<m(P) andR ⊆ SEQm(P). The
integerm is called thespanof the locally restricted class of structures associated with the digraphD
which has vertex setV (D) = S ∪ R ∪ F . If p ∈ S ∩ F , we allow two copies as separate vertices in
the digraph. For convenience, we introduce two copies of theempty sequence, denoted byεs andεf , such
thatεs ∈ S andεf ∈ F . SupposeD satisfies the following conditions.

(a) There is an arc fromεs to every other vertex inS, and at least one arc fromS to R.

(b) There is an arc toεf from every other vertex inF , and at least one arc fromR toF .

(c) The sub-digraphDR ofD induced byR is strongly connected,|R| ≥ 2, and the sub-digraph ofD
induced byS ∪ F contains no directed cycle.
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The vertices ofR will be called therecurrent vertices, and the vertices ofS andF will be called the
start verticesandfinish vertices, respectively. If a partp ∈ P appears in some recurrent vertex, thenp is
called arecurrent part.

LetW denote the set of all directed walks inD from εs to εf . We useSEQ(P ;D) to denote the class
of all structures of the concatenation formv1v2 · · ·vj , whereεsv1v2 · · ·vjεf ∈ W . If each element
in SEQ(P ;D) arises fromonly one walk in W , we say thatSEQ(P ;D) is a locally restricted class
associated withD.

The “only one” condition is required so that an ogf built fromD will count each element inSEQ(P ;D)
just once. The span is actually associated with the digraph.One can easily construct a digraphD′ with
spankm for anyk ∈ N such thatSEQ(P ;D′) = SEQ(P ;D).

Definition 3 (Regular class) A classSEQ(P ;D) of locally restricted structures will be calledregularif
it satisfies the following conditions.

• The gcd of the lengths of all directed cycles inDR is equal to 1.

• There is a positive integerk and verticesv0,vk ∈ R such thatgcd{m−n : m,n ∈ S} = 1, where
S = {n : n = |v0|+ · · ·+ |vk| for some directed walkv0 · · ·vk of lengthk in DR}.

Example 2 (Pattern avoidance)Let B be a finite set of structures inSEQ(P), andA be the class of
structures inSEQ(P) which don’t contain any structure inB. We say that the structures inA avoid the
structures inB (or simply, avoidB). We may construct the classA using the following digraph. Letm+1
be the maximum length of the structures inB. Let S = {εs}, F ⊂ SEQ<m(P) andR ⊂ SEQm(P)
be consisting of structures which avoidB. There is an arc from vertexa to a vertexb if and only ifab
avoidsB. There is also an arc fromεs to every vertex inR∪F . ThenA = SEQ(P ;D). We note that the
second gcd condition in Definition 3 is not satisfied here because each recurrent vertex has sizem.

Remark: Words over a finite alphabet which avoid certain patterns have been studied extensively (see,
e.g., [8]). Here the size of a word is the length of the word. SinceP is finite here, one may use the simpler
transfer matrixT (z) such thatTi,j(z) = z|rj| for recurrent vertexrj (See Definition 6 on page 8 for the
transfer matrix). Consequently the ogfFR(z) = st(I −T (z))−1f is a rational function ofz. We note that
in this case, each recurrent vertex has sizem and soT (z) is a function ofzm, and hence we may apply
[2, Theorem 1] toT with x = zm.

Definition 4 (Generating functions and supercritical structures) LetA ⊆ SEQ(P).

• Define the ordinary generating function (ogf)P (z) :=
∑

p∈P z|p| =
∑

n≥1 Pnz
n.

• Throughout this paper ρ is the radius of convergence ofP (z).

• If the radius of convergence of the ogfA(z) :=
∑

a∈A z|a| is less thanρ, we callA supercritical.

Example 3 (Alternating compositions) Alternating, or up-down, compositions are compositions inwhich
a part is alternately greater and less than the preceding part. We setm = 2, P = N, S = SEQ<2(P),
F = SEQ<2(P)\{1}, andR = {i, j | i > j}. The empty sequence inS (resp.F ) connects to every
element inR. There is an arc fromi ∈ S to j ∈ F wheneveri < j or i is the empty sequence. The
arcs having at least one end inR should be fairly easy to see. Every alternating composition, including
the empty one, is associated with a unique directed walk fromεs to εf . It is known [2] that the class of
alternating compositions is regular and supercritical.
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Definition 5 (Asymptotically free set) Let A = SEQ(P ;D) be a class of locally restricted structures
with |P| = ∞ and letL be an infinite set of recurrent parts. Ifa = p1 . . . pk and t = min(k,m − 1),
defines(a) := p1 . . . pt and f(a) := pk−t+1 . . . pk. Suppose there is a functiong : SEQ<m(P) ×
SEQ<m(P) → N such that the following holds. Ifalz ∈ SEQ(P ;D) with l ∈ L and|l| ≥ g(f(a), s(z)),
thenal′z ∈ SEQ(P ;D) wheneverl′ ∈ L and|l′| ≥ g(f(a), s(z)). Then we callL asymptotically free.

What this says is that ifl is large enough as determined by parts closer than distancem, then it can be
replaced by any large enough part inL.

Example 4 (k-Carlitz compositions) A k-Carlitz composition is a composition in which each part is
different from each of the precedingm parts, i.e.pi 6= pj whenever|i−j| ≤ m. (Carlitz compositions, for
which adjacent parts differ, is the casek = 1. They have been studied extensively. See for example [10].)
They are regular supercritical structures and a digraphD can be constructed with anym ≥ k. LetP = N
andS = {εs}. LetR (respectivelyF ) be all compositions inSEQm(P) (respectivelySEQ<m(P)) which
arek-Carlitz. There is an arc fromεs to all vertices inR∪F . There is an arc froma ∈ R tob ∈ R∪F
wheneverab is ank-Carlitz composition. Since a part that is larger than all parts within distancek can
be replaced by any larger part, the setN is asymptotically free ink-Carlitz compositions.

3 Main Results
Let r be the radius of convergence of the ogf forSEQ(P ;D). In the following, all logarithms will be to
the base1/r. Our main results are the following.

Theorem 1 Let A = SEQ(P ;D) be a regular supercritical class of locally restricted structures, and
L = {l1, l2, . . .} be an asymptotically free set. Assume|l1| < |l2| < · · ·. Select a structurea uniformly at
random fromAn. Letζk(n) be the number of occurrences oflk in a. The following are true.

(a) |An| = Ar−n
(
1 +O

(
e−δn

))
for some positive constantsr, A andδ.

(b) The distribution ofζk(n) is asymptotically normal with mean and variance asymptotically propor-
tional ton.

(c) The limit

vk = lim
n→∞

E(ζk(n))
n

(1)

exists, andvk ∼ Cr|lk| ask → ∞, for some positive constantC.

(d) Suppose there is a functionω1(n) → ∞ such that{|lk| : k ≥ 1} ∩ [logn− ω1(n), n] is not empty
for all sufficiently largen. Then there is a functionω2(n) → ∞ such that the random variables
{ζk(n) : logn−ω2(n) ≤ |lk| ≤ n} are asymptotically independent Poisson random variables with
meansµk = Cnr|lk|.

The distribution of large part sizes in general supercritical compositional structures has been studied
extensively. Some latest results can be found in [4]. We willconvert runs of a given subcomposition into
free parts in a related class of locally restricted structures and apply Theorem 1(d) to derive the following.
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Theorem 2 Let c be a given composition such thatc cannot be written in the formc = xyx. Let
A = SEQ(N;D) be a regular supercritical class of locally restricted compositions with spanm = len(c).
Assume thatc is a recurrent vertex and the digraphD contains the arc fromc to itself. LetC, r, a andζk
be as defined in Theorem 1,Rn be the maximum run length ofc in a, andgn(k) be the probability thata
contains exactlyk runs ofc of lengthRn. Letγ

.
= 0.577216 be Euler’s constant and define

Pk(x) =
log e

|c|
∑

ℓ 6=0

Γ

(
k +

2iπℓ log e

|c|

)
exp

(−2iℓπ log x

|c|

)
. (2)

Then

(a) P(Rn < k) ∼ exp

(
− Cn

1− r|c|
rk|c|

)
.

(b) E(Rn) =
1

|c| log
Cn

1− r|c|
+

γ log e

|c| − 1

2
− P0

(
Cn

1− r|c|

)
+ o(1).

(c) gn(k) =
(1 − r|c|)k

k!
Pk

(
Cn

1− r|c|

)
+

(1− r|c|)k log e
k|c| + o(1).

Corollary 1 Theorem 2 holds for the following classes of compositions.

(a) All compositions for any given compositionc, wherer = 1/2 andC = 1
2 (1−2−|c|)2. In particular,

C = 1/8 whenc = 1, which gives Gafni’s result [6].

(b) Carlitz compositions for any given Carlitz compositionc, wherer
.
= 0.571350 is the smallest

positive number satisfying
∑

j≥1

rj

1 + rj
= 1. In particular, whenc = ab with a 6= b, we have

C =

(
1− ra+b

)2

(1 + ra)(1 + rb)

1
∑

j≥1
jrj

(1+rj)2

.

(c) k-Carlitz compositions for any givenk-Carlitz compositionc.

(d) Alternating compositions for any given alternating compositionc, wherer
.
= 0.6363.

(e) n-color compositions (defined in Example 1) for any givenn-color compositionc, wherer = 3−
√
5

2 .

(f) Colored compositions withPn =
(
n+N−1
N−1

)
(defined in Example 1) for any given colored composi-

tion c, wherer = 1− 2−1/N .
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4 Converting Runs into Run Parts
The basic idea in the proof of Theorem 2 is to replace ak-long run of a given subcompositionc with a
new part̄k with |k̄| = k|c|, and then apply Theorem 1(d) to a new classA′ of locally restricted structures
with parts inN as well asrun partsk̄ for k ≥ 1. Let θ denote this replacement operation. For example, if
c = 12 anda = 12123122121, thenθ(a) = 2̄31̄21̄1.

Example 5 (Runs in unrestricted compositions)Let A be the class of all compositions, andc be a
given composition withlen(c) = m such that it cannot be written in the formc = xyx. The digraphD′

for A′ = θ(A) is defined as follows.

• S(D′) = {εs}.

• a′ ∈ F(D′) if and only ifa′ ∈ SEQ<m(P), a′ does not contain two consecutive run parts.

• r′ ∈ R(D′) if and only ifr′ ∈ SEQm(P), r′ 6= c, r′ does not contain two consecutive run parts.

• There is an arc from a vertexa′ to a vertexb′ if and only ifa′b′ does not containc and does not
contain two consecutive run parts.

Let c be a given composition which cannot be written in the formc = xyx. It is easy to see that copies
of c in a compositionsa cannot overlap with each other. DefineP = N ∪ {k̄ : k ≥ 1} with |k̄| = k|c|.
We have the following

Proposition 1 LetA = SEQ(P ;D) be a given regular supercritical class of locally restricted composi-
tions with spanm such thatS(D) = {εs}. Letc ∈ R(D). Assume thatD contains an arc fromc to itself
andc cannot be written in the formc = xyx. LetA′ = θ(A). Then

(a) A′ = SEQ(P ;D′) is a regular supercritical class withP = N ∪ {k̄ : k ≥ 1} and some digraph
D′.

(b) For eacha ∈ A, |θ(a)| = |a|, andθ is a bijection betweenAn andA′
n.

(c) For eacha ∈ A, LetR(a) be the maximum run length ofc in a, andM(a) be the maximum value
of k such that̄k appears inθ(a). We haveR(a) = M(a).

Proof: (a) We define the digraphD′ as follows.

• S(D′) = {εs}.

• a′ ∈ F(D′) if and only if a′ ∈ SEQ<m(P), a′ does not contain two consecutive run parts and
θ−1(a′) appears at the end of a composition inA.

• r′ ∈ R(D′) if and only if r′ ∈ SEQm(P), r′ 6= c, r′ does not contain two consecutive run parts,
andθ−1(r′) appears in a composition inA.

• There is an arc from a vertexa′ to a vertexb′ if and only if a′b′ does not contain two consecutive
run parts, does not containc, andθ−1(a′b′) appears in a composition inA.
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It can be verified thatA′ = SEQ(P ;D′) is regular supercritical.
(b) This follows immediately from the definition ofθ.
(c) Since the copies ofc in a cannot overlap with each other,θ induces a bijection between the set of run
parts inθ(a) and the set of runs ina, which impliesR(a) = M(a).

Example 6 (Runs of a subcomposition inm-Carlitz compositions) Let c be a sequence ofm distinct
integers. The digraphD′ for A′ = θ(A) is defined as follows.

• S(D′) = {εs}.

• a′ ∈ F(D′) if and only ifa′ ∈ SEQ<m(P), a′ does not contain two consecutive run parts and
θ−1(a′) ism-Carlitz.

• r′ ∈ R(D′) if and only ifr′ ∈ SEQm(P), r′ 6= c, r′ does not contain two consecutive run parts,
andθ−1(a′) ism-Carlitz.

• There is an arc from a vertexa′ to a vertexb′ if and only ifa′b′ does not containc, does not contain
two consecutive run parts, andθ−1(a′b′) ism-Carlitz.

Example 7 (Runs of a subcomposition in alternating compositions) Let m ≥ 2, c = c1c2 · · · cm be
an alternating composition such thatc2 is also alternating. The digraphD′ for A′ = θ(A) is defined as
follows.

• S(D′) = {εs}.

• a′ ∈ F(D′) if and only ifa′ ∈ SEQ<m(P), a′ does not contain two consecutive run parts and
θ−1(a′) is alternating.

• r′ ∈ R(D′) if and only ifr′ ∈ SEQm(P), r′ 6= c, r′ does not contain two consecutive run parts,
andθ−1(a′) is alternating.

• There is an arc from a vertexa′ to a vertexb′ if and only ifa′b′ does not containc, does not contain
two consecutive run parts, andθ−1(a′b′) is alternating.

5 Outline of Proofs
The proofs are essentially the same as those in [2, 3]. In particular, we will make use of the infinite transfer
matrix.

Definition 6 (Transfer matrix) Let SEQ(P ;D) be a class of locally restricted structures as in Defini-
tion 2. Letr1, r2, . . . be an ordered list of vertices inR. We define the transfer matrixT (z) such that the
(i, j)th entry ofT (z) is Ti,j(z) = z|ri|+|rj | if there is an arc inDR from ri to rj ; otherwiseTi,j(z) = 0.
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Theweightof an arc(v,w) in D is z|v|+|w|. We define the weight of a directed walk inD to be the
product of the weights of all the arcs in the walk. LetFR(z) be the ogf for structures inSEQ(P ;D)
containing at least one recurrent vertex. It is not difficultto see thatFR(z

2) is the sum of weights of all
directed walks inW containing at least one recurrent vertex. We may expressFR(z) in terms ofT (z), the
start vectors(z) and thefinish vectorf(z), which are defined as follows. Theith component ofs(z) is the
sum of weights of all directed walks fromεs to ri, and thejth component off(z) is the sum of weights
of all directed walks fromrj to εf . SinceT k

i,j(z) is the sum of weights of all directed walks of lengthk
from ri to rj , we have

FR(z
2) = s(z)t

∑

k≥0

T k(z)f(z).

The following lemma summarizes the results which are used inthe proof of our Theorems 1 and 2.
These results are simple extensions of the corresponding results from [2] for locally restricted composi-
tions.

Lemma 1 LetA = SEQ(P ;D) be a regular class of locally restricted structures.

(a) Letr be the radius of convergence of the generating functionFR(z). Thenr < 1 and it is a simple
pole ofFR(z). MoreoverFR(z) has no other singularity in|z| ≤ 1.

(b) Letp ∈ P be a recurrent part and letXn be the number of occurrences ofp in a random structure
in An. There are constantsCi > 0 such that

Pr(Xn<C1n) < C2(1 + C3)
−n for all n.

(c) Letc be a given structure inA. There is a constantB such that the probability thatc occurs in a
random structure inAn is at mostBnr|c|.

Proof of Lemma 1: Part (a) is lifted from [2, Theorem 2] and its proof remains exactly the same.
Parts (b) and (c) are lifted from [2, Lemma 1] and their proofsremain exactly the same.

Proof of Theorem 1: Theorem 1(a) follows from Lemma 1 as shown in [2]. Now the proof of Theo-
rem 1(b–d) is essentially the same as that of [2, Theorem 1], using Lemma 1 above, and Lemmas 3, 4 and
5 from [2].

Lemma 2 Let A = SEQ(N;D) be a class of locally restricted compositions (or colored compositions
defined in Example 1). ThenA is supercritical.

Proof: LetG(z) be the ogf for all compositions inA which don’t contain any recurrent vertex. Since each
composition counted byG(z) has at mostK parts for some fixed integerK, we haveG(z) ≤∑K

j=0 P (z)j

(coefficient-wise). Since the radius of convergence ofP (z) is 1, the radius of convergence ofG(z) is at
least 1.

Proof of Theorem 2: Let P = N ∪ {k̄ : k ≥ 1}, andA′ = SEQ(P ;D′) be the new class defined in
Proposition 1. Sinceθ is a bijection betweenAn andA′

n, the radius of convergence forA′ is the same as
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that forA. It is easy to see thatL = {k̄ : k ≥ 1} is asymptotically free inA′. Applying Theorem 1(d)
with |lj | = j|c|, we obtain

P(Rn < k) =
∏

k≤j≤n/|c|
P(ζj(n) = 0) exp

(
−Cnrj|c|

)

∼ exp

(
−Cn

rk|c|

1− r|c|

)
.

This establishes part (a).
UsingE(Rn) =

∑
k≥1(1 − P(Rn ≤ k − 1)) and the same argument as in [3, page 25] (replacingr with

r|c|), we obtain part (b). We remark that the+ sign beforeP0 should be− in the expression off(x) in
[3, page 25]. The same applies to [3, Theorem 1(b,c)]
Part (c) follows from the same argument as in [3, page 27], with r being replaced byr|c|.

Proof of Corollary 1: This follows immediately from Theorem 2. The values ofr andC are computed
as follows.
For part (a), it is clearr = 1/2. To obtain the value ofC, we letF (z) be the ogf of compositions
containing a markedk-long run of a subcompositionc. We note that(1 − z)/(1 − 2z) is the ogf of all
compositions, and soz|c|(1 − z)/(1 − 2z) is the ogf of compositions ending with (or starting with)c.
Hence we have

F (z) =

(
1− z

1− 2z
− z|c|(1 − z)

1− 2z

)2

zk|c| = (1− z)2(1− z|c|)2zk|c|(1− 2z)−2.

It follows from the “transfer theorem” [5] that

[zn]F (z) ∼ n

4

(
1− 2−|c|

)2
2n−k|c|.

HenceC = 1
2

(
1− 2−|c|)2. In particular,C = 1/8 for the runs of 1, which gives Gafni’s result.

For part (b), the value ofr can be found, for example, in [3]. The expression ofC (andr) can be derived
as follows. LetK(z) be the ogf of Carlitz compositions, andF (z) be the ogf of Carlitz compositions with
a markedk-long run ofc = ab, wherea 6= b. For a given Carlitz compositionv, letKv(z) be the ogf of
Carlitz compositions that start withv. Then we have

Ka(z) = (K(z)−Ka(z))z
a, (3)

Kab(z) = za+b(K(z)−Kb(z)),

Kba(z) = zb+a(K(z)−Ka(z)),

F (z) = zk(a+b)(K(z)−Kb(z)−Kab(z))(K(z)−Ka(z)−Kba(z)).

It follows that

F (z) =
1

(1 + za)(1 + zb)
zk(a+b)(1 − za+b)2K(z)2. (4)
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The expression ofK(z) can be obtained from (3), which gives

Ka(z) =
za

1 + za
K(z).

Summing overa, and notingK(z) = 1 +
∑

a≥1 Ka(z), we obtain

K(z) =
1

1−∑j≥1
zj

1+zj

.

Let r be the smallest positive number satisfying
∑

a≥1
zj

1+zj = 1, it is easy to see thatr is a simple pole
of K(z) and

K(z) =
1

∑
j≥1

jrj

(1+rj)2

1

1− z/r
+ h(z),

whereh(z) is analytic in|z| ≤ r. Consequently

[zn]K(z) ∼ 1
∑

j≥1
jrj

(1+rj)2

r−n.

It follows from (4) and the “transfer theorem” that

[zn]F (z) ∼ n

(1 + ra)(1 + rb)
rk(a+b)(1− ra+b)2

(
1

∑
j≥1

jrj

(1+rj)2

)2

r−n,

[zn]F (z)

[zn]K(z)
∼ (1− ra+b)2

(1 + ra)(1 + rb)

1
∑

j≥1
jrj

(1+rj)2

nrk(a+b).

Hence

C =
(1− ra+b)2

(1 + ra)(1 + rb)

1
∑

j≥1
jrj

(1+rj)2

.

The value ofr for part (d) can be found in [3]. To obtain the value ofr for part (e), we note that the
corresponding part generating function isP (z) = z(1− z)−2. Solving the equationr(1 − r)−2 = 1, we
obtainr = 3−

√
5

2 . To obtain the value ofr for part (f), we note that the corresponding part generating
function isP (z) = (1− z)−N − 1. Solving the equation(1− r)−N = 2, we obtainr = 1− 2−1/N .

6 Discussions
In this paper, we showed how infinite transfer matrix method developed in [2] can be applied to enumerate
locally restricted regular supercritical sequential structures. Poisson distribution results were derived for
sizes of free parts and applications are given for runs of subcompositions in several classes of composi-
tions. In the upcoming full version of the paper, we plan to extend the results using a more general set
up in terms of sized digraphs. Also in Theorem 1, we imposed the condition that the setL contains parts
of distinct sizes. Such condition is unnecessary for unrestricted sequential structures as shown in [4]. It
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might be possible to relax this condition for some classes oflocally restricted sequential structures. For
example, when the restriction is size-based, instead of part-based, we may allow the asymptotically free
setL to contain several parts of the same size. Finally it might bepossible to remove the restriction that
the subcompositionc cannot be written in the formc = xyx in Theorem 2. The mappingθ in Propo-
sition 1 is still a bijection provided that the replacement is made at the earliest opportunity. However,
the copies ofc in a composition may overlap here, and the maximum run lengthR(a) in a composition
a ∈ A may exceed the maximum run partk̄ in θ(a). For example, consider the compositionsc = 121 and
a = 12121121121. We note that the first two copies ofc overlap at the third position andθ(a) = 1̄212̄.
The maximum run part is̄2 here, but the maximum run length ofc in a is 3.
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In order to obtain the full asymptotic expansion for Pólya trees, i.e. rooted unlabelled and non-plane trees, Flajolet and
Sedgewick observed that their specification could be seen as a slight disturbance of the functional equation satisfied by
the Cayley tree function. Such an approach highlights the complicated formal expressions with some combinatorial
explanation. They initiated this process in their book but they spared the technical part by only exhibiting the first-
order approximation. In this paper we exhibit the university of the method and obtain the full asymptotic expansions
for several varieties of trees. We then focus on three different varieties of rooted, unlabelled and non-plane trees,
Pólya trees, rooted identity trees and hierarchies, in order to calculate explicitly their full singular expansions and
asymptotic expansions.

Keywords: Unlabelled non-plane trees; Full Puiseux expansion; Full asymptotic expansion; Analytic Combinatorics.

1 Introduction
By using either Darboux’s method or singularity analysis, we easily get the dominant coefficients of
the asymptotic expansions for the number of some specific Pólya structures; a Pólya structure being
decomposable by using some Pólya operators like the multiset MSET or the powerset PSET constructions.

Fig. 1: Ratio between the approximations and
the exact numbers of hierarchies

For the numbers of hierarchies (a specific class of trees) of
size 100 the relative error between the exact number and the
first-order approximation is only around 0.01% (note that it
is only 10−10% with an 8-order approximation). However
for small hierarchies, the first-order approximation is not
precise: the relative error for the trees of size 20 is around
0.3% whereas it is only around 0.0004% with the 8-order
approximation (cf. Fig. 1).

In a technical report [Fin03c], Finch provided recurrence
formulas to compute all the coefficients in the asymptotic
expansion for Pólya trees. He developed there the classical
Darboux’s method to derive the recurrences and computed
explicitly the five most important coefficients.

According to Finch’s report, Flajolet proposed at that time
to study the fundamental equation given by the Weierstrass
Preparation Theorem as, somehow, a slight disturbance of
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the functional equation satisfied by the Cayley tree function. Using this point of view, the procedure to
exhibit the full asymptotic expansion is much more highlighted and the complicated formal expressions
can be combinatorially understood. Flajolet and Sedgewick initiated this process in their book [FS09, p.
477] in the context of Pólya trees but they spared the technical part of the proof by only exhibiting the
first-order approximation.

In this paper, we explain why such an approach is generic to obtain easily the full asymptotic expansions
for several varieties of trees. We focus on varieties that can be seen as a disturbance of the Cayley function
in the way that they can be described by their generating function T (z) as:

T (z) = ζ(z) exp(T (z)),

for some constrained function ζ(z). For such classes of trees, we exhibit the full Puiseux (i.e., singular)
expansion of the generating series. We then compute the generic full asymptotic expansion of the num-
ber of trees. In Section 3, we then focus on three different varieties of rooted, unlabelled and non-plane
trees. The first class of trees is the classical set of Pólya trees that already appears in the papers of Cay-
ley [BLW76], Pólya [Pól37] and Otter [Ott48]. The generating function of Pólya trees is easily described
with a functional equation using the multiset construction. By replacing the construction by the powerset
operator we get the class of rooted identity trees, the second class we are interested in. Such trees are
studied, for example, in the work of Harary et al. in [HRS75]. Finally we deal with hierarchies, i.e.,
rooted unlabelled non-plane trees without nodes of arity 1. This class has been introduced by Cayley too,
but it is also directly linked to series-parallel networks in the papers of Riordan and Shannon [RS42] and
Moon [Moo87]. In the Section 3.4, we give numerical approximations for the first coefficients of the sin-
gular and the asymptotic expansions of each specific variety of trees. We conclude the paper (Section 4)
by mentioning several other structures where our generic approach could be applied directly.

2 Main results
For each of the varieties under consideration, the fundamental idea consists, from an analytic point of view,
at studying its generating function as a disturbance of the classical Cayley tree function (cf. e.g. [FS09, p.
127]). Let C(z) be the Cayley tree function; it satisfies the functional equation

C(z) = z · exp(C(z)). (1)

Its dominant singularity is 1/e and C(1/e) = 1. Recall that the Cayley tree function is closely related to
the Lambert W function. Many fundamental results about this classical function are given in the paper of
Corless et al. [CGH+96].

In order to obtain generically the full asymptotic expansion of the number of the structures of a variety
of trees, let us first compute the full Puiseux expansion (i.e., the full singular expansion) of the Cayley
tree function and then study how the disturbance induced by a given variety modifies this behaviour. Let
us recall the definition of Bell polynomials, extensively studied in Comtet’s book [Com74] and denoted
by Bn,k(·):

Bn,k (x1, . . . , xn−k+1) =
∑

c1, . . . , cn−k+1 ≥ 0∑
i ci = k∑
i ici = n

n!

c1! · · · cn−k+1!

(x1
1!

)c1
· · ·
(

xn−k+1

(n− k + 1)!

)cn−k+1

.
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The Bell polynomials appear naturally in Faà di Bruno’s formula [Com74] that states the value of iterated
derivatives of the composition of two functions.
Proposition 1 The full Puiseux expansion of the Cayley tree function is

C(z) =
z→1/e

1−
√
2
√
1− ez −

∑

n≥2

(
n−1∑

k=1

(−1)kBn−1,k

(
1

3
,
1

4
, . . . ,

1

n− k + 2

) k−1∏

i=0

(n+ 2i)

)
2n/2

n!
(1− ez)n/2 ,

where the functions Bn,k(·) are the Bell polynomials.

The calculation of the first terms of the singular expansion gives

C(z) =
z→1/e

1−
√
2
√
1− ez + 2

3
(1− ez)− 11

36

√
2(1− ez)3/2 +

43

135
(1− ez)2−

769

4320

√
2(1− ez)5/2 +

1768

8505
(1− ez)3 − 680863

5443200

√
2(1− ez)7/2 +O

(
(1− ez)4

)
.

Let us recall that the expansion until O((1 − ez)3/2) has been derived in [FS09]. We prove the full
expansion with their approach but with further precision. Note that, in the formula of Proposition 1, the
inner sum of k can be factored in the same way as the classical Ruffini-Horner method for polynomial
evaluation. Doing so makes its computations much more efficient.

The second step consists in studying the ordinary generating function T (z) =
∑
n≥0 Tnz

n of the tree
variety under consideration as a disturbance of the Cayley tree function. We follow the approach presented
in [FS09, p. 477] for Pólya trees. We assume the existence of a function ζ(z) such that

T (z) = ζ(z) · exp(T (z)). (2)

Theorem 2 Let T be a variety of trees whose generating function is T (z), and ρ be its dominant sin-
gularity. If the generating function T (z) satisfies the Equation (2), if the dominant singularity of ζ(z) is
strictly larger than ρ and if ζ(1)(ρ) 6= 0, then T (z) satisfies the following full Puiseux expansion

T (z) =
z→ρ

1 +
∑

n≥1
tn

(
1− z

ρ

)n/2
,

with t1 = −
√

2eρζ(1)(ρ); and, for all n > 1

tn = −B(n)

n!

(
2eρζ(1)(ρ)

)n/2
−

n− 1∑

` = 1
n ≡ ` mod 2

(−1)(n−`)/2ρn/2 · B(`)

`!

(
2eζ(1)(ρ)

)`/2

·
n−`
2∑

r=1

(
`/2

r

)
1

(ζ(1)(ρ))r

∑

i1, . . . , ir ≥ 1
∑
j ij = n−`

2

ζ(i1+1)(ρ)

(i1 + 1)!
· · · ζ

(ir+1)(ρ)

(ir + 1)!
,

where ζ(i)(z) stands for the ith derivative of ζ(z), B(1) = 1, and for all ` > 1,

B(`) =

`−1∑

k=1

(−1)kB`−1,k

(
1

3
,

1

4
, . . . ,

1

`− k + 2

) k−1∏

i=0

(`+ 2i).
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Proof key idea: The complete proof follows the strategy of Flajolet and Sedgewick. The main idea is to
compose the Puiseux expansion of C(z) at the singularity 1/e and the analytic expansion of ζ(z) at the
dominant singularity of T (z). 2

In Theorem 2, the assumption ζ(1)(ρ) 6= 0 could be replaced by a weaker assumption that there exists
an integer r > 0 such that ζ(r)(ρ) 6= 0. Making this weaker assumption would however make the proof a
bit more technical without adding substantial information.

The the first terms of the singular expansion of T (z) are given by

T (z) =
z→ρ

1−
√

2eρζ(1)(ρ)

√
1− z

ρ
+

2eρζ(1)(ρ)

3

(
1− z

ρ

)
−
(

11
√
2(eρζ(1)(ρ))3/2

36
−
√
2eρ3/2ζ(2)(ρ)

4
√
ζ(1)(ρ)

)(
1− z

ρ

)3/2

+

(
43(eρζ(1)(ρ))2

135
− e(ρζ(2)(ρ))2

3

)(
1− z

ρ

)2

−
(

769
√
2(eρζ(1)(ρ))5/2

4320
− 11

√
2ρ5/2(eζ(1)(ρ))3/2ζ(2)(ρ)

48ζ(1)(ρ)

−
√
2ρ5/2

√
eζ(1)(ρ)

96

(
3(ζ(2)(ρ))2

(ζ(1)(ρ))2
− 8ζ(3)(ρ)

ζ(1)(ρ)

))(
1− z

ρ

)5/2

+O
((

1− z

ρ

)3)
.

We are now ready to compute the full asymptotic expansion for the class T .

Theorem 3 Let T be a variety of trees whose generating function is T (z), and ρ be its dominant sin-
gularity. If the generating function T (z) satisfies the Equation (2), if the dominant singularity of ζ(z) is
strictly larger than ρ and if ζ(1)(ρ) 6= 0, then asymptotically when n tends to infinity,

Tn ∼
n→∞

ρ−n√
πn3

∑

`≥0

1

n`
·
(
`+1∑

r=1

QrR`+1−r

)
,

where

Qr =

r−1∑

j=0

(−1)j+1t2j+1

∑

`0, . . . , `j ≥ 1
∑
i `i = r

j∏

i=0

(
i+

1

2

)`j
for all r > 0;

with the sequence (ti) defined in Theorem 2, R0 = 1 and

R` =
∑̀

r = 1

r ≡ ` mod 2

∑

k1, . . . , kr ≥ 1
∑
j kj = `+r

2

r∏

i=1

(2−2ki − 1)
∑2ki
s=0

1
s+1

∑s
j=0(−1)j

(
s
j

)
j2ki

(`− 2k1 − · · · − 2ki−1 + i− 1)ki
for all ` > 0.

In particular, the first few terms in the asymptotic expansion of Tn are given by

Tn =
n→∞

ρ−n

√
πn3

(
− t1

2
− 3(t1 − 4t3)

16n
− 5(5t1 − 72t3 + 96t5)

256n2
− 105(t1 − 44t3 + 160t5 − 128t7)

2048n3

−21(79t1 − 10800t3 + 81600t5 − 161280t7 + 92160t9)

65536n4
+O

(
1

n5

))
,

where the ti’s are given in the Theorem 2.
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3 Different varieties of rooted unlabelled and non-plane trees
In the following three sections, we will show how both Theorems 2 and 3 directly apply to three families
of trees, namely the Pólya trees, the rooted identity trees and the hierarchies. In each of these sections, we
will use the same notations T , T (z) and ζ(z) to refer to the family of considered trees.

For each of the three examples, we proceed in two steps. First we focus on efficient recurrences in
order to compute the first numbers of the sequence (Tn)n∈N that encodes for each positive integer n the
number of trees of size n. Second, by using the numerical procedure given in [FS09, p. 477], we compute
an approximation of the dominant singularity of T (z).

Finally, at the end of the section, we exhibit two Tables 1 and 2 to compare the numerical approxima-
tions (according to each class of trees) of the coefficients given in the Theorems 2 and 3. We also exhibit
the typical gain in the relative error obtained by using a more precise asymptotic approximation.

3.1 Pólya trees

A Pólya tree is a rooted unlabelled and non-plane tree. Let us denote by T the set of Pólya trees. It
satisfies the following unambiguous specification :

T = Z ×MSET T ,

because a Pólya tree is by definition a root, specified by Z (of size 1), followed by a multiset of Pólya
trees (we refer the reader to [FS09] for more details). By the symbolic method (cf. [FS09]), we get

T (z) = z exp

(∑

i>0

T (zi)

i

)
, (3)

with T (z) being the ordinary generating function enumerating T . The latter formula already appears
in Pólya’s paper [Pól37] and has been sketched by Cayley ([BLW76, p. 67]) as an introduction to the
counting theory for unlabelled objects. This method takes into account symmetries of the objects and thus
quantifies isomorphisms. We have a classical alternative definition: cf. e.g. [FS09, p. 71].

T (z) = z ·
∏

n>0

1

(1− zn)Tn
, (4)

with Tn the number of trees of size n in T . Some combinatorial arguments, given in [FS09, p. 27–30],
prove that both definitions are equivalent. From the latter Equation (4), we deduce a recurrence for the
sequence (Tn)n∈N for Pólya trees.

Fact 4 The sequence (Tn)n∈N enumerating Pólya trees satisfies

Tn =





n if n ∈ {0, 1}
1

n− 1

n−1∑

i=1

iTi



bn−1

i c∑

m=1

Tn−mi


 if n > 1.
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This result is given as an exercise by Knuth [Knu97, p. 395]. Furthermore, Otter [Ott48] proved a very
similar recurrence for unrooted trees. The first values of the sequence, given in OEIS(i) sequence A000081,
are

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, . . .

The number of Pólya trees from each size from 1 to n can be computed in O(n2) arithmetic operations
(by using memoization).

Proof of Fact 4: Several authors, in particular, Flajolet and Sedgwick obtained such a recurrence by using
the logarithmic derivative of T (z): for all n > 1

z
T ′(z)
T (z)

= 1 +
∑

n>0

Tn
nzn

1− zn .

We rewrite this equation as

zT ′(z) =

(
1 +

∑

n>0

nTn
zn

1− zn

)
T (z).

Extracting the n-th coefficient of the generating functions gives:

nTn = Tn +
n−1∑

i=1

(
[zi]

∑

m>0

mTm
zm

1− zm

)
Tn−i.

Since [zk](1− zm)−1 equals 1 if m divides k and 0 otherwise, we get

(n− 1)Tn =
n−1∑

i=1


∑

m|i
mTm


Tn−i.

The notation m|i corresponds to the condition that the integer m divides the integer i. The stated formula
is obtained by interchanging the two sums. 2

By using Flajolet and Sedgewick’s numerical procedure (cf. [FS09, p. 477]) with n = 200 terms, we
get the following 50-digits approximation of ρ:

ρ ≈ 0.33832185689920769519611262571701705318377460753297 . . .

We are now interested in the full Puiseux expansion of the generating function of Pólya trees. In view
of Equations (2) and (3), we define have

T (z) = ζ(z) · exp(T (z)), where ζ(z) = z · exp


∑

n≥2

T (zn)

n


 . (5)

Fact 5 The function ζ(z) defined for Pólya trees satisfies the assumptions of the Theorems 2 and 3.

(i) OEIS: On-line Encyclopedia of Integer Sequences
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This fact has already been proved by Cayley as mentioned in [BLW76, p. 67]. We recall here the argu-
ments given in [FS09, p. 477].

Proof: The definition of ζ(z) given in Equation (??) implies that its dominant singularity is
√
ρ, (with

the constant ρ being the dominant singularity of T (z)). Since 1/e is the dominant singularity of the
Cayley tree function C(z) and [zn]T (z) > [zn]C(z) (by using Equation (3)) for n sufficiently large, we
get ρ ≤ 1/e. Thus

√
ρ > ρ and we finally infer that the function ζ(z) is analytic beyond the disc of

convergence of T (z). Finally we easily get ζ ′(ρ) > 0. 2

Theorem 2 and the above approximation for ρ give the first coefficients for the Puiseux expansion
of Pólya trees presented in the Table 1. The computations of the numbers ti’s have been done with an
approximation of the function ζ(z), computed with the truncation of the series T (z) after the 100-th first
coefficients. Experimentally, it seems that the accuracy is actually much larger than the 20 digits given in
Table 1.

Finally the previous approximations and the result of Theorem 3 give

Tn =
n→∞

ρ−n

√
πn3

(
0.7797450101873204419 . . .+

0.07828911261061096133 . . .

n
+

0.3929402676631860168 . . .

n2
+

1.537879315978838092 . . .

n3
+

8.200844090435596194 . . .

n4
+O

(
1

n5

))
.

Note that, from here, it is then easy to get back the first evaluations exhibited by Finch [Fin03c].

3.2 Rooted identity trees
A rooted identity tree is a rooted unlabelled (non-plane) tree for which the only automorphism preserving
the root node is the identity. Harary et al. studied this class of trees in [HRS75]. In his book [Fin03a],
Finch also mentions this class. Intuitively, whereas a Pólya tree can be seen as a root followed by a
multiset of Pólya trees, a rooted identity tree can be seen as a root followed by a set of rooted identity
trees (i.e., no repetition is allowed). Let us denote by T the set of rooted identity trees. It satisfies the
following unambiguous specification

T = Z × PSET T .
The symbolic method gives the functional equation

T (z) = z exp

(∑

i>0

(−1)i−1
T (zi)

i

)
.

An equivalent formula for the function T (z) is

T (z) = z ·
∏

n>0

(1 + zn)Tn .

In order to obtain an efficient recurrence relation satisfied by the numbers of rooted identity tree, we use
the same strategy as above (for Pólya trees), and thus obtain:

Proposition 6 The sequence (Tn)n∈N enumerating rooted identity trees satisfies

Tn =





n if n ∈ {0, 1}
1

n− 1

n−1∑

i=1

iTi



bn−1

i c∑

m=1

(−1)m+1Tn−mi


 if n > 1.
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The first values of the sequence, see in OEIS A004111, are

0, 1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, . . .

The number of rooted identity trees from each size from 1 to n can be computed in O(n2) arithmetic
operations. Once we are able to compute efficiently the first numbers Tn we can estimate the dominant
singularity of T (z) to be approximately

ρ ≈ 0.39721309688424004148565407022739873422987370995276 . . .

Obviously this dominant singularity is larger than the one for Pólya trees because there are less rooted
identity trees than Pólya trees.

To describe T (z) like in Equation (2), we get ζ(z) = z · exp
(∑

n≥2(−1)n−1 T (zn)
n

)
.

Proposition 7 The function ζ(z) defined in the context of rooted identity trees satisfies the assumptions
of the Theorems 2 and 3.

The approximations of the first coefficients of the Puiseux expansion for rooted identity trees are given in
the Table 1. The second Table 2 gives the approximations of the asymptotic expansion of Tn:

Tn =
n→∞

ρ−n

√
πn3

(
0.6425790797442694714 . . .− 0.1851197977766337056 . . .

n
− 0.4272427290060978745 . . .

n2

−2.255455568987212079 . . .

n3
− 16.60970953335647846 . . .

n4
+O

(
1

n5

))
.

It seems that these numbers do not appear elsewhere in the literature.

3.3 Hierarchies
A hierarchy is a rooted unlabelled and non-plane tree with no node of arity 1. The size notion for hi-
erarchies is the number of leaves. This class already appears in the work of Cayley (cf. [BLW76, p.
43]. Using the notations from [FS09, p. 72] for hierarchies, we have both following specification and
functional equation for its generating function

T = Z + MSET≥2T , T (z) =
1

2

(
z − 1 + exp

(∑

i>0

T (zi)

i

))
.

Again, we obtain a recurrence formula that computes the numbers Tn.

Proposition 8 The sequence (Tn)n∈N enumerating hierarchies satisfies

Tn =





n if n ∈ {0, 1}
1

n

∑

m|n
m 6= n

mTm +
2

n



n−1∑

i=1

iTi

bn−1
i c∑

m=1

Tn−mi −
1

2
δ{n−mi=1}


 if n > 1,

with the notation δ{n−mi=1} evaluates to 1 if n−mi = 1 and to 0 otherwise.
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The first values of the sequence, see in OEIS A000669, are given by

0, 1, 1, 2, 5, 12, 33, 90, 261, 766, 2312, 7068, 21965, 68954, 218751, 699534, . . .

They are stored (there the sequence is shifted by 1). We note that in this context, we cannot easily simplify
the recurrence in order to avoid a sum over the divisors of n (for Tn). However here, the sum is not inside
another one, thus the complexity (in the number of arithmetic operations) to compute Tn is quadratic. We
estimate the dominant singularity of T (z) to be approximately

ρ ≈ 0.28083266698420035539318755911632333333736599643391 . . .

In order to fall under the framework described by Equation (2), we need to consider the generating
function T̃ (z) = T (z)− 1

2 (1− z). The two generating functions T (z) and T̃ (z) have the same dominant
singularity. Thus we get

T̃ (z) = ζ(z) · exp(T̃ (z)),

with

ζ(z) =
1

2
exp


1

2
(1− z) +

∑

n≥2

T (zi)

i


 .

Proposition 9 The function ζ(z) defined in the class of objects associated to T̃ (z) satisfies the assump-
tions of the Theorems 2 and 3.

It remains to slightly modify the 2 first coefficients in the singular expansion of T̃ (z) to obtain the singular
expansion of T (z) and fill both Tables 1. and 2. In particular we get

Tn =
n→∞

ρ−n

√
πn3

(
0.3658015862381119375 . . .− 0.2409833212579280352 . . .

n
− 0.3678657493849431861 . . .

n2

−0.9991064877914853523 . . .

n3
− 4.137777553476907813 . . .

n4
+O

(
1

n5

))
.

It seems that these numbers do not appear elsewhere in the literature.
Let us conclude this section on hierarchies by mentioning the OEIS sequence A000084, that is di-

rectly related. It counts the number of series-parallel networks with n unlabelled edges; both generating
functions are essentially the same (up to a simple factor). We thus get the Puiseux expansions and the
asymptotic expansion for these objects as a by-product.

3.4 Approximations
In order to obtain the following approximations for the coefficients in the Puiseux expansions or for
the asymptotic expansions of the numbers of trees, we have used the open-source mathematics software
Sage [Dev15] and the Python library MPmath [J+14] for some specific high precision calculations.

The first table synthesises the first elements of the sequences (tn)n∈N satisfying the Puiseux expansions
for the previous Pólya structures:

T (z) =
∑

n≥0
tn

(
1− z

ρ

)n/2
.
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Coeff. Pólya trees Rooted identity trees Hierarchies
t0 1.000000000000000000 1.000000000000000000 0.6404163334921001777

t1 −1.559490020374640884 −1.285158159488538943 −0.7316031724762238750
t2 0.8106697078826992796 0.5505438316333229659 0.03799806716699161541

t3 −0.2854870216128456058 −0.5681159369076463432 0.1384103018915147449

t4 0.1653723657120838943 0.4261261857916583247 −0.07387395031732463851
t5 −0.3424599704021542007 −0.1312888430707878210 −0.05428300802019698042
t6 0.3174072259465285628 0.1224152517144394163 0.03800381072191918081

t7 −0.1077788002916310083 −0.3225499663026797778 0.03109684705422999274

t8 0.06138495705583510410 0.2539454170234272677 −0.02381831461193008886
t9 −0.1952123835975564636 0.04875363678533678081 −0.02078556533052714092
t10 0.2059848312779074186 −0.00002800001023286558041 0.01666265537126027377

t11 −0.05272470849819056138 −0.3631594631270670335 0.01611178365047090583

t12 0.01702656875495366861 0.2637344037695510765 −0.01295368177079785790
t13 −0.1523706243663253961 0.2617035123807709629 −0.01338408339711046374
t14 0.1737028832998504627 −0.1368754575043169801 0.01075691931570711729

t15 −0.01447370373952704466 −0.5927534134371262366 0.01183388780152404393

t16 −0.02189951761121556237 0.3911340105112945142 −0.009441457380326882677
t17 −0.1445471935709097045 0.6832510269350502136 −0.01084956346194149131
t18 0.1760771088850177779 −0.3902593892984113718 0.008607637481105329431

Tab. 1: Approximation of the Puiseux expansions for Pólya trees, rooted identity trees and hierarchies

The following Table 2 contains the first numbers (τn)n∈N satisfying the asymptotic expansions for the
previous Pólya structures:

Tn ∼
n→∞

ρ−n√
πn3

∑

i≥0

τi
ni
.

Coeff. Pólya trees Rooted identity trees Hierarchies
τ0 0.7797450101873204419 0.6425790797442694714 0.3658015862381119375

τ1 0.07828911261061096133 −0.1851197977766337056 0.2409833212579280352

τ2 0.3929402676631860168 −0.4272427290060978745 0.3678657493849431861

τ3 1.537879315978838092 −2.255455568987212079 0.9991064877914853523

τ4 8.200844090435596194 −16.60970953335647846 4.137777553476907813

τ5 57.29291473494343825 −157.9003693373302727 23.43410248921570084

τ6 503.0445050262735854 −1840.110517359351172 170.1188811511555370

τ7 5359.600933884326064 −25387.34869954017854 1514.745295656330186

τ8 67342.06920114653067 −404610.0663959841556 16007.82637588106931

τ9 975425.4970695924728 −7.313377058487246593e6 195812.3506172274875

τ10 1.599693249293173348e7 −1.477949138517813328e8 2.719234685827618831e6

τ11 2.928225313353392698e8 −3.301794456762036735e9 4.222444465223140109e7

τ12 5.914523441293936053e9 −8.080229604228356791e10 7.243861962702191648e8

τ13 1.305991927898973201e11 −2.149826267241085239e12 1.359774926415692519e10

τ14 3.128498399789526502e12 −6.179075814699061934e13 2.770908644498957323e11

τ15 8.078305401468914384e13 −1.908151484770832703e15 6.089496262810801422e12

τ16 2.236301680891647428e15 −6.301063280436556255e16 1.435269254893331074e14

τ17 6.605960869699262787e16 −2.215767775919040241e18 3.610881990157578400e15

τ18 2.073828085209932615e18 −8.267080545525264413e19 9.656755540184967275e16

Tab. 2: Asymptotic expansion of the number of Pólya trees, rooted identity trees and hierarchies

It is interesting to note that, in Table 2, for n sufficiently large and due to the sign of the values of the
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(τi), all truncations after the nth term in the full expansions (for n = 1 . . . 17) correspond to lower bounds
for the case of Pólya trees and hierarchies and all of them are upper bounds for rooted identity trees.

Size 10 20 50 100 200 500

Order-1 approximation 1.391 · 10−2 2.859 · 10−3 4.204 · 10−4 1.027 · 10−4 2.540 · 10−5 4.039 · 10−6

Order-4 approximation 1.039 · 10−3 3.448 · 10−5 2.383 · 10−7 6.872 · 10−9 2.071 · 10−10 2.078 · 10−12

Order-8 approximation 7.722 · 10−4 3.369 · 10−6 3.822 · 10−10 6.195 · 10−13 1.123 · 10−15 2.611 · 10−18

Tab. 3: Relative error induced by approximations for hierarchies

Finally, by using only 20 digits of precision in our approximations of the values ζ(r)(ρ)’s we cannot
hope to obtain a better approximation than the one of order 8 (Table 3) for the number of large trees (i.e.
with size larger than 500).

4 Conclusion
The strength of the approach presented here is its universality. We have shown, in full detail, how it
applies to Pólya trees, rooted identity trees and hierarchies but many other examples fill in our framework.

1. Rooted oriented trees and series-reduced planted trees. The OEIS sequences A000151 and A001678
can be directly studied.

2. Series-parallel networks. In the context of [RS42], [Moo87] and [Fin03b] we get back several
generating functions (listed in OEIS A058385, A058386 and A058387) that can be studied in the
same vein as hierarchies. Let us recall that many links between trees and series-parallel graphs have
already been exhibited, thus the fact that the behaviours of their generating series are analogous is
not a surprise.

3. Phylogenetic trees and also total partitions. The OEIS sequence A000311, counting phylogenetic
trees and also total partitions that are labelled objects, can also be analysed with our technique.
Note here that the function ζ(z) does not explicitly depend on T (z) and thus every derivative is
explicit. Just put a factor n! in front of Tn to obtain its full asymptotic expansion. We thus exhibit
the polynomials whose existence has been stated in [Com74, p. 224].

4. The unrooted versions of the previous rooted trees. With some further work, we are able to ex-
hibit the full asymptotic expansion of the unrooted versions of the previous rooted trees we were
interested in. In fact their generating functions P (z) satisfy some equation of the form

P (z) = T (z)− 1

2
T 2(z) +

1

2
T (z2).

Since we have the full Puiseux expansion of the series T (z), we can compute the one of the series
P (z). Some examples of such series correspond to the following sequences A000055, A000238,
A000014. . . . An open question would be to be able to write a functional equation for P (z) as a
disturbance of the Cayley tree function, and then to use directly an analogous approach as the one
studied in Section 2. There, we would get ζ(1) = 0 since we know that these trees are unrooted.

Acknowledgements. The author is very grateful to Cécile Mailler for the carefully reading of this manuscript and to
the anonymous referees for the suggested improvements.
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We present a toolbox for everyday life in analytic combinatorics, namely the new asymptotic expansion
module which is included in the mathematics software system SageMath. The code of this module was
contributed by the authors of this poster.

Keywords: Asymptotic expansions, SageMath, software

SageMath [1] is a free and open-source mathematics software system. Since version 6.10, it is
shipped with a module for computations with asymptotic expansions [3]; no workaround or loading
of a package is needed. Even better, it is automatically tested with each release to guarantee
functionality and repreducibility of the results.
The asymptotic expansion module(i) is integrated completely into SageMath’s infrastructure

and interacts with all of SageMath’s other mathematical objects very well. All contributed code
and documentation goes through a transparent peer-review process; this ensures that SageMath’s
quality standards on efficient, readable, and maintainable code are met.

Due to space restrictions, we limit ourselves to the univariate case here. However, the module
is designed for multivariate asymptotic expansions as well.

1 Creating an Asymptotic Ring
We use the coefficient ring

C = SR.subring(no_variables=True) # symbolic constants
which is a ring of symbolic constants; note that this includes the rationals Q. A univariate
asymptotic ring for our calculations is created by

A = AsymptoticRing(growth_group=’QQ^n * n^QQ * log(n)^QQ’,
coefficient_ring=C,
default_prec=5)

n = A.gen()
A typical element of A is the asymptotic expansion

42
(

1
3

)n

n
5
2 log (n)2 +O

((
1
3

)n

n log (n)
1
2

)

as n→∞.
(i) See http://doc.sagemath.org/html/en/reference/asymptotic for the online-documentation.
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2 Basic Arithmetic
Beside the very basic arithmetical operations addition, subtraction and multiplications, series
expansions are automatically performed for division, the exponential function or the logarithm.
For example, typing log(n + 1) returns

log(n+ 1) = log (n) + n−1 − 1
2n

−2 + 1
3n

−3 − 1
4n

−4 + 1
5n

−5 +O
(
n−6)

.

More advanced stuff is possible, e.g., (1 + 1/n)^n returns
(

1 + 1
n

)n

= e− 1
2 en

−1 + 11
24 en

−2 − 7
16 en

−3 + 2447
5760 en

−4 +O
(
n−5)

.

3 Example: Catalan Numbers
There are several possibilities to obtain asymptotics for the Catalan numbers. We use the
convenience generator function for

(
kn
n

)
and type

binomial_2n_n = asymptotic_expansions.Binomial_kn_over_n(
’n’, k=2, precision=3)

C_n = binomial_2n_n / (n+1)
This results in

Cn = 1
n+ 1

(
2n
n

)
= 1√

π
4nn− 3

2 − 9
8
√
π

4nn− 5
2 + 145

128
√
π

4nn− 7
2 +O

(
4nn− 9

2

)
.

This could have been achieved by using factorial() to build the binomial coefficient manually,
as well.
Getting the asymptotic expansions, for example, the harmonic numbers is even easier, since

there is a pre-defined generator in SageMath.

4 Singularity Analysis
The Catalan numbers satisfy the generating function

def catalan(z):
return (1 - sqrt(1-4*z)) / (2*z)

So, in contrast to the direct calculation of their asymptotic expansion out of the exact formula,
we can do a singularity analysis. SageMath assists here as well. We perform

C_n = A.coefficients_of_generating_function(
catalan, singularities=(1/4,), precision=3)

to obtain
1√
π

4nn− 3
2 − 9

8
√
π

4nn− 5
2 + 145

128
√
π

4nn− 7
2 +O

(
4nn−4)

again. We can proceed similarly with the harmonic numbers.
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Bootstrapping for finding the dominant singularity is easily possible as well. For example, let
us consider longest runs of words over a two letter alphabet, see [2, Example V.4]. The generating
function counting runs where one of the two letters has less than n consecutive repetitions is
(1− zn)/(1− 2z + zn+1). The dominant singularity satisfies the fix-point equation z = f(z) with

def f(z):
return (1 + z^(n+1)) / 2

By starting with the approximation z = 1
2 +O(( 3

5 )n), applying f twice yields the known expansion

z = 1
2 + 1

4

(
1
2

)n

+ 1
8

(
1
4

)n

n+ 1
8

(
1
4

)n

+O

((
3
20

)n

n2
)
.
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Abstract. The register function (or Horton-Strahler number) of a binary tree is a well-known combinatorial parameter.
We study a reduction procedure for binary trees which offers a new interpretation for the register function as the
maximal number of reductions that can be applied to a given tree. In particular, the precise asymptotic behavior of
the number of certain substructures (“branches”) that occur when reducing a tree repeatedly is determined.

In the same manner we introduce a reduction for simple two-dimensional lattice paths from which a complexity
measure similar to the register function can be derived. We analyze this quantity, as well as the (cumulative) size of
an (iteratively) reduced lattice path asymptotically.

Keywords: Register function; binary tree; lattice path; asymptotics

1 Introduction
Binary trees are either a leaf or a root together with a left and a right subtree which are binary trees. It is
well-known that the generating function counting these objects with respect to the number of inner nodes
is given by

B(z) =
1−
√

1− 4z

2z
=
∑

n≥0

1

n+ 1

(
2n

n

)
zn.

Thus, the nth Catalan number Cn = 1
n+1

(
2n
n

)
counts the number of binary trees with n inner nodes.

By simple algebraic manipulations, it is easy to verify that B(z) fulfills the identity

B(z) = 1 +
z

1− 2z
B
( z2

(1− 2z)2

)
.

However, as we will see in Section 2, we can justify this identity from a combinatorial point of view as
well, and the most important part of this combinatorial interpretation is a reduction procedure for binary
trees.

†B. Hackl and C. Heuberger are supported by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl Popper Kolleg
“Modeling-Simulation-Optimization” funded by the Alpen-Adria-Universität Klagenfurt and by the Carinthian Economic Promotion
Fund (KWF).

‡H. Prodinger is supported by an incentive grant of the National Research Foundation of South Africa.
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The aim of this paper is to analyze the binary tree reduction with a focus on the structures that emerge
when repeatedly reducing a given tree. After the aforementioned introduction of the reduction in Sec-
tion 2, we discover an inherent connection to a very well-known branching complexity measure of binary
trees: the register function.

Sections 2.1 and 2.2 deal with the analysis of the number of r-branches and the number of all branches
within trees of given size, where an r-branch can be thought of a local structure in a binary tree that
survives exactly r reductions.

In Section 3, we switch our attention from binary trees to two-dimensional lattice paths. As we will see,
the generating function of these objects fulfills a similar functional equation as the generating function
for binary trees—and its combinatorial interpretation strongly depends on a reduction process as well.
The remainder of Section 3 is devoted to analyzing the lattice path reduction. In particular, Section 3.1
investigates fringes of lattice paths, which play a similar role as branches with respect to binary trees.

On a general note, we used the open-source mathematics software system SageMath [16] in order to
perform the computationally intensive parts of the asymptotic analysis for each of the quantities investi-
gated in this paper. Furthermore, the proofs and many details are omitted in this extended abstract; they
can be found in the full version.

2 Tree Reductions and the Register Function
As mentioned in the introduction, we want to find a combinatorial proof for the following proposition.

Proposition 2.1. The generating function counting binary trees by the number of inner nodes, B(z) =
1−√1−4z

2z , fulfills the identity

B(z) = 1 +
z

1− 2z
B
( z2

(1− 2z)2

)
. (1)

Proof (Sketch): The central idea of this proof is to consider a reduction of a binary tree t, which we write
as Φ(t):

First, all leaves of t are erased. Then, if a node has only one child, these two nodes are merged; this
operation will be repeated as long as there are such nodes. Finally, the nodes without children are declared
to be leaves.

Observe that this reduction is only defined for trees t that have at least one inner node. The various
steps of this operation (which was introduced in [19]) are depicted in Figure 1. The number attached to
the nodes will be explained later.

It can be shown that the generating function

z

1− 2z
B
( z2

(1− 2z)2

)

counts all binary trees that can be reduced at least once. Thus, the functional equation (1) can be inter-
preted combinatorially as follows: a binary tree is either just �, or it can be reduced at least once.

Remark. Note that (1) can be used to find a very simple proof for a well-known identity for Catalan
numbers:
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Fig. 1: Illustration of the compactification Φ: in the first tree, the leaves are deleted (dashed nodes) and nodes with
exactly one child are merged (gray overlay). The second tree shows the result of these operations. Finally, in the last
tree all nodes without children are marked as leaves.
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Comparing the coefficients of zn+1, (1) leads to

Cn+1 = [zn+1]
∑

k≥0

Ck
z2k+1

(1− 2z)2k+1
=
∑

k≥0

Ck[zn−2k]
∑

j≥0

2j
(

2k + j

j

)
zj

=
∑

0≤k≤n/2
Ck2n−2k

(
n

2k

)
,

which is known as Touchard’s identity [14, 17].
With this interpretation in mind, (1) can also be seen as a recursive process to generate binary trees by

repeated substitution of chains. This process can be modeled by the generating functions

B0(z) = 1, Br(z) = 1 +
z

1− 2z
Br−1

( z2

(1− 2z)2

)
, r ≥ 1. (2)

By construction, Br(z) is the generating function of all binary trees that can be constructed from � with
up to r expansions—or, equivalently—all binary trees that can be reduced to � by applying Φ up to r
times.

As it turns out, these generating functions are inherently linked with the register function (also known
as the Horton-Strahler number) of binary trees. In order to understand this connection, we introduce the
register function and prove a simple property regarding the compactification Φ.

The register function is recursively defined: for the binary tree consisting of only a leaf we have
Reg(�) = 0, and if a binary tree t has subtrees t1 and t2, then the register function is defined to be

Reg(t) =

{
max{Reg(t1),Reg(t2)} for Reg(t1) 6= Reg(t2),

Reg(t1) + 1 otherwise.

In particular, the numbers attached to the nodes in Figures 1 and 2 represent the register function of the
subtree rooted at the respective node.

Historically, the idea of the register function originated (as the Horton-Strahler numbers) in [8, 15]
in the study of the complexity of river networks. However, the very same concept also occurs within
a computer science context: arithmetic expressions with binary operators can be expressed as a binary
tree with data in the leaves and operators in the internal nodes. Then, the register function of this binary
expression tree corresponds to the minimal number of registers needed to evaluate the expression.

There are several publications in which the register function and related concepts are investigated
in great detail, for example Flajolet, Raoult, and Vuillemin [5], Kemp [9], Flajolet and Prodinger [4],
Louchard and Prodinger [10], Drmota and Prodinger [1], and Viennot [18]. For a detailed survey on the
register function and related topics see [13].

We continue by observing that the compactification Φ is a very natural operation regarding the register
function:

Proposition 2.2. Let t be a binary tree with Reg(t) = r ≥ 1. Then Φ(t) is well-defined and the register
function of the compactified tree is Reg(Φ(t)) = r − 1.

As an immediate consequence of Proposition 2.2 we find that Φ can be applied r times repeatedly to
some binary tree t if and only if Reg(t) ≥ r holds. In particular, we obtain

Φr(t) = � ⇐⇒ Reg(t) = r. (3)
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With (3), the link between the generating functions Br(z) from above and the register function becomes
clear: Br(z) is exactly the generating function of binary trees with register function ≤ r.

In order to analyze these recursively defined generating functions an explicit representation is conve-
nient. As it turns out, the substitution z = u

(1+u)2 =: Z(u) is a helpful tool in this context.

In particular, it can be shown that applying z 7→ z2

(1−2z)2 corresponds to u 7→ u2, which helps to find
the explicit representation

Br(z) =
1− u2

u

r∑

j=0

u2j

1− u2j+1 .

Note that at this point, we could obtain the generating function for binary trees with register function
equal to r simply by computing the difference Br(z)− Br−1(z) for r ≥ 1. These functions can be used
to study the asymptotic behavior of the average register function value.

However, as these results are well-known (cf. [5]), we will continue in a different direction by studying
the number of so-called r-branches.

2.1 r-branches
The register function associates a value to each node (internal nodes as well as leaves), and the value at
the root is the value of the register function of the tree. An r-branch is a maximal chain of nodes labeled
r. This must be a chain, since the merging of two such chains would already result in the higher value
r+ 1. The nodes of the tree are partitioned into such chains, from r = 0, 1, . . .. The goal of this section is
the study of the parameter “number of r-branches”, in particular, the average number of them, assuming
that all binary trees of size n are equally likely.

3

2

0 2

2

1

0 0

1

0 0

0

2

2

1

0 1

0 0

1

1

0 0

0

1

0 0

Fig. 2: Binary tree with colored r-branches

This parameter was the main object of the paper [19], and some partial results were given that we are
now going to extend. In contrast to this paper, our approach relies heavily on generating functions which,
besides allowing us to verify the results in a relatively straightforward way, also enables us to extract
explicit formulæ for the expectation (and, in principle, also for higher moments).
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A parameter that was not investigated in [19] is the total number of r-branches, for any r, i.e., the sum
over r ≥ 0. Here, asymptotics are trickier, and the basic approach from [19] cannot be applied. However,
in this paper we use the Mellin transform, combined with singularity analysis of generating functions, a
multi-layer approach that also allowed one of us several years ago to solve a problem by Yekutieli and
Mandelbrot, cf. [11]. The origins of singularity analysis can be found in [6], and for a detailed survey see
[7].

For reasons of comparisons, let us mention that the value of register function in [19] are one higher than
here, and that n generally refers there to the number of leaves, not nodes as here.

According to our previous considerations, after r iterations of Φ, the r-branches become leaves (or,
equivalently, 0-branches). The bivariate generating function allowing us to count the leaves of the binary
trees is vB(zv).

The proofs of the statements in this section, together with SageMath worksheets containing the corre-
sponding computations, can be found in the full version of this paper.

Theorem 1. Let r ∈ N0 be fixed. The expected number of r-branches in binary trees of size n and the
corresponding variance have the following asymptotic expansions:

En;r =
n

4r
+

1

6

(
1 +

5

4r

)
+

1

20n

(
4r − 1

4r

)
+

1

12n2

(5 · 16r

21
− 7 · 4r

10
+

97

210 · 4r
)

+O(n−3), (4)

Vn;r =
4r − 1

3 · 16r
n− 2 · 16r − 25 · 4r + 23

90 · 16r
− 13 · 64r − 14 · 16r + 7 · 4r − 6

420 · 16rn
+O(n−2). (5)

Of course, the expected number of r-branches can also be computed explicitly by using Cauchy’s
integral formula. This yields the following result:

Proposition 2.3. The expected number of r-branches in binary trees of size n is given by the explicit
formula

En;r =
n+ 1(

2n
n

)
∑

λ≥1

λ

[(
2n

n+ 1− λ2r

)
− 2

(
2n

n− λ2r

)
+

(
2n

n− 1− λ2r

)]
. (6)

2.2 The total number of branches
So far, we were dealing with fixed r, and the number of r-branches in trees of size n, for large n. Now we
consider the total number of such branches, i.e., the sum over r ≥ 0, which was not considered in [19].
First, to get an explicit formula, the results from Proposition 2.3 can be summed.

Corollary 2.4. The expected number of branches in binary trees of size n, denoted as En, is given by the
explicit formula

En =
n+ 1(

2n
n

)
n+1∑

k=1

(2− 2−v2(k))k

[(
2n

n+ 1− k

)
− 2

(
2n

n− k

)
+

(
2n

n− 1− k

)]
,

where v2(k) is the dyadic valuation of k, i.e., the highest exponent ν such that 2ν divides k.

While it is absolutely possible to work out the asymptotic growth from this explicit formula, at it was
done in earlier papers [5, 9], we choose a faster method, like in [4]. It works on the level of generating
functions and uses the Mellin transform together with singularity analysis of generating functions [7, 12].

The following theorem describes the asymptotic behavior for the expected number of branches in a
binary tree.
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Theorem 2. The expected value of the total number of branches in a random binary tree of size n admits
the asymptotic expansion

En =
4n

3
+

1

6
log4 n−

2ζ ′(−1)

log 2
− γ

12 log 2
− 1

6 log 2
+

43

36
+ δ(log4 n) +O

( log n

n

)
,

where

δ(x) :=
1

log 2

∑

k 6=0

Γ
(χk

2

)
ζ(χk − 1)(χk − 1)e2πikx

is a 1-periodic function of mean zero, given by its Fourier series expansion.

Remark. Note that the value of the derivative of the zeta function is given by ζ ′(−1) = − 1
12 − logA ≈

−0.1654211437, where A is the Glaisher-Kinkelin constant (cf. [2, Section 2.15]).

Remark. The occurrence of the periodic fluctuation δ where the argument is logarithmic in n is actually
not surprising: while this phenomenon is already very common in the context of the register function,
fluctuations appear very often in the asymptotic analysis of sums.

While this multi-layer approach enabled us to analyze the expected value of the number of branches
in binary trees of size n, the same strategy fails for computing the variance. This is because the random
variables modeling the number of r-branches are correlated for different values of r—and thus, the sum
of the variances (which we compute by our approach) differs from the variance of the sum.

This concludes our study of the number of branches per binary tree. In the next section, we analyze
a quantity that has similar properties as the register function, but is defined on simple two-dimensional
lattice paths.

3 A Similar Recursive Scheme Involving Lattice Paths
Recall that the register function describes the number of compactifications of a binary tree required in
order to reduce the tree to a leaf. By defining a similar process for simple two-dimensional lattice paths,
a function that plays a similar role as the register function is obtained.

Simple two-dimensional lattice paths are sequences of the symbols {↑,→, ↓,←}. It is easy to see that
the generating function counting these paths (without the path of length 0) is

L(z) =
4z

1− 4z
= 4z + 16z2 + 64z3 + 256z4 + 1024z5 + · · · .

Proposition 3.1. The generating function L(z) = 4z
1−4z fulfills the functional equation

L(z) = 4L
( z2

(1− 2z)2

)
+ 4z. (7)

Remark. It is easy to verify this result by means of substitution and expansion. However, we want to give
a combinatorial proof—this approach also motivates the definition of a recursive generation process for
lattice paths, similar to the process for binary trees from above.
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=⇒ =⇒ =⇒

=⇒ =⇒ =⇒

Fig. 3: Repeated application of the reduction ΦL on a path with compactification degree 2

Proof (Sketch): While we leave the detailed proof to the full version of this paper, we still want to
introduce a lattice path reduction which plays an analogous role as the binary tree reduction in the proof
of Proposition 2.1.

We consider the reduction ΦL, which acts on any given lattice path ` with length ≥ 2 as follows:
First, the path needs to be modified such that it starts horizontally and ends vertically. This is done by

rotation to the right of the entire path and/or the very last step, respectively.
Then, the horizontally starting and vertically ending path is reduced by replacing each pair of successive

horizontal-vertical path segments in the following way:

• If a segment starts with→ and the first vertical step is ↑, replace it by↗,

• if a segment starts with→ and the first vertical step is ↓, replace it by↘,

• if a segment starts with← and the first vertical step is ↓, replace it by↙,

• and if a segment starts with← and the first vertical step is ↑, replace it by↖.

Rotating the resulting path by 45◦ in order to obtain a path with horizontal and vertical steps then yields
ΦL(`). It can be shown that this reduction corresponds to the right-hand side of (7).

The process described in the proof of Proposition 3.1 allows us to assign a unique number to each lattice
path:

Definition. Let ` be a simple two-dimensional lattice path consisting of at least one step. We define the
compactification degree of `, denoted as cdeg(`) as

cdeg(`) = n ⇐⇒ ΦnL(`) ∈ {↑,→, ↓,←}.

Remark. The parallels between the compactification degree and the register function are obvious: both
count the number of times some given mathematical object can be reduced according to some rules until
an atomic form of the respective object is obtained. Therefore, both functions describe, in some sense, the
complexity of a given structure.
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In the remainder of this section we want to derive some asymptotic results for the compactification
degree, namely the expected degree of a lattice path of given length as well as the corresponding variance.

Analogously to our strategy for (1), we want to interpret (7) as a recursive generation process as well
and therefore set

L=
0 (z) = 4z, L=

r (z) = 4L=
r−1

( z2

(1− 2z)2

)
, r ≥ 1.

With the help of the substitution z = Z(u) the generating function can be written explicitly as

L=
r (z) = 4r+1 u2r

(1 + u2r )2
. (8)

The coefficients of this function can be extracted explicitly by applying Cauchy’s integral formula.

Proposition 3.2. The number of two-dimensional simple lattice paths of length n that have compactifica-
tion degree r is given by

[zn]L=
r (z) = 4r+1

∑

λ≥0

λ(−1)λ−1

[(
2n− 1

n− λ2r

)
−
(

2n− 1

n− λ2r − 1

)]
.

In fact, by studying the substitution z = Z(u) closely, the asymptotic behavior of the coefficients of
L=
r (z) can be extracted as well.
We turn to the investigation of the expected compactification degree. Let Ln denote the set of simple

two-dimensional lattice paths of size n. Consider the family of random variablesXn : Ln → N0 modeling
the compactification degree of the lattice paths of length n under the assumption that all paths are equally
likely. The following results are immediate consequences of Proposition 3.2.

Corollary 3.3. The probability that a lattice path of length n has compactification degree r is given by
the explicit formula

P(Xn = r) =
[zn]L=

r (z)

4n
= 4r+1−n∑

λ≥0

λ(−1)λ−1

[(
2n− 1

n− λ2r

)
−
(

2n− 1

n− λ2r − 1

)]
,

and the expected compactification degree for paths of length n is given by

EXn =
∑

k≥1

8k(2v2(k) − 1)

[(
2n− 1

n− k

)
−
(

2n− 1

n− k − 1

)]
. (9)

Remark. The formula for P(Xn = r) is very similar to the results for the classical register function
obtained by Flajolet (cf. [3]). It is likely that applying the techniques that were used in [10] could be used
to determine expansions for arbitrary moments.

The following theorem characterizes the asymptotic behavior of the expected compactification degree
and the corresponding variance.

Theorem 3. The expected compactification degree of simple two-dimensional lattice paths of length n
admits the asymptotic expansion

EXn = log4 n+
γ + 2− 3 log 2

2 log 2
+ δ1(log4 n) +O(n−1), (10)
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and for the corresponding variance we have

VXn =
π2 − 24 log2 π − 48ζ ′′(0)− 24

24 log2 2
− 2 log π

log 2
− 11

12
+ δ2(log4 n)

− γ + 2− 3 log 2

log 2
δ1(log4 n) + δ2

1(log4 n) +O
( 1

log n

)
(11)

where δ1(x) and δ2(x) are 1-periodic fluctuations of mean zero whose Fourier coefficients can be given
explicitly.

3.1 Fringes
We define the rth fringe of a given lattice path ` of length ≥ 1 to be ΦrL(`), i.e. the rth fringe is given by
the rth reduction of the path. In particular, if ` can be reduced r times, we call the length of ΦrL(`) the
size of the rth fringe. Otherwise, we say that this size is 0.

The rth fringes of positive size can then be enumerated by the bivariate generating function

Hr(z, v) =
∑

` path
cdeg(`)≥r

v|Φ
r
L(`)|z|`|

where |`| denotes the length of a lattice path.
It can be shown that Hr(z, v) fulfills the recursion

H0(z, v) =
4zv

1− 4zv
, Hr(z, v) = 4Hr−1

(( z

1− 2z

)2

, v
)
, r ≥ 1,

which can be used to find the explicit representation

Hr(z, v) =
4r+1u2r

v

(1 + u2r )2 − 4u2rv
.

The generating function Hr(z, v) can now be used to derive the asymptotic behavior of the expectation
ELn;r and the variance V Ln;r of the size of the rth fringe, where all paths of length n arise with the same
probability.

Theorem 4. Let r ∈ N0 be fixed. The expectation and variance of the rth fringe size of a random path of
length n have the asymptotic expansions

ELn;r =
n

4r
+

1− 4−r

3
+O(n3θ−nr ) (12)

and
V Ln;r =

4r − 1

3 · 16r
n+
−2 · 16r − 5 · 4r + 7

45 · 16r
+O(n5θ−nr ), (13)

where θr = 4
2+2 cos(2π/2r) > 1. If additionally r > 0, then for the random variables Yn;r modeling the

rth fringe size of lattice paths of length n we have

P
(
Yn;r − En;r√

Vn;r

≤ x
)

=
1√
2π

∫ x

−∞
e−w

2/2 dw +O(n−1/2),

i.e. the random variables Yn;r are asymptotically normally distributed.
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As we have the generating function Hr(z, v) in an explicit form, the expected value can also be ex-
tracted explicitly by means of Cauchy’s integral formula.

Proposition 3.4. For given r ∈ N0, the rth expected fringe size of a random path of length n is given by
the explicit formula

ELn;r = 4r+1−n∑

λ≥1

2λ3 + λ

3

[(
2n− 1

n− 2rλ

)
−
(

2n− 1

n− 2rλ− 1

)]
.

Analogously to our investigations concerning branches in binary trees, we also study the asymptotic
behavior of the expected fringe size, i.e. the sum over the size of the rth fringes for r ≥ 0. Like the
compactification degree, this parameter can also be interpreted as a complexity measure for lattice paths.

Corollary 3.5. The expected fringe size ELn of a random path of length n can be computed as

ELn =
1

12 · 4n
n∑

k=1

(
2k3(2− 2−v2(k)) + k(2v2(k)+1 − 1)

)[(2n− 1

n− k

)
−
(

2n− 1

n− k − 1

)]
.

The following theorem quantifies the asymptotic behavior of ELn :=
∑
r≥0E

L
n;r.

Theorem 5. Asymptotically, the behavior of the expected fringe size ELn for a random path of length n is
given by

ELn =
4

3
n+

1

3
log4 n+

5 + 3γ − 11 log 2

18 log 2
+ δ(log4 n) +O

( log n

n

)
, (14)

where δ(x) is a 1-periodic fluctuation of mean zero with Fourier series expansion

δ(x) =
∑

k 6=0

2

3
√
π log 2

Γ
(3 + χk

2

)(
2ζ(χk − 1) + ζ(χk + 1)

)
e2kπix.
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Hwang’s quasi-power theorem asserts that a sequence of random variables whose moment generating functions are
approximately given by powers of some analytic function is asymptotically normally distributed. This theorem is
generalised to higher dimensional random variables. To obtain this result, a higher dimensional analogue of the
Berry–Esseen inequality is proved, generalising a two-dimensional version by Sadikova.

Keywords: Quasi-power theorem, Berry–Esseen inequality, limiting distribution, central limit theorem

1 Introduction
Asymptotic normality is a frequently occurring phenomenon in combinatorics, the classical central limit
theorem being the very first example. The first step in the proof is the observation that the moment gener-
ating function of the sum of n identically independently distributed random variables is the n-th power of
the moment generating function of the distribution underlying the summands. As similar moment generat-
ing functions occur in many examples in combinatorics, a general theorem to prove asymptotic normality
is desirable. Such a theorem was proved by Hwang [16], usually called the “quasi-power theorem”.

Theorem (Hwang [16]). Let {Ωn}n≥1 be a sequence of integral random variables. Suppose that the
moment generating function satisfies the asymptotic expression

Mn(s) := E(eΩns) = eWn(s)(1 +O(κ−1
n )), (1.1)

the O-term being uniform for |s| ≤ τ , s ∈ C, τ > 0, where

1. Wn(s) = u(s)φn + v(s), with u(s) and v(s) analytic for |s| ≤ τ and independent of n; and
u′′(0) 6= 0;

2. limn→∞ φn =∞;

3. limn→∞ κn =∞.

†The authors are supported by the Austrian Science Fund (FWF): P 24644-N26.
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Then the distribution of Ωn is asymptotically normal, i.e.,

sup
x∈R

∣∣∣∣∣P
(

Ωn − u′(0)φn√
u′′(0)φn

< x

)
− Φ(x)

∣∣∣∣∣ = O

(
1√
φn

+
1

κn

)
,

where Φ denotes the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
exp

(
−1

2
y2

)
dy.

See Hwang’s article [16] as well as Flajolet-Sedgewick [8, Sec. IX.5] for many applications of this
theorem. A generalisation of the quasi-power theorem to dimension 2 has been provided in [12]. It has
been used in [14], [15], [6], [13] and [17]. In [5, Thm. 2.22], an m-dimensional version of the quasi-
power theorem is stated without speed of convergence. Also in [2], such an m-dimensional theorem
without speed of convergence is proved. There, several multidimensional applications are given, too.

In contrast to many results about the speed of convergence in classical probability theory (see, e.g., [11]),
the sequence of random variables is not assumed to be independent. The only assumption is that the mo-
ment generating function behaves asymptotically like a large power. This mirrors the fact that the moment
generating function of the sum of independent, identically distributed random variables is exactly a large
power. The advantage is that the asymptotic expression (1.1) arises naturally in combinatorics by using
techniques such as singularity analysis or saddle point approximation (see [8]).

The purpose of this article is to generalise the quasi-power theorem including the speed of convergence
to arbitrary dimension m. We first state this main result in Theorem 1 in this section. In Section 2, a new
Berry–Esseen inequality (Theorem 2) is presented, which we use to prove them-dimensional quasi-power
theorem. We give sketches of the proofs of these two theorems in Section 4. All details of these proofs
can be found in the full version of this extended abstract. In Section 3, we give some applications of the
multidimensional quasi-power theorem.

We use the following conventions: vectors are denoted by boldface letters such as s, their components
are then denoted by regular letters with indices such as sj . For a vector s, ‖s‖ denotes the maximum norm
max{|sj |}. All implicit constants of O-terms may depend on the dimension m as well as on τ which is
introduced in Theorem 1.

Our first main result is the following m-dimensional version of Hwang’s theorem.

Theorem 1. Let {Ωn}n≥1 be a sequence of m-dimensional real random vectors. Suppose that the mo-
ment generating function satisfies the asymptotic expression

Mn(s) := E(e〈Ωn,s〉) = eWn(s)(1 +O(κ−1
n )), (1.2)

the O-term being uniform for ‖s‖ ≤ τ , s ∈ Cm, τ > 0, where

1. Wn(s) = u(s)φn + v(s), with u(s) and v(s) analytic for ‖s‖ ≤ τ and independent of n; and the
Hessian Hu(0) of u at the origin is non-singular;

2. limn→∞ φn =∞;

3. limn→∞ κn =∞.
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Then, the distribution of Ωn is asymptotically normal with speed of convergence O(φ
−1/2
n ), i.e.,

sup
x∈Rm

∣∣∣∣P
(

Ωn − gradu(0)φn√
φn

≤ x

)
− ΦHu(0)(x)

∣∣∣∣ = O

(
1√
φn

)
, (1.3)

where ΦΣ denotes the distribution function of the non-degeneratem-dimensional normal distribution with
mean 0 and variance-covariance matrix Σ, i.e.,

ΦΣ(x) =
1

(2π)m/2
√

det Σ

∫

y≤x

exp

(
−1

2
y>Σ−1y

)
dy,

where y ≤ x means y` ≤ x` for 1 ≤ ` ≤ m.
If Hu(0) is singular, the random variables

Ωn − gradu(0)φn√
φn

converge in distribution to a degenerate normal distribution with mean 0 and variance-covariance matrix
Hu(0).

Note that in the case of the singular Hu(0), a uniform speed of convergence cannot be guaranteed.
To see this, consider the (constant) sequence of random variables Ωn which takes values ±1 each with
probability 1/2. Then the moment generating function is (et + e−t)/2, which is of the form (1.2) with
φn = n, u(s) = 0, v(s) = log(et + e−t)/2 and κn arbitrary. However, the distribution function of
Ωn/
√
n is given by

P
(

Ωn√
n
≤ x

)
=





0 if x < −1/
√
n,

1/2 if − 1/
√
n ≤ x < 1/

√
n,

1 if 1/
√
n ≤ x,

which does not converge uniformly.
In contrast to the original quasi-power theorem, the error term in our result does not contain the sum-

mand O(1/κn). In fact, this summand could also be omitted in the original proof of the quasi-power
theorem by using a better estimate for the error En(s) = Mn(s)e−Wn(s) − 1.

The proof of Theorem 1 relies on an m-dimensional Berry–Esseen inequality (Theorem 2). It is a
generalisation of Sadikova’s result [22, 23] in dimension 2. The main challenge is to provide a version
which leads to bounded integrands around the origin, but still allows to use excellent bounds for the tails
of the characteristic functions. To achieve this, linear combinations involving all partitions of the set
{1, . . . ,m} are used.

Note that there are several generalisations of the one-dimensional Berry–Esseen inequality [3, 7] to
arbitrary dimension, see, e.g., Gamkrelidze [9, 10] and Prakasa Rao [20]. However, using these results
would lead to the less precise error term in (1.3), see the end of Section 2 for more details. For that reason
we generalise Sadikova’s result, which was already successfully used by the first author in [12] to prove a
2-dimensional quasi-power theorem. Also note that our theorem can deal with discrete random variables,
in contrast to [21], where density functions are considered.

For the sake of completeness, we also state the following result about the moments of Ωn.
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Proposition 1.1. The cross-moments of Ωn satisfy

1∏m
`=1 k`!

E
( m∏

`=1

Ωk`n,`

)
= pk(φn) +O

(
κ−1
n φk1+···+km

n

)
,

for k` nonnegative integers, where pk is a polynomial of degree
∑m
`=1 k` defined by

pk(X) = [sk11 · · · skmm ]eu(s)X+v(s).

In particular, the mean and the variance-covariance matrix are

E(Ωn) = gradu(0)φn + grad v(0) +O(κ−1
n ),

Cov(Ωn) = Hu(0)φn +Hv(0) +O(κ−1
n ),

respectively.

2 A Berry–Esseen Inequality
This section is devoted to a generalisation of Sadikova’s Berry–Esseen inequality [22, 23] in dimension 2
to dimension m. Before stating the theorem, we introduce our notation.

Let L = {1, . . . ,m}. For K ⊆ L, we write sK = (sk)k∈K for the projection of s ∈ CL to CK .
For J ⊆ K ⊆ L, let χJ,K : CJ → CK , (sj)j∈J 7→ (sk[k ∈ J ])k∈K be an injection from CJ into CK .
Similarly, let ψJ,K : CK → CK , (sk)k∈K 7→ (sk[k ∈ J ])k∈K be the projection which sets all coordinates
corresponding to K \ J to 0.

We denote the set of all partitions of K by ΠK . We consider a partition as a set α = {J1, . . . , Jk}.
Thus |α| denotes the number of parts of the partition α. Furthermore, J ∈ α means that J is a part of the
partition α.

Now, we can define an operator which we later use to state our Berry–Esseen inequality. The motivation
behind this definition is explained at the end of this section.

Definition 2.1. Let K ⊆ L and h : CK → C. We define the non-linear operator

ΛK(h) :=
∑

α∈ΠK

µα
∏

J∈α
h ◦ ψJ,K

where
µα = (−1)|α|−1(|α| − 1)! .

We denote ΛL briefly by Λ.

For any random variable Z, we denote its cumulative distribution function by FZ and its characteristic
function by ϕZ.

With these definitions, we are able to state our second main result, an m-dimensional version of the
Berry–Esseen inequality.

Theorem 2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY is differen-
tiable.
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Let

Aj = sup
y∈Rm

∂FY(y)

∂yj
,

Bj =

j∑

k=1

{
j

k

}
k! ,

C1 = 3

√
32

π
(
1−

(
3
4

)1/m) ,

C2 =
12

π

for 1 ≤ j ≤ m where
{
j
k

}
denotes a Stirling partition number (Stirling number of the second kind).

Let T > 0 be fixed. Then

sup
z∈Rm

|FX(z)− FY(z)| ≤ 2

(2π)m

∫

‖t‖≤T

∣∣∣Λ(ϕX)(t)− Λ(ϕY)(t)∏
`∈L t`

∣∣∣ dt

+ 2
∑

∅6=J(L
Bm−|J| sup

zJ∈RJ

∣∣FXJ
(zJ)− FYJ

(zJ)
∣∣

+
2
∑m
j=1Aj

T
(C1 + C2).

(2.1)

Existence of E(X) and E(Y) is sufficient for the finiteness of the integral in (2.1).

Let us give two remarks on the distribution functions occurring in this theorem: The distribution func-
tion FY is non-decreasing in every variable, thus Aj > 0 for all j. Furthermore, our general notations
imply that FXJ

is a marginal distribution of X.
The numbers Bj are known as “Fubini numbers” or “ordered Bell numbers”. They form the sequence

A000670 in [18].
Recursive application of (2.1) leads to the following corollary, where we no longer explicitly state the

constants depending on the dimension.

Corollary 2.2. Let m ≥ 1 and X and Y be m-dimensional random variables. Assume that FY is
differentiable and let

Aj = sup
y∈Rm

∂FY(y)

∂yj
, 1 ≤ j ≤ m.

Then

sup
z∈Rm

|FX(z)− FY(z)|

= O

( ∑

∅6=K⊆L

∫

‖tK‖≤T

∣∣∣ΛK(ϕX ◦ χK,L)(tK)− ΛK(ϕY ◦ χK,L)(tK)∏
k∈K tk

∣∣∣ dtK +

∑m
j=1Aj

T

)
(2.2)

where the O-constants only depend on the dimension m.
Existence of E(X) and E(Y) is sufficient for the finiteness of the integrals in (2.2).
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In order to explain the choice of the operator Λ, we first state it in dimension 2:

Λ(h)(s1, s2) = h(s1, s2)− h(s1, 0)h(0, s2). (2.3)

This coincides with Sadikova’s definition. This also shows that our operator is non-linear as, e.g., Λ(s1 +
s2)(s1, s2) 6= Λ(s1)(s1, s2) + Λ(s2)(s1, s2).

In Theorem 2, we apply Λ to characteristic functions; so we may restrict our attention to functions h
with h(0) = 1. From (2.3), we see that Λ(h)(s1, 0) = Λ(h)(0, s2) = 0, so that Λ(h)(s1, s2)/(s1s2) is
bounded around the origin. This is essential for the boundedness of the integral in Theorem 2. In general,
this property will be guaranteed by our particular choice of coefficients. It is no coincidence that for
α ∈ ΠL, the coefficient µα equals the value µ(α, {L}) of the Möbius function in the lattice of partitions:
Weisner’s theorem (see Stanley [24, Corollary 3.9.3]) is crucial in the proof that Λ(h)(s)/(s1 · · · sm) is
bounded around the origin.

The second property is that our proof of the quasi-power theorem needs estimates for the tails of the
integral in Theorem 2. These estimates have to be exponentially small in every variable, which means
that every variable has to occur in every summand. This is trivially fulfilled as every summand in the
definition of Λ is formulated in terms of a partition.

Note that Gamkrelidze [10] (and also Prakasa Rao [20]) use a linear operator L mapping h to

(s1, s2) 7→ h(s1, s2)− h(s1, 0)− h(0, s2). (2.4)

When taking the difference of two characteristic functions, we may assume that h(0, 0) = 0 so that the first
crucial property as defined above still holds. However, the tails are no longer exponentially small in every
variable: The last summand h(0, s2) in (2.4) is not exponentially small in s1 because it is independent
of s1 and nonzero in general. However, the first two summands are exponentially small in s1 by our
assumption (1.2).

For that reason, using the Berry–Esseen inequality by Gamkrelidze [10] to prove a quasi-power theorem
leads to a less precise error term O(φ

−1/2
n logm−1 φn) in (1.3). It can be shown that the less precise error

term necessarily appears when using Gamkrelidze’s result by considering the example of Ωn being the
2-dimensional vector consisting of a normal distribution with mean −1 and variance n and a normal
distribution with mean 0 and variance n. This is a consequence of the linearity of the operator L in
Gamkrelidze’s result.

3 Examples of Multidimensional Central Limit Theorems
In this section, we give two examples from combinatorics where we can apply Theorem 1. Asymptotic
normality was already shown in earlier publications [4, 2], but we additionally provide an estimate for the
speed of convergence.

3.1 Context-Free Languages
Consider the following example of a context-free grammar G with non-terminal symbols S and T , termi-
nal symbols {a, b, c}, starting symbol S and the rules

P = {S → aSbS, S → bT, T → bS, T → cT, T → a}.
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The corresponding context-free language L(G) consists of all words which can be generated starting with
S using the rules in P to replace all non-terminal symbols. For example, abcabababba ∈ L(G) because it
can be derived as

S → aSbS → abTbaSbS → abcTbabTbbT → abcabababba.

Let P(Ωn = x) be the probability that a word of length n in L(G) consists of x1 and x2 terminal
symbols a and b, respectively. Thus there are n−x1−x2 terminal symbols c. For simplicity, this random
variable is only 2-dimensional. But it can be easily extended to higher dimensions.

Following Drmota [4, Sec. 3.2], we obtain that the moment generating function is

E(e〈Ωn,s〉) =
yn(es)

yn(1)

with yn(z) defined in [4]. Using [4, Equ. (4.9)], this moment generating function has an asymptotic
expansion as in (1.2) with φn = n. Thus Ωn is asymptotically normally distributed after standardisation
(as was shown in [4]) and additionally the speed of convergence is O(n−1/2).

Other context-free languages can be analysed in the same way, either by directly using the results in
[4] (if the underlying system is strongly connected) or by similar methods. This has applications, for
example, in genetics (see [19]).

3.2 Dissections of Labelled Convex Polygons
Let S1 ·∪ · · · ·∪ St+1 = {3, 4, . . .} be a partition. We dissect a labelled convex n-gon into smaller convex
polygons by choosing some non-intersecting diagonals. Each small polygon should be a k-gon with
k 6∈ St+1. Define an(r) to be the number of dissections of an n-gon such that it consists of exactly ri small
polygons whose number of vertices is in Si, for i = 1, . . . , t. For convenience, we use a2(r) = [r = 0].
Asymptotic normality was proved in [2, Sec. 3], see also [1, Ex. 7.1] for a one-dimensional version. We
additionally provide an estimate for the speed of convergence.

Let
f(z,x) =

∑

n≥2
r≥0

an(r)xrzn−1.

Then choosing a k-gon with k ∈ S1 ·∪· · · ·∪St and gluing dissected polygons to k−1 of its sides translates
into the equation

f = z +
t∑

i=1

xi
∑

k∈Si

fk−1.

Following [1], this equation can be used to obtain an asymptotic expression for the moment generating
function as in (1.2) with φn = n. The asymptotic normal distribution follows after suitable standardisation
with speed of convergence O(n−1/2).

4 Sketch of the Proofs
We now sketch the main ideas of the proofs of Theorems 2 and 1. All details can be found in the full
version of this extended abstract.
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Sketch of the proof of Theorem 2: As in [23, 10, 20], our proof of the Berry–Esseen inequality proceeds
via adding a continuous random variable Q to our random variables X and Y. The characteristic function
of Q vanishes outside [−T, T ]m. The error resulting from replacing the difference of the distribution
functions |FX − FY| by |FX+Q − FY+Q| can be estimated by the final summand in (2.1). In principle,
Lévy’s theorem then allows to bound the difference of the distribution functions by the difference of
the characteristic functions. Instead of only using the difference of the characteristic functions, we use
the difference |Λ(ϕX) − Λ(ϕY)|, which ensures boundedness of the integral in (2.1) at least if the first
moments exist. However, we have to compensate Λ by the sum over the differences of the marginal
distribution functions, which yields the second summand in (2.1).

Sketch of the proof of Theorem 1: First, the characteristic function of the standardised random variable
X = (Ωn − gradu(0)φn)/

√
φn is

ϕX(s) = exp
(
−1

2
s>Σs +O

(‖s‖3 + ‖s‖√
φn

))

for ‖s‖ < τ
√
φn/2. Thus, we obtain convergence in distribution as stated in the theorem.

To obtain a bound for the speed of convergence, we use the Berry–Esseen inequality given in Theorem 2
for Y an m-dimensional normal distribution. We bound the difference of Λ evaluated at the characteristic
function of X and the one of the normal distribution by the exponentially decreasing function

|Λ(ϕX)(s)− Λ(ϕY)(s)| ≤ exp
(
−σ

4
‖s‖2 +O(‖s‖)

)
O
(‖s‖3 + ‖s‖√

φn

)

for suitable s where σ is the smallest eigenvalue of Σ.
We then estimate the integral in (2.1). For the variables in a neighbourhood of zero, we get rid of the

denominator by Taylor expansion using the zero of Λ(ϕX) − Λ(ϕY) at 0. The error term of the Taylor
expansion can be estimated by the difference of the characteristic functions using Cauchy’s formula. The
exponentially small tails are used to bound the contribution of the large variables in the integral in (2.1).

The second summand in (2.1) can be estimated inductively.
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Probabilistic consequences of some
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Paweł Hitczenko1†, Amanda Lohss1

1Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Abstract. In this paper, we consider sequences of polynomials that satisfy differential–difference recurrences. Our
interest is motivated by the fact that polynomials satisfying such recurrences frequently appear as generating poly-
nomials of integer valued random variables that are of interest in discrete mathematics. It is, therefore, of interest
to understand the properties of such polynomials and their probabilistic consequences. As an illustration we analyze
probabilistic properties of tree–like tableaux, combinatorial objects that are connected to asymmetric exclusion pro-
cesses. In particular, we show that the number of diagonal boxes in symmetric tree–like tableaux is asymptotically
normal and that the number of occupied corners in a random tree–like tableau is asymptotically Poisson. This extends
earlier results of Aval, Boussicault, Nadeau, and Laborde Zubieta, respectively.

Keywords: Generating polynomial, recurrence, tree–like tableaux

1 Introduction and motivation
In this paper we will consider a sequence of polynomials

Pn(x) =
m∑

k=0

pn,kx
k, n ≥ 0

that satisfy a differential–difference recurrence of one of the following forms

P
′
n(x) = fn(x)Pn−1(x) + gn(x)P

′
n−1(x) (1)

or

Pn(x) = fn(x)Pn−1(x) + gn(x)P
′
n−1(x) (2)

for some sequences of polynomials(fn), (gn) and a givenP0(x).
As a motivation for our interest we give examples of recurrences of these types that we encountered

in recent literature. The first two examples appear in the context of tree–like tableaux introduced in Aval
et al. (2013).

†Partially supported by a Simons Foundation grant #208766
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(ABN) Aval et al. (2013):

Bn(x) = nx(x + 1)Bn−1(x) + x(1 − x2)B′
n−1(x),

B0(x) = x.

(LZ) Laborde Zubieta (2015):

P
′
n(x) = nPn−1(x) + 2(1− x)P

′
n−1(x),

P0(x) = 1.

Laborde Zubieta also considered the following version

Q
′
n(x) = 2nxQn−1(x) + 2(1− x2)Q

′
n−1(x),

Q0(x) = 1,

whereQn(x) is a polynomial of degree2n whose odd–numbered coefficients vanish. But this recurrence
can be reduced to(LZ) by consideringQn(x) = Pn(x

2).
The following recurrence for fixed parametersa andb was considered in Hitczenko and Janson (2014)

(see Sections 2 and 4 there):

(HJ) Hitczenko and Janson (2014):

Pn,a,b(x) = ((n− 1 + b)x+ a)Pn−1,a,b(x) + x(1− x)P ′
n−1,a,b(x)

P0,a,b(x) = 1.

This is a generaliztion of the classical Eulerian polynomials. Specifically, the choice of parametersa = 1
andb = 0 givesPn,1,0 = En(x), where

En(x) =
n∑

k=0

〈n
k

〉
xk,

and
〈
n
k

〉
is the number of permutations of{1, . . . , n} with exactlyk ascents. The recurrence for the

polynomialsEn(x) is:

En(x) = ((n− 1)x+ 1)En−1(x) + x(1 − x)E′
n−1(x).

A very similar recurrence played a role in Dasse-Hartaut andHitczenko (2013) although it appeared there
only implicitly.

(DHH) Dasse-Hartaut and Hitczenko (2013):

Vn(x) = ((2n− 1)x+ 1)Vn−1(x) + 2x(1− x)V ′
n−1(x)

V0(x) = 1.
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As one more example, the following recurrence was used in (Acan and Hitczenko, 2016, Section 3) in
connection with the analysis of a version of a card game called the memory game.

(AH) Acan and Hitczenko (2016):

An(x) = (2n− 1)An−1(x) + x(x− 1)A
′
n−1(x),

A0(x) = x.

In the examples above the polynomials are generating polynomials of integer valued random variables
and it is of interest to understand what bearing the form of a recurrence has on the probabilistic properties
of these random variables. This is, of course, not a new idea and in various forms has been studied for
a long time (see, for example, many results and references inFlajolet and Sedgewick (2009)). Still, we
believe that there is more work to be done to better understand the probabilistic consequences of the above
recurrences.

2 Tree–like tableaux
Although we would like to keep the discussion at a general level, we will use particular objects, namely
tree–like tableaux as a primary illustration. Therefore webriefly introduce the definition and their basic
properties; we refer the reader to Aval et al. (2013); Laborde Zubieta (2015); Hitczenko and Lohss (2015)
for more information and details.

A Ferrers diagramis a left–aligned finite set of cells arranged in rows and columns with weakly de-
creasing number of cells in rows. Itshalf–perimeteris the number of rows plus the number of columns.
Theborder edgesof a Ferrers diagram are the edges of the southeast border, and the number of border
edges is equal to the half–perimeter. Atree–like tableauxof sizen is a Ferrers diagrams of half-perimeter
n+ 1 with some cells (called pointed cells) filled with a point according to the following rules:

1. The cell in the first column and first row is always pointed (this point is known as the root point).

2. Every row and every column contains at least one pointed cell.

3. For every pointed cell, all the cells above are empty or allthe cells to the left are empty.

We will also considersymmetric tree–like tableaux, a subset of tree–like tableaux which are symmetric
about their main diagonal (see (Aval et al., 2013, Section 2.2) for more details). As noticed in Aval et al.
(2013), the size of a symmetric tree–like tableaux must be odd. It is known that there aren! tree–like
tableaux of sizen (see (Aval et al., 2013, Corollary 8)) and2nn! symmetric tree–like tableaux of size
2n+ 1 (see (Aval et al., 2013, Corollary 8)).

Cornersof a tree–like tableau (symmetric or not) are the cells in which both the right and bottom edges
are border edges.Occupied cornersare corners that contain a point. Figure 1 shows examples of tree–like
tableaux.

3 General setting
Motivated by examples discussed in Section 1 we wish to consider a sequence of polynomials

Pn(x) =

m∑

k=0

pn,kx
k, n ≥ 0
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Fig. 1: (i) A tree–like tableaux of size13 with 4 corners and2 occupied corners. (ii) A symmetric tree–like tableaux
of size11 with 6 corners,4 of which are occupied.

that satisfy one of the recurrences (1) or (2) with the given initial polynomialP0(x). The sequences of
polynomials(fn(x)) and(gn(x)) are typically of low degree, but formally this is not required. Simi-
larly, in all of the above examples we havegn(1) = 0 and we will assume that throughout. It should
be emphasized, however, that there are natural situations in which the conditiongn(1) = 0 fails. For
example, Wang (2014) considered a recurrence

Tn(x) = (x+ c)Tn−1(x) +mxT
′
n−1(x),

for fixed numbersc andm. The choicec = 0 andm = 1 is a classical situation of Bell polynomials (see
e. g. a discussion at the end of Section 7.2 in Chapter VII of Comtet (1974)). Furthermore, the choice
c = 1 and any fixedm ∈ N gives polynomials associated with Whitney numbers of Dowling lattices (see
Benoumhani (1999)). For polynomials satisfying

Fn(x) = (x + 1)Fn−1(x) + x(x +m)F ′
n−1(x)

with m ∈ N we refer to (Benoumhani, 1997, Section 4) and references therein. So, clearly it is of interest
to consider (1) or (2) without the assumption thatgn(1) = 0 but as we indicated earlier we will assume
this throughout this paper.

Since we are interested in a probabilistic interpretation,we will assume thatpn,k ≥ 0 and that
∑

k pn,k >
0 for everyn. Then

Pn(x)

Pn(1)
=
∑

k≥0

pn,k
Pn(1)

xk

is the probability generating function of the integer valued random variableXn whose distribution func-
tion is given by

P(Xn = k) =
pn,k
Pn(1)

, k ≥ 0. (3)

We note that recurrence (1) defines the polynomialsPn up to an additive constant or, equivalently, up to
the valuePn(1). In our context the polynomials arise in the study of discrete combinatorial structures, and
thus a natural choice of the normalization is obtained by letting Pn(1) be the cardinality of the structure
consisting of all objects of sizen. For example, Laborde Zubieta setPn(1) = n! andQn(1) = 2nn!
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representing the number of tree–like tableaux of sizen and the symmetric tree–like tableaux of size
2n+ 1 , respectively.

We want to use recurrences (1) and (2) to study the convergence in distribution of the sequences(Xn)
associated with these recurrences through (3).

4 Method of moments
One natural approach is to use the method of moments or, more precisely, the method of factorial mo-
ments. It is based on the fact that ifX is a random variable uniquely determined by its (factorial)moments

E(X)r = EX(X − 1) . . . (X − (r − 1)), r = 1, 2, . . .

and(Xn) is a sequence of random variables such that

E(Xn)r −→ E(X)r, n → ∞, r = 1, 2, . . .

then
Xn

d−→ X, n → ∞,

where “
d−→ ” denotes the convergence in distribution.

As is well–known, for a random variableX with probability generating functionh(x) = ExX we have

E(X)r = h(r)(1),

whereh(r)(x) is therth derivative ofh(x). Thus, in terms of polynomials(Pn(x)) this means

E(Xn)r =
P

(r)
n (1)

Pn(1)

and consequently, we would be interested in computingP
(r)
n (1) and finding the asymptotic of the ratio on

the right–hand side above.
For recurrence (1) using Leibniz formula for higher order derivative of the product we obtain

P (r)
n (x) = (P ′

n(x))
(r−1)

= (fn(x)Pn−1(x))
(r−1)

+
(
gn(x)P

′
n−1(x)

)(r−1)

=
r−1∑

k=0

(
r − 1

k

)
f (k)
n (x)P

(r−1−k)
n−1 (x) +

r−1∑

k=0

(
r − 1

k

)
g(k)n (x)P

(r−k)
n−1 (x)

= gn(x)P
(r)
n−1(x) +

r−2∑

k=0

((
r − 1

k

)
f (k)
n (x) +

(
r − 1

k + 1

)
g(k+1)
n (x)

)
P

(r−1−k)
n−1 (x)

+f (r−1)
n (x)Pn−1(x).

The idea now is that iffn andgn are low–degree polynomials then one obtains a manageable recurrence
for P (r)

n (1). We will illustrate this on Laborde Zubieta’s example(LZ). In that casefn(x) andgn(x) are
polynomials of degree zero and one, respectively and thus the above expression reduces to

P (r)
n (x) = gn(x)P

(r)
n−1(x) + (fn(x) + (r − 1)g′n(x))P

(r−1)
n−1 (x) (4)
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if r ≥ 2 (and agrees with (1) ifr = 1). Laborde Zubieta used this, the specific form of the polynomials
fn(x), gn(x), andPn(1) = n! to show that the random variablesXn defined by (3) satisfy

EXn = 1 and var(Xn) =
n− 2

n
.

This suggests that the sequence(Xn) converges in distribution to a Poisson random variable withparam-
eter 1. This is, indeed the case, and can be deduced from the recurrence (1) as was shown in Hitczenko
and Lohss (2015). Here is a general statement that covers(LZ).

Proposition 1 Let

Pn(x) =

m∑

k=0

pn,kx
k

be a sequence of polynomials satisfying recurrence (1) where fn(x) = fn andgn(x) = gn · (x − 1) for
some sequences of constants(fn) and(gn). Assume thatpn,k ≥ 0 and that

∑
k pn,k > 0 for everyn ≥ 1,

and thatm = mn may depend onn. Consider a sequence of random variables(Xn) defined by (3). If

gn = o(fn) and fn
Pn−1(1)

Pn(1)
→ c > 0, as n → ∞ (5)

then
Xn

d→ Pois(c) as n → ∞,

where Pois(c) is a Poisson random variable with parameterc.

As established by Laborde Zubieta (2015), the generating polynomials for the number of occupied corners
in tree–like tableaux satisfy recurrence(LZ) (that means takingfn = n, gn = −2, andPn(1) = n! in
Proposition 1). Thus, the assumptions (5) are clearly satisfied with c = 1 and we obtain the following
extension of Laborde Zubieta’s result (see Hitczenko and Lohss (2015))

Corollary 2 Asn → ∞, the limiting distribution of the number of occupied corners in a random tree–like
tableau of sizen is Pois(1).

A companion result for symmetric tableaux is as follows (seeHitczenko and Lohss (2015) for more
details). The expected value and the variance were obtainedearlier in Laborde Zubieta (2015).

Corollary 3 Asn → ∞, the limiting distribution of the number of occupied corners in a random sym-
metric tree–like tableau of size2n+ 1 is 2× Pois(1/2).

Proof of Proposition 1: By (Bollobás, 2001, Theorem 20, Chapter 1) it is enough to show that for every
r ≥ 1 the factorial moments

E(Xn)r = EXn(Xn − 1) . . . (Xn − (r − 1)),

of (Xn) converge tocr asn → ∞. Usinggn(1) = 0 andg′n(x) = gn in (4) we obtain

P (r)
n (1) = (fn + (r − 1)gn)P

(r−1)
n−1 (1).
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Consequently,

P
(r)
n (1)

Pn(1)
= (fn + (r − 1)gn)

P
(r−1)
n−1 (1)

Pn(1)

= fn
Pn−1(1)

Pn(1)

(
1 + (r − 1)

gn
fn

)
P

(r−1)
n−1 (1)

Pn−1(1)
.

Therefore, upon further iteration,

P
(r)
n (1)

Pn(1)
=

(
r−1∏

k=0

fn−k
Pn−k−1(1)

Pn−k(1)

(
1 + (r − k − 1)

gn−k

fn−k

))
P

(r−r)
n−r (1)

Pn−r(1)
.

Since the last factor is1, it follows from (5) that for everyr ≥ 1 asn → ∞,

P
(r)
n (1)

Pn(1)
→ cr

as desired. ✷

Remark 1 In principle it should be possible to prove a similar result for polynomials of higher degrees
than those considered in Proposition 1. However, we have nottried to do that, primarily because we have
not encountered instances of such recurrences.

5 Real–rootedness of Pn(x)
The idea we explore in this section is that if all roots ofPn(x) are real thenPn(x) can be written as a
product of linear factors. Furthermore, since the coefficients are non–negative the roots are non–positive.
Hence, these linear factors may be interpreted as the generating functions of{0, 1}–valued random vari-
ables and then knowing that the variance of their sum converges to infinity suffices to conclude that the
sum is asymptotically normal. More specifically, assume that

−∞ < γi,n ≤ 0, i = 1, . . . ,m

are roots ofPn(x) and writeπi,n = −γi,n so thatπi,n ≥ 0. ThenPn(x) has a factorization

Pn(x) = pn,m

m∏

k=1

(x + πk,n),

so that

ExXn =
Pn(x)

Pn(1)
=

m∏

k=1

x+ πk,n

1 + πk,n
=

m∏

k=1

(
x

1 + πk,n
+

πk,n

1 + πk,n

)
.

The factor on the right–hand side is the probability generating function of a random variableξk,n such
that

P(ξk,n = 1) =
1

1 + πk,n
and P(ξk,n = 0) =

πk,n

1 + πk,n
, k = 1, . . . ,m.
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Moreover, since the product of the probability generating functions corresponds to taking sums of inde-
pendent random variables we have that

Xn =

n∑

k=1

ξk,n,

where(ξk,n) are independent. Therefore, it follows immediately from either Lindeberg or Lyapunov
version of the central limit theorem (see e. g. (Billingsley, 1995, Theorem 27.2 or Theorem 27.3)) that

Xn − EXn√
var(Xn)

d−→ N(0, 1),

as long as var(Xn) −→ ∞ asn → ∞. (HereN(0, 1) denotes the standard normal random variable.)
Since showing that the variance ofXn tends to infinity is generally not difficult from the recurrences

(1) and (2), the main issue is real–rootedness ofPn(x). This is, of course, not a new idea and the problem
has a very long history and the questions of real–rootednessfor many families of classical polynomials
have been settled long time ago. In particular, in the context the present discussion, the proof that all roots
of polynomials(HJ) are real was a slight modification of the proof for the Eulerian polynomials given
by Frobenius (1910) more than hundred years ago. Nonetheless, the techniques seem to be tailored to
the particular cases at hand. As far as general criteria for the real–rootedness of a family of recursively
defined polynomials, not much seem to have been known until two relatively recent papers Dominici
et al. (2011); Liu and Wang (2007). The first concerns recurrence (2) and requiresfn(x) andgn(x) to
have degrees at most one and two, respectively. The second, when specified to generality of (2) does not
put any restrictions on the degrees offn(x) andgn(x) but requires thatgn(x) < 0 wheneverx ≤ 0. While
many of the real–rootedness results for classical polynomials may obtained from one of these criteria (and
sometimes from both, e. g. Eulerian or Bell polynomials) some are not covered by them. In particular,
neither Dominici et al. (2011) nor Liu and Wang (2007) applies to our first example(ABN). Yet, as it
turns out a modification of methods developed in Dominici et al. (2011) may be used to show that the
polynomialsBn(x) defined by(ABN) do, indeed, have all roots real. We will not prove it in this extended
abstract, instead referring the reader to the full version of this paper.

6 Asymptotic normality of the number of diagonal boxes in sym-
metric tree–like tableaux

In this section we analyze the recurrence(ABN). The polynomials

Bn(x) =

n+1∑

k=1

B(n, k)xk, n ≥ 0,

were introduced in (Aval et al., 2013, Section 3.2) and are the generating polynomials for the number of
diagonal cells in symmetric tree–like tableaux of size2n + 1 (that is to say thatB(n, k) is the number
of symmetric tree–like tableaux of size2n + 1 with k diagonal cells). As was shown in Aval et al.
(2013)(Bn(x)) satisfy the recurrence(ABN) and it follows readily from that that the expected number of
diagonal cells in symmetric tableaux of size2n+1 is 3(n+1)/4 (see (Aval et al., 2013, Proposition 19)).
Continuing that work, we find the expression for the varianceand show that the number of diagonal cells
is asymptotically normal. The precise statement is as follows.
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Theorem 4 Let Dn be the number of diagonal boxes in a random symmetric tree–like tableau of size
2n+ 1. Then, asn → ∞

Dn − 3(n+ 1)/4√
7(n+ 1)/48

d−→ N(0, 1).

Since(Dn) are random variables defined by

P(Dn = k) =
B(n, k)∑
k≥0 B(n, k)

=
B(n, k)

Bn(1)
,

where(Bn(x)) satisfy recurrence(ABN) it follows form our discussion that theorem will be proved once
we show that the variance ofDn grows to infinity withn and that all roots ofBn(x) are real. The precise
statements are given it two propositions below.

Proposition 5 The variance of the number of diagonal cells in a random symmetric tree–like tableaux of
size2n+ 1 is,

var(Dn) =
7(n+ 1)

48
. (6)

Proposition 6 For all n ≥ 0, the polynomialBn(x)

a) has degreen+ 1 with all coefficients non-negative, and

b) all roots real and in the interval[−1, 0].

Because of the space limitation we will include here a proof of Proposition 5 only and we refer the reader
to the full version of the paper for the proof of Proposition 6.

Proof of Proposition 5: First we will calculate the second factorial moment ofDn. Differentiating the
recurrence(ABN) twice and evaluating atx = 1 yields

B′′
n(1) = 2nBn−1(1) + 6(n− 1)B′

n−1(1) + 2(n− 2)B′′
n−1(1).

Furthermore, since
Bn(1) = 2nBn−1(1)

and
var(Dn) = E(Dn)2 − E2Dn + EDn (7)

we obtain

E(Dn)2 =
B

′′
n(1)

Bn(1)
=

2nBn−1(1) + 6(n− 1)B′
n−1(1) + 2(n− 2)B′′

n−1(1)

2nBn−1(1)

= 1 +
3(n− 1)

n
EDn−1 +

n− 2

n
E(Dn−1)2

= 1 +
3(n− 1)

n
EDn−1 +

n− 2

n

(
var(Dn−1) + E2Dn−1 − EDn−1

)

= 1 +
n− 2

n
var(Dn−1) +

n− 2

n
E2Dn−1 +

(
2n− 1

n

)
EDn−1.
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Now, usingEDn = 3(n+ 1)/4 (as computed from(ABN) in (Aval et al., 2013, Proposition 19)) and (7)
we obtain

var(Dn) = 1 +
n− 2

n
var(Dn−1) +

n− 2

n

(
3n

4

)2

+
2n− 1

n

3n

4

−
(
3(n+ 1)

4

)2

+
3(n+ 1)

4

=
n− 2

n
var(Dn−1) +

7

16
.

This recurrence is easily solved (see e. g. (Graham et al., 1994, Section 2.2)) and yields (6) completing
the proof of Proposition 5 and Theorem 4. ✷

Remark 2 The representation ofDn as the sum of independent indicator random variables implies that
a local limit theorem holds too. Specifically, usingEDn = 3(n + 1)/4 and var(Dn) = 7(n+ 1)/48 we
have that

P(Dn = k) =
2
√
6√

7π(n+ 1)

(
exp

(
−24(k − 3(n+ 1)/4)2

7(n+ 1)

)
+ o(1)

)

holds uniformly overk asn → ∞. We refer to (Hitczenko and Janson, 2014, Theorem 2.7 and a discussion
of its proof in Section 5) for more detailed explanation and to (Petrov, 1975, Theorem VII.3) for a general
statement of a local limit theorem.

7 Conclusion
We have considered recurrences for generating polynomialsof sequences of integer valued random vari-
ables and tried to use these recurrences to identify the distributional limits of the associated sequences of
random variables. Some examples lead to Poisson limits, some other to Gaussian limits. In particular, we
established the asymptotic normality for the number of diagonal cells in the random tree–like tableaux by
verifying that the generating polynomials have only real roots and that the variance tends to infinity with
n. However, there seem to be lack of general criteria that would allow one to find the limiting distribution
of the underlying sequence of random variables directly from the recurrences of the form (2) or (1). For
example, the limiting distribution of the random variablesassociated with the recurrence(AH) is neither
Poisson nor normal. In fact, as have been shown in (Acan and Hitczenko, 2016, Section 3) if(Xn) is a
sequence of random variables associated with the recurrence (AH) through (3) then

Xn

2
√
n

d−→ X,

whereX is a random variable with the probability density function2xe−x2

if x ≥ 0 and is 0 otherwise.
However, it is not clear how to see it from the recurrence(AH). Factorial moments satisfy

E(Xn)r =
2n− 1 + r

2n− 1
E(Xn−1)r +

r(r − 1)

2n− 1
E(Xn−1)r−1
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and one can get from there

EXn =
2n

2n− 1
EXn−1 =

(2n)!!

(2n− 1)!!
=

22n(
2n
n

) ∼ √
πn

and
var(Xn) = (4 − π)n+ O(

√
n).

In principle, higher moments can be found too. For example

E(Xn)3 = 6

(√
π(n+ 2)n!

Γ(n+ 1/2)
− 4n− 3

)
∼ 6

√
πn3/2

but the computations become increasingly more complicated. Even the asymptotic behavior of the first
two moments is not immediately clear from the recurrence(AH).

Thus, it seems worthwhile to further study the recurrences like (1) and (2) to obtain a more comprehen-
sive picture of their probabilistic consequences.
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Using Pólya urns to show normal limit laws
for fringe subtrees in m-ary search trees
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We study fringe subtrees of random m-ary search trees, by putting them in the context of generalised Pólya
urns. In particular we show that for the random m-ary search tree with m ≤ 26, the number of fringe subtrees
that are isomorphic to an arbitrary fixed tree T converges to a normal distribution; more generally, we also
prove multivariate normal distribution results for random vectors of such numbers for different fringe subtrees.

Keywords: Random trees; Fringe trees; Normal limit laws; Pólya urns; m-ary search trees

1 Introduction
The main focus of this paper is to consider fringe subtrees of random m-ary search trees; these
random trees are defined in Section 2. Recall that a fringe subtree is a subtree consisting of some
node and all its descendants, see Aldous [1] for a general theory, and note that fringe subtrees
typically are “small” compared to the whole tree.

We will use (generalised) Pólya urns to analyze vectors of the numbers of fringe subtrees of
different types in random m-ary search trees. As a result, we prove multivariate normal asymptotic
distributions for these random variables, for m-ary search trees when m ≤ 26. (It is well known
that asymptotic normality does not hold for m-ary search trees for m > 26, see [2].)

Pólya urns have earlier been used to study the total number of nodes in random m-ary search
trees, see [16, 13, 17]. In that case one only needs to consider an urn with m − 1 different types,
describing the nodes holding i keys, where i ∈ {0, 1, . . . ,m− 2}. Recently, in [10] more advanced
Pólya urns were used to describe protected nodes in random m-ary search trees, where the types
were further divided depending on characteristics of the different fringe subtrees (however, in [10]
only the cases m = 2, 3 were treated in detail).

In [10] a simpler urn was also used to describe the total number of leaves in random m-ary search
trees. In this work we further extend the approach used in [10] for analyzing arbitrary fringe subtrees
of a fixed size in random m-ary search trees. This paper is an extended abstract of [12], where we
also prove similar results for the general class of linear preferential attachment trees, and also extend
the methods used in [10] to analyze the number of protected nodes inm-ary search trees form ≤ 26.

2 m-ary search trees
We recall the definition of m-ary search trees, see e.g. [15] or [6]. An m-ary search tree, where
m ≥ 2, is constructed recursively from a sequence of n keys (ordered numbers); we assume that the
keys are distinct. Each node may contain up to m − 1 keys. We start with a tree containing just an
empty root. The first m − 1 keys are put in the root, and are placed in increasing order from left to

†Partly supported by the Swedish Research Council
‡Partly supported by by the Knut and Alice Wallenberg Foundation
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right; they divide the set of real numbers into m intervals J1, . . . , Jm. When the root is full (after
the first m − 1 keys are added), it gets m children that are initially empty, and each further key is
passed to one of the children depending on which interval it belongs to; a key in Ji is passed to the
i’th child. (The binary search tree, i.e., the case m = 2, is the simplest case.) The procedure repeats
recursively in the subtrees until all keys are added to the tree.

We are primarily interested in the random case when the keys form a uniformly random permuta-
tion of {1, . . . , n}, and we let Tn denote the random m-ary search tree constructed from such keys.
(Only the order of the keys matters, so alternatively, we may assume that the keys are n i.i.d. uniform
random numbers in [0, 1].)

Nodes that contain at least one key are called internal, while empty nodes are called external. We
regard the m-ary search tree as consisting only of the internal nodes; the external nodes are places
for potential additions, and are useful when discussing the tree but are not really part of the tree.
Thus, a leaf is an internal node that has no internal children, but it may have external children.

We say that a node with i ≤ m− 2 keys has i+ 1 gaps, while a full node has no gaps. It is easily
seen that an m-ary search tree with n keys has n + 1 gaps; the gaps correspond to the intervals of
real numbers between the keys (and ±∞), and a new key has the same probability 1/(n + 1) of
being inserted into any of the gaps. Thus, the evolution of the random m-ary search tree may be
described by choosing a gap uniformly at random at each step, and inserting a new key there.

Note that the construction above yields the m-ary search tree as an ordered tree. Hence, a non-
random m-ary search tree is an ordered rooted tree where each node is marked with the number of
keys it contains, with this number being in {0, . . . ,m − 1} and such that nodes with m − 1 keys
have exactly m children, and the other nodes are leaves. There is a natural partial order on the set
of (isomorphism classes of) nonrandom m-ary search trees, such that T � T ′ if T ′ can be obtained
from T by adding keys (including the case T ′ = T ).

In applications where the order of the children of a node does not matter, we can simplify by
ignoring the order and regard the m-ary search tree as an unordered tree. (Then, we can also ignore
the external nodes.) A partial order T � T ′ is defined on the set of (isomorphism classes of)
unordered m-ary search trees in the same way as in the ordered case.

3 Main results
In this section we state the main results on fringe subtrees in random m-ary search trees. These
results are extensions of results that previously have been shown for the specific case of the random
binary search tree with the use of other methods, see e.g., [4, 5, 9].

Remark 3.1 As said in the introduction, m-ary search trees can be regarded as either ordered or
unordered trees. The most natural interpretation is perhaps the one as ordered trees, and it implies
the corresponding result for unordered trees in, e.g., Theorem 3.2. However, in some applications it
is preferable to regard the fringe trees as unordered trees, since this gives fewer types to consider in
the Pólya urns that we use, see e.g., Example 5.1.

The following theorem generalises [9, Theorem 1.22], where the specific case of the binary search
tree was analyzed.

Let Hm :=
∑m
k=1 1/k be the m’th harmonic number.

Theorem 3.2 Assume that 2 ≤ m ≤ 26. Let T 1, . . . , T d be a fixed sequence of nonrandom m-ary
search trees and let Yn =

(
XT 1

n , XT 2

n , . . . , XTd

n

)
, where XT i

n is the (random) number of fringe
subtrees that are isomorphic to T i in the random m-ary search tree Tn with n keys. Let ki be the
number of keys of T i for i ∈ {1, . . . , d}. Let

µn := E Yn =
(

E(XT 1

n ),E(XT 2

n ), . . . ,E(XTd

n )
)
.

Then
n−1/2(Yn − µn)

d−→ N (0,Σ), (3.1)
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where Σ = (σij)
d
i,j=1 is some covariance matrix. Furthermore, in (3.1), the vector µn can be

replaced by the vector µ̂n := nµ̂, with

µ̂ :=
( P(Tk1 = T 1)

(Hm − 1)(k1 + 1)(k1 + 2)
, . . . ,

P(Tkd = T d)

(Hm − 1)(kd + 1)(kd + 2)

)
. (3.2)

Moreover, if the trees T 1, . . . , T d have at least one internal node each, then the covariance matrix
Σ is non-singular.

Remark 3.3 That µn can be replaced by the vector µ̂n means that

E
(
XT i

n

)
=

P(Tki = T i)

(Hm − 1)(ki + 1)(ki + 2)
n+ o

(
n1/2

)
. (3.3)

A weaker version of (3.3) with the error term o(n) follows from the branching process analysis of
fringe subtrees in [11], see the proof in Section 6. The vector µ̂n can also, using (5.2) below, be
calculated from an eigenvector of the intensity matrix of the Pólya urn defined in Section 5, see
Theorem 4.1(i). See also [14].

Also the covariance matrix Σ = (σij)
d
i,j=1 can be calculated explicitly from the intensity matrix

of the Pólya urn, see Theorem 4.1(ii). The results in [14] show also

σij = lim
n→∞

1

n
Cov

(
XT i

n , XT j

n

)
. (3.4)

The following theorem is an important corollary of Theorem 3.2. It also follows from Fill and
Kapur [7, Theorem 5.1]. The special case of the random binary search tree was proved by Devroye
[4], and the covariances for Yn,k in that case were given by Dennert and Grübel [3], see also [9, The-
orem 1.19 and Proposition 1.10]. For binary search trees also the case when the size k is depending
on n has been analyzed; in that case both normal and Poisson limit laws appear, see e.g., Fuchs [8]
and [9].

Theorem 3.4 Assume that 2 ≤ m ≤ 26. Let k be an arbitrary fixed integer and let Yn,k be the
(random) number of fringe subtrees with k keys in the random m-ary search tree Tn with n keys.
Then, as n→∞,

n−1/2
(
Yn,k − EYn,k

) d−→ N (0, σ2
k), (3.5)

where σ2
k is some constant with σ2

k > 0 except when k = 0 and m = 2. Furthermore, we also have

n−1/2
(
Yn,k −

n

(Hm − 1)(k + 1)(k + 2)

)
d−→ N (0, σ2

k). (3.6)

Remark 3.5 The asymptotic mean n
(Hm−1)(k+1)(k+2) in (3.6) easily follows from (3.3). The con-

stant σ2
k can again be calculated explicitly from our proof.

We give one example of Theorem 3.4 in Section 7, where we let m = 3 and k = 4.

4 Generalised Pólya urns
A (generalised) Pólya urn process is defined as follows, see e.g. [13] or [17]. There are balls of q
types (or colours) 1, . . . , q, and for each n a random vector Xn = (Xn,1, . . . , Xn,q), where Xn,i is
the number of balls of type i in the urn at time n. The urn starts with a given vector X0. For each
type i, there is an activity (or weight) ai ∈ R≥0, and a random vector ξi = (ξi1, . . . , ξiq), where
ξij ∈ Z≥0 and ξii ∈ Z≥−1. The urn evolves according to a discrete time Markov process. At each
time n ≥ 1, one ball is drawn at random from the urn, with the probability of any ball proportional
to its activity. Thus, the drawn ball has type i with probability aiXn−1,i∑

j ajXn−1,j
. If the drawn ball has

type i, it is replaced together with ∆X
(i)
n,j balls of type j, j = 1, . . . , q, where the random vector
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∆X (i)
n = (∆X

(i)
n,1, . . . ,∆X

(i)
n,q) has the same distribution as ξi and is independent of everything else

that has happened so far. We allow ∆X
(i)
n,i = −1, which means that the drawn ball is not replaced.

The intensity matrix of the Pólya urn is the q × q matrix

A := (aj E ξji)
q
i,j=1. (4.1)

The intensity matrix A with its eigenvalues and eigenvectors is central for proving limit theorems.
We use the basic assumptions (A1)–(A6) on the Pólya urn stated in [13, p. 180] together with the

following simplifying assumption, cf. [10]:

(A7) At each time n ≥ 1, there exists a ball of a dominating type, as defined in [13].

Using the Perron–Frobenius theorem, it is easy to verify all conditions (A1)–(A6) for the Pólya urns
used in this paper, and (A7) follows because the urn is irreducible if we ignore balls with activity 0,
and there will always be a ball of positive activity, see [13, Lemma 2.1] and the discussion in [12].

Before stating the results that we use, we need some notation. By a vector v we mean a column
vector, and we write v′ for its transpose (a row vector). More generally, we denote the transpose
of a matrix A by A′. By an eigenvector of A we mean a right eigenvector; a left eigenvector is the
same as the transpose of an eigenvector of the matrix A′. If u and v are vectors then u′v is a scalar
while uv′ is a q × q matrix of rank 1. We also use the notation u · v for u′v. We let λ1 denote the
largest real eigenvalue of A. (This exists by our assumptions and the Perron–Frobenius theorem.)
Let a = (a1, . . . , aq) denote the (column) vector of activities, and let u′1 and v1 denote left and right
eigenvectors of A corresponding to the largest eigenvalue λ1, i.e., vectors satisfying

u′1A = λ1u
′
1, Av1 = λ1v1.

We assume that v1 and u1 are normalised so that

a · v1 = a′v1 = v′1a = 1, u1 · v1 = u′1v1 = v′1u1 = 1, (4.2)

see [13, equations (2.2)–(2.3)]. We write v1 = (v11, . . . , v1q).
We define Pλ1 = v1u

′
1, and PI = Iq − Pλ1 , where Iq is the q × q identity matrix. We define the

matrices

Bi := E(ξiξ
′
i) (4.3)

B :=

q∑

i=1

v1iaiBi (4.4)

ΣI :=

∫ ∞

0

PIe
sABesA

′
P ′Ie
−λ1sds, (4.5)

where we recall that etA =
∑∞
j=0 t

jAj/j!. From [13] it follows that when Reλ < λ1/2 for each
eigenvalue λ 6= λ1, the integral ΣI in (4.5) converges.

Furthermore, it is proved in [13] that, under assumptions (A1)–(A7), Xn is asymptotically normal
if Reλ ≤ λ1/2 for each eigenvalue λ 6= λ1. We will apply the following result from [13].

Theorem 4.1 ([13, Theorem 3.22 and Lemma 5.4]) Assume (A1)–(A7) and that we have normalised
as in (4.2). Also assume that Reλ < λ1/2, for each eigenvalue λ 6= λ1.

(i) Then, as n→∞,
n−1/2(Xn − nµ)

d−→ N (0,Σ), (4.6)

with µ = λ1v1 and some covariance matrix Σ.

(ii) Suppose further that, for some c > 0,

a · E(ξi) = c, i = 1, . . . , q. (4.7)

Then the covariance matrix in (4.6) is given by Σ = cΣI , with ΣI as in (4.5).
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Remark 4.2 It is easily seen that (4.7) implies that λ1 = c and u1 = a, see e.g. [13, Lemma 5.4].
There is also an alternative way to evaluate Σ in the case when A is diagonalisable (which is the
case at least for many examples of Theorem 3.2 and Theorem 3.4, e.g., the example in Section 7),
see [12, Theorem 4.1(iii)] or [13, Lemma 5.3].

Remark 4.3 From (4.6) follows immediately a weak law of large numbers:

Xn/n p−→ µ. (4.8)

In fact, the corresponding strong law Xn/n a.s.−→ µ holds as well, see [13, Theorem 3.21]. Further-
more, in all applications in the present paper, all ξij are bounded and thus each Xn,i ≤ Cn for some
deterministic constant; hence (4.8) implies by dominated convergence that also the means converge:

EXn/n→ µ. (4.9)

5 Pólya urns to count fringe subtrees in random m-ary search
trees

In this section we describe the Pólya urns that we will use in the analysis of fringe subtrees to prove
Theorem 3.2 and Theorem 3.4 form-ary search trees. We consider either ordered or unordered trees,
see Remark 3.1.

Let T 1, . . . , T d be a fixed sequence of (nonrandom) m-ary search trees and let as in Theorem 3.2
Yn = (XT 1

n , XT 2

n , . . . , XTd

n ),whereXT i

n is the number of fringe subtrees in Tn that are isomorphic
to T i. We may assume that at least one tree T i contains at least m− 2 keys. (Otherwise we simply
add one such tree to the sequence.)

Assume that we have a given m-ary search tree Tn together with its external nodes. Denote the
fringe subtree of Tn rooted at a node v by Tn(v). We say that a node v is living if Tn(v) � T i for
some i ∈ {1, . . . , d}, i.e., if Tn(v) is isomorphic to some T i or can be grown to become one of them
by adding more keys. Note that this includes all external nodes and all leaves with at most m − 2
keys (by the assumption that at least one tree T i contains at least m− 2 keys). Furthermore, we let
all descendants of a living node be living. All other nodes are dead.

Now erase all edges from dead nodes to their children. This yields a forest of small trees, where
each tree either consists of a single dead node or is living (meaning that all nodes are living) and can
be grown to become one of the T i. We regard these small trees as the balls in our generalised Pólya
urn. Hence, the types in this Pólya urn are all (isomorphism types of) nonrandomm-ary search trees
T such that T � T i for some i ∈ {1, . . . , d}, plus one dead type. We denote the set of living types
by

S :=

d⋃

i=1

{T : T � T i}, (5.1)

and the set of all types by S∗ := S ∪ {∗}, where ∗ is the dead type.
When a key is added to the tree Tn, it is added to a leaf with at most m − 2 keys or an external

node, and thus to one of the living subtrees in the forest just described. If the root of that subtree still
is living after the addition, then that subtree becomes a living subtree of a different type; if the root
becomes dead, then the subtree is further decomposed into one or several dead nodes and several (at
least m) living subtrees. In any case, the transformation does not depend on anything outside the
subtree where the key is added. The random evolution of the forest obtained by decomposing Tn is
thus described by a Pólya urn with the types S∗, where each type has activity equal to its number of
gaps, and certain transition rules that in general are random, since the way a subtree is decomposed
(or perhaps not decomposed) typically depends on where the new key is added.

Note that dead balls have activity 0; hence we can ignore them and consider only the living types
(i.e., the types in S) and we will still have a Pólya urn. The number of dead balls can be recovered
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from the numbers of balls of other types if it is desired, since the total number of keys is non-random
and each dead ball contains m− 1 keys.

Let Xn,T be the number of balls of type T in the Pólya urn, for T ∈ S. The trees T i that we want
to count correspond to different types in the Pólya urn, but they may also appear as subtrees of larger
living trees. Hence, if n(T, T ′) denotes the number of fringe subtrees in T that are isomorphic to
T ′, then XTi

n is the linear combination

XT i

n =
∑

T∈S
n(T, T i)Xn,T . (5.2)

The strategy to prove Theorem 3.2 should now be obvious. We verify that the Pólya urn satisfies
the conditions of Theorem 4.1 (this is done in Section 6); then that theorem yields asymptotic nor-
mality of the vectors (Xn,T )T∈S , and then asymptotic normality of (XT 1

n , . . . , XTd

n ) follows from
(5.2).

Example 5.1 (a Pólya urn to count fringe subtrees with k keys) As an important example, let us
consider the problem of finding the distribution of the number of fringe subtrees with a given number
of keys, as in Theorem 3.4. In this case, the order of children in the tree does not matter so it is easier
to regard the trees as unordered.

Thus, fix k ≥ m− 2 and let T i, i ∈ {1, . . . , d}, be the sequence of all m-ary search trees that can
be obtained with at most k keys. Hence, (5.1) yields S = {T i : 1 ≤ i ≤ d}.

In the decomposition of an m-ary search tree constructed above, a node v is living if and only if
the fringe subtree rooted at v has at most k keys. Hence, the decomposition consists of all maximal
fringe subtrees with at most k keys, plus dead nodes, which we ignore.

The replacement rules in the Pólya urn are easy to describe. The types are the m-ary search trees
with at most k keys. A type T with j keys has j + 1 gaps, and is thus given activity j + 1. Let
T1, . . . , Tj+1 be the trees obtained by adding a key to one of these gaps in T . (Some of these may
be equal.) If we draw a ball of type T and j < k, then the drawn ball is replaced by one ball of a
type randomly chosen among T1, . . . , Tj+1 (with probability 1/(j + 1) each); note that these trees
have j + 1 ≤ k keys and are themselves types in the urns. On the other hand, if j = k, then each of
these trees has k + 1 keys so its root is dead; the root contains m − 1 keys so after removing it we
are left with m subtrees with together k+ 1− (m− 1) ≤ k keys, so these subtrees are all living and
the decomposition stops there. Consequently, when j = k, the drawn ball is replaced by m balls
of the types obtained by choosing one of T1, . . . , Tk+1 uniformly at random and then removing its
root; this leaves m living subtrees and we add balls of the corresponding types.

To find the number of fringe subtrees with k keys, we sum the numbers Xn,T of balls of type T
in the urn, for all types T with exactly k keys. Note that we similarly, using (5.2), may obtain the
number of fringe subtrees with ` keys, for any ` ≤ k, from the same urn. This enables us to obtain
joint convergence in Theorem 3.4 for several different k, with asymptotic covariances that can be
computed from this urn.

Note that for k = m− 2, the urn described here consists of m− 1 types, viz. a single node with
i− 1 keys for i = 1, . . . ,m− 1. This urn has earlier been used in [16, 13, 17] to study the number
of nodes, and the numbers of nodes with different numbers of keys, in an m-ary search tree.

In Section 7 we give an example with m = 3 and k = 4; in that case there are 6 different (living)
types in the Pólya urn.

Remark 5.2 The types described by the Pólya urns above all have activities equal to the total num-
ber of gaps in the type. Since the total number of gaps increases by 1 in each step, we have a ·ξi = 1
for every i, deterministically; in particular, (4.7) holds with c = 1. Hence, λ1 = 1 by Remark 4.2.

6 Proofs
As said in Section 4, it is easy to see that the Pólya urns constructed in Section 5 satisfy (A1)–
(A7), for example with the help of [13, Lemma 2.1]. To apply Theorem 4.1 it remains to show that
Reλ < λ1/2 for each eigenvalue λ 6= λ1. We will find the eigenvalues of A by using induction
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on the size of S, the set of (living) types. For definiteness we consider the version with ordered
unlabelled trees; the version with unordered trees is the same up to minor differences that are left to
the reader.

Note that there is exactly one type that has activity j for every j ∈ {1, . . . ,m − 1}. (These
correspond to the nodes holding j − 1 keys.) These types are the m− 1 smallest in the partial order
�, and they always belong to the set S constructed in Section 5.

Let q := |S| be the number of types in S, and choose a numbering T1, . . . , Tq of these q types
that is compatible with the partial order �. For k ≤ q, let

Sk := {T1, . . . , Tk} . (6.1)

For k ≥ m − 1, we may thus consider the Pólya urn with the k types in Sk constructed as in
Section 5. Note that this corresponds to decomposing Tn into a forest with all components in Sk ∪
{∗}. Furthermore, let X kn := (Xk

n,1, . . . , X
k
n,k), where Xk

n,i is the number of balls of type Ti in the
urn with types Sk at time n and let Ak be the intensity matrix of this Pólya urn. Thus A = Aq .

First let us take a look at the diagonal values ξii. In the result below we assume m ≥ 3, the case
m = 2 is similar and we refer to [12] for the corresponding statement and proof in that case.

Proposition 6.1 Let m ≥ 3 and m − 1 ≤ k ≤ q. Then (Ak)ii = −ai for every type i = 1, . . . , k.
Hence, the trace satisfies

tr(Ak) = −
k∑

i=1

ai. (6.2)

Proof: Observe that if we draw a ball of type i with ki keys, then the ball is replaced either by a
single ball of a type with ki + 1 keys or by several different balls obtained by decomposing a tree
with ki + 1 keys that has a dead root. In the latter case, m − 1 of the keys are in the dead root, so
each living tree in the decomposition has at most ki + 1− (m− 1) = ki −m+ 2 keys.

Hence, if m ≥ 3, then in no case will there be a ball with exactly ki keys among the added balls,
and in particular no ball of type i; consequently, ξii = −1 and (Ak)ii = −ai, see (4.1). 2

Theorem 6.2 Let m ≥ 2. The eigenvalues of A are the m − 1 roots of the polynomial φm(λ) :=∏m−1
i=1 (λ+ i)−m! plus the multiset

{−ai : i = m,m+ 1, . . . , q} . (6.3)

Proof: We prove by induction on k that the theorem holds for Ak (with q replaced by k in (6.3)),
for any k with m− 1 ≤ k ≤ q. The theorem is the case k = q.

First, for the initial case k = m− 1, Ti is a single node with i− 1 keys, i = 1, . . . , k; thus Xm−1
n,i

is the number of nodes with i− 1 keys, i.e., the number of nodes with i gaps. (In particular, Xm−1
n,1

is the number of external nodes.) This Pólya urn with m − 1 types has earlier been analyzed, see
e.g., [13, Example 7.8] and [17, Section 8.1.3]. The (m− 1)× (m− 1) matrix Am−1 has elements
ai,i = −i for i ∈ {1, . . . ,m − 1}, ai,i−1 = i − 1 for i ∈ {2, . . . ,m}, a1,m−1 = m · (m − 1) and
all other elements ai,j = 0, i.e.,

Am−1 =




−1 0 0 . . . 0 m(m− 1)
1 −2 0 . . . 0 0
0 2 −3 . . . 0 0
0 0 3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . m− 2 −(m− 1)



. (6.4)

As is well-known, the matrix Am−1 has characteristic polynomial φm(λ); this shows the theorem
for k = m− 1, since the set (6.3) is empty in this case.



8 C. Holmgren, S. Janson, and M. Šileikis

We proceed to the induction step. Let m − 1 ≤ k < q. By using arguments similar to those that
were used in the proof of [10, Lemma 5.1] we will show that Ak+1 inherits (with multiplicities) the
eigenvalues of Ak. We write ak = (a1, . . . , ak) for the activity vector for the Pólya urn with types
in Sk.

We have Sk+1 = Sk ∪ {Tk+1}. Since the vector X k+1
n obviously determines also the number

of subtrees of each type in the decomposition of Tn into the types in Sk, there is an obvious linear
map T : Rk+1 → Rk that is onto such that X kn = TX k+1

n . Furthermore, starting the urns with an
arbitrary (deterministic) non-zero vector X k+1

0 ∈ Zk+1
≥0 and X k0 = TX k+1

0 , the urn dynamics yield

E(X k+1
1 −X k+1

0 ) =
Ak+1X k+1

0

ak+1 · X k+1
0

, (6.5)

E(X k1 −X k0 ) =
AkX k0
ak · X k0

. (6.6)

Consequently, since also ak+1 · X k+1
0 = ak · X k0 (this is the total activity, i.e., the total number of

gaps),

TAk+1X k+1
0 = (ak+1 · X k+1

0 )T E(X k+1
1 −X k+1

0 ) = (ak · X k0 ) E(X k1 −X k0 ) = AkX k0
= AkTX k+1

0 ,

and thus, since X k+1
0 is arbitrary,

TAk+1 = AkT. (6.7)

Let u′ be a left generalised eigenvector of rank p corresponding to the eigenvalue λ of the matrix
Ak, i.e.,

u′(Ak − λIk)p = 0.

Then, by (6.7),
u′T (Ak+1 − λIk+1)p = u′(Ak − λIk)pT = 0,

and thus u′T = (T ′u)′ is a left generalised eigenvector of Ak+1 for the eigenvalue λ. Since T is
onto, T ′ is injective and thus T ′ is an injective map of the generalised eigenspace (for λ) of Ak
into the generalised eigenspace of Ak+1. This shows that λ is an eigenvalue of Ak+1 with algebraic
multiplicity at least as large as for Ak. Consequently, if Ak has eigenvalues λ1, . . . , λk (including
repetitions, if any), then Ak+1 has eigenvalues λ1, . . . , λk, λk+1 for some complex number λk+1.

Then the result follows by the following observation. The trace of a matrix is equal to the sum of
the eigenvalues; hence,

trAk+1 = λ1 + · · ·+ λk+1 = trAk + λk+1 (6.8)

and thus by (6.2) (when m > 2) or the corresponding result in [12] (when m = 2),

λk+1 = tr(Ak+1)− tr(Ak) = −ak+1. (6.9)

Thus, by induction, Theorem 6.2 holds for every Ak, with m − 1 ≤ k ≤ q, and in particular for
A = Aq . 2

Theorem 6.2 shows that the eigenvalues of A are the roots of φm plus some negative numbers
−ai; hence the condition Reλ < λ1/2 in Theorem 4.1 is satisfied for all eigenvalues of A except
λ1 if the condition is satisfied for the roots of φm (except λ1); it is well-known that this holds if
m ≤ 26, but not for larger m, see [18] and [7].

In the remainder of this section we assume m ≤ 26. Thus Reλ < λ1/2 for every eigenvalue
λ 6= λ1, and Theorem 4.1 applies to the urn defined above.

Proof of Theorem 3.2: By Theorem 4.1(i), (4.6) holds, with µ = λ1v1 = v1.
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By (5.2), Yn =
(
XT 1

n , XT 2

n , . . . , XTd

n

)
= RXn for some (explicit) linear operator R. Hence,

(4.6) implies

n−1/2
(
Yn − nRµ

)
= R

(
n−1/2(Xn − µ)

) d−→ N
(
0, RΣR′

)
. (6.10)

Furthermore, by [14],
EXn = nµ+ o

(
n1/2

)
, (6.11)

and thus
µn = E Yn = R

(
EXn

)
= nRµ+ o

(
n1/2

)
. (6.12)

Hence, (6.10) implies (3.1) (with the covariance matrix RΣR′, where Σ is as in (4.6)).
Moreover, as said in Remark 3.3, it follows from [11], to be precise by combining [11, (5.30),

Theorem 7.10 and Theorem 7.11], that

E Yn = nµ̂+ o(n). (6.13)

By combining (6.12) and (6.13) we see that Rµ = µ̂ (since neither depends on n), and thus (6.12)
yields (3.3).

To see that the covariance matrix RΣR′ is non-singular when each T i has an internal node so
ki > 0, suppose that, on the contrary, u′RΣR′u = 0 for some vector u 6= 0. Then, by [14, Theorem
3.6], u′Yn = u′RXn is deterministic for every n. We argue as for the case k = 2 in the proof
of [9, Lemma 3.6]. We may assume that every ui 6= 0, since we may just ignore each T i with
ui = 0; we may also assume that 1 ≤ k1 ≤ k2 ≤ . . . . Let N be a large integer, with N > kd,
and let T1 be a tree consisting of a single path with N + k1 internal nodes, each of them (except the
root) the right-most child of the preceding one. Let T2 consist of a similar right-most path with N
internal nodes, together with m− 1 copies of T1, which have their roots as the m− 1 first children
of T2. Note that both T1 and T2 have (N + k1)(m − 1) keys, so they are possible realizations
of T(N+k1)(m−1). Moreover, for any tree T i, i ≥ 2, T1 and T2 have the same number of fringe
trees isomorphic to T i, while T1 contains m− 1 more copies of T 1 than T2 does. Hence the linear
combination u′Yn =

∑
i uiX

T i

n may take at least two different values when n = (N +k1)(m−1),
which is a contradiction. Consequently, the covariance matrix cannot be singular when all ki > 0.
2

Proof of Theorem 3.4: This follows from Theorem 3.2; we refer to [12] for details. 2

7 Example of Theorem 3.4 when m = 3 and k = 4

We consider the case when we want to evaluate σ2
4 in Theorem 3.4 in the case of a random ternary

search tree (m = 3).
We use the construction of the Pólya urn in Example 5.1, which gives an urn with the following 6

different (living) types:

1. An empty node.

2. A node with one key.

3. A node with two keys and three external children.

4. A tree with a root holding two keys and one child holding one key, plus two external children.

5. A tree with a root holding two keys and two children holding one key each, plus one external
child.

6. A tree with a root holding two keys and one child holding two keys, plus two external children
of the root and three external childen of the leaf.
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Type 4 Type 5 Type 6

Type 1 Type 2 Type 3

Fig. 1: The different types for counting the number of the fringe subtrees with four keys in a ternary search
tree.

See Figure 1 for an illustration of these types.
The activities of the types are 1, 2, 3, 4, 5, 5. We can easily describe the intensity matrix, first

noting that if we draw a type k for k ≤ 3 it is replaced by one of type k+ 1. If we draw a type 4 it is
replaced by one of type 5 with probability 1/2 and one of type 6 with probability 1/2. If we draw a
type 5 it is replaced by three of type 2 with probability 1/5, and one each of the types 1, 2 and 3 with
probability 4/5; see Figure 2 for an illustration. Finally if we draw a type 6 it is replaced by one each
of the types 1, 2 and 3 with probability 2/5, and two of type 1 and one of type 4 with probability 3/5.

Type 5

Type 5

4/5

1/5

Type 1+Type2+Type3

3.Type 2

Fig. 2: The two possibilities for adding a key to a node in a tree of type 5 of a ternary search tree.

Thus, we get the intensity matrix A in (4.1) as

A =




−1 0 0 0 4 8
1 −2 0 0 7 2
0 2 −3 0 4 2
0 0 3 −4 0 3
0 0 0 2 −5 0
0 0 0 2 0 −5



. (7.1)
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The eigenvalues are, by direct calculation or by Theorem 6.2,

1,−3,−4,−4,−5,−5. (7.2)

(We know already that λ1 = 1, as was noted in Section 6 as a consequence of Remark 4.2.)
Furthermore, by Remark 4.2, the left eigenvector u1 is u1 = a = (1, 2, 3, 4, 5, 5). The right

eigenvector v1, with the normalization (4.2), is v1 = (3/25, 1/10, 2/25, 3/50, 1/50, 1/50). Note
that µ = v1 in Theorem 4.1, since λ1 = 1. Hence, the asymptotic mean in (3.6) for Xn,4 is
(µ5 + µ6)n = n

25 . (However, to get the asymptotic expectation in (3.6) for arbitrary k and m we
could instead use branching processes, see [11].)

To calculate the variance σ2
4 , we calculate the covariance matrix Σ in Theorem 4.1 by Theorem

4.1(ii); thus we first calculate Bi, B and ΣI in in (4.3)–(4.5). Since A is diagonalisable, there is also
an alternative way to calculate Σ, see Remark 4.2; see also [12, Theorem 4.1(iii)] and [13, Lemma
5.3].

To calculate B in (4.4) we need to calculate Bi = E(ξiξ
′
i) in (4.3). We only describe how to

get the matrix B5 since the other cases are analogous. We get B5 = 1
5 · b1b′1 + 4

5 · b2b′2, where
b1 = (0, 3, 0, 0,−1, 0)′ and b2 = (1, 1, 1, 0,−1, 0)′; see Figure 2. Now we can use Mathematica to
evaluate the integral in (4.5), which yields ΣI . Finally, Σ = ΣI by Theorem 4.1 with c = 1. The
result is given in (7.3).

Σ =




29017
259875 − 117371

10395000 − 44311
5197500 − 2143

945000 − 28289
5197500 − 28289

5197500

− 117371
10395000

7379
83160 − 34927

5197500 − 3907
236250 − 166037

20790000 − 166037
20790000

− 44311
5197500 − 34927

5197500
159241
2598750 − 4747

236250 − 84709
10395000 − 84709

10395000

− 2143
945000 − 3907

236250 − 4747
236250

39227
945000 − 13309

1890000 − 13309
1890000

− 28289
5197500 − 166037

20790000 − 84709
10395000 − 13309

1890000
22613

1299375 − 6749
2598750

− 28289
5197500 − 166037

20790000 − 84709
10395000 − 13309

1890000 − 6749
2598750

22613
1299375




. (7.3)

However to calculate σ2
4 , we only need the submatrix

∆ =




σ5,5 σ5,6

σ6,5 σ6,6


 =




22613
1299375 − 6749

2598750

− 6749
2598750

22613
1299375


 . (7.4)

Summing the σi,j in (7.4), which is equivalent to calculating (1, 1)∆(1, 1)′, we find

σ2
4 =

38477

1299375
.

Note that we can use this urn to calculate the asymptotic variance for the total number of leaves
in the random ternary search tree, which was evaluated in [10, Theorem 4.1]. We get

(0, 1, 1, 1, 2, 1)Σ(0, 1, 1, 1, 2, 1)′ =
89

2100
.

We could also use this urn to evaluate

σ2
3 = (0, 0, 0, 1, 0, 0)Σ(0, 0, 0, 1, 0, 0)′ =

39227

945000
, (7.5)

σ2
2 = (0, 0, 1, 0, 0, 1)Σ(0, 0, 1, 0, 0, 1)′ =

131

2100
, (7.6)

σ2
1 = (0, 1, 0, 1, 2, 0)Σ(0, 1, 0, 1, 2, 0)′ =

8

75
. (7.7)
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Average Size of a Suffix Tree for Markov
Sources
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We study a suffix tree built from a sequence generated by a Markovian source. Such sources are more realistic
probabilistic models for text generation, data compression, molecular applications, and so forth. We prove that the
average size of such a suffix tree is asymptotically equivalent to the average size of a trie built overn independent
sequences from the same Markovian source. This equivalenceis only known for memoryless sources. We then derive
a formula for the size of a trie under Markovian model to complete the analysis for suffix trees. We accomplish our
goal by applying some novel techniques of analytic combinatorics on words also known as analytic pattern matching.

Keywords: Suffix tree, Markov sources, digital trees, size, pattern matching, number of occurrences.

1 Introduction
Suffix trees are the most popular data structures on words. They find myriad of applications in computer
science and telecommunications, most notably in algorithms on strings, data compressions (Lempel-
Ziv’77 scheme), and codes. Despite this, little is still known about their typical behaviors for general
probabilistic models (see [5, 1, 3]).

A suffix tree is atrie (a digital tree; see [9]) built from the suffixes of a single string. In Figure 1 we
show the suffix tree constructed for the first four suffixes of the stringX = 0101101110. More precisely,
we actually build a suffix tree on the firstn infinite suffixes of a stringX as shown in Figure 1. We
shall call it simply a suffix tree which we study in this paper.Such a tree consists of internal (branching)
nodes and external node storing the suffixes. Our goal is to analyze the number of internal nodes called
also thesizeof a suffix tree built from a sequenceX generated by a Markov source. We accomplish it
by employing powerful techniques of analytic combinatorics on words known also asanalytic pattern
matching[9].

In recent years there has been a resurgence of interest in algorithmic and combinatorial problems on
words due to a number of novel applications in computer science, telecommunications, and most notably
in molecular biology. A few possible applications are listed below. The reader is referred to our recent
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Fig. 1: Suffix tree built from the first five suffixes ofX = 0101101110, i.e. 0101101110, 101101110, 01101110,
1101110.

book [9] for more details. In computer science and molecularbiology many algorithms depend on a
solution to the following problem: given a wordX and a set of arbitraryb+1 suffixesS1, ... ,Sb+1 of X ,
what is the longest common prefix of these suffixes. In coding theory (e.g., prefix codes) one asks for the
shortest prefix of a suffixSi which is not a prefix of any other suffixesSj , 1 ≤ j ≤ n of a given sequence
X (cf. [14]). In data compression schemes, the following problem is of prime interest: for a given ”data
base” sequence of lengthn, find the longest prefix of the(n+1)st suffixSn+1 which is not a prefix of any
other suffixesSi (1 ≤ i ≤ n) of the data base sequence. And last but not least, in molecular sequences
comparison (e.g., finding homology between DNA sequences),one may search for the longest run of a
given motif, a unique sequence, the longest alignment, and the number of common subwords [9]. These,
and several other problems on words, can be efficiently solved and analyzed by a clever manipulation of
a data structure known as asuffix tree. In literature other names have been also coined for this structure,
and among these we mention here position trees, subword trees, directed acyclic graphs,etc.

The extension of suffix tree analysis to Markov sources is quite significant, especially when the suffix
tree is used for natural languages. Indeed, Markov sources of finite memory approximate very well
realistic texts. For example, the following quote is generated by a memoryless source with the letter
statistic of theDeclaration of Independence:

esdehTe,a; psseCed vcenseusirh vra f uetaiapgnuev n cosb mgffgfL itbahhr nijue n S ueef,ru
s,k smodpztrnno.eeteespfg mtet tr i aur oiyr

which should be compared to the following quote generated bya Markov source of order 3 trained on the
same text:

We hat Government of Governments long that their right of abuses are these rights, it, and or
themselves and are disposed according Men, der.
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In this paper we analyze the average number of internal nodes(size) of a suffix tree built fromn
(infinite) suffixes of a string generated by a Markov source with positive transition probabilities. We
first prove in Theorem 1 that the average size of a suffix tree under Markovian model is asymptotically
equivalent to the size of atrie that is built fromn independentlygenerated strings, each string emitted by
the corresponding Markovian source. To accomplish this, westudy another quantity, namely the number
of occurrences of a given patternw in a string of lengthn generated by a Markovian source. We use its
properties to establish our asymptotic equivalence between suffix trees and tries. Finally, we compare the
average size of suffix trees to trie size under Markovian model (see Theorem 2), which – to the best of our
knowledge – is only partially known [2].

In fact, there is extensive literature on tries [9] and very scarce one on suffix trees. An analysis of the
depth in a Markovian trie has been presented earlier in [12].A rigorous analysis of the depth of suffix tree
was first presented in [5] for memoryless sources, and then extended in [3] to Markov sources. We should
point out that depth grows likeO(log n) which makes the analysis manageable. In fact, height and fillup
level for suffix tree – which are also of logarithmic growth – were analyzed in [15] (see also [1, 14]). But
the average size grows likeO(n) and is harder to study. For memoryless sources it was analyzed in [11]
for tries and in [5] for suffix trees. We also know that some parameters of suffix trees (e.g., profile) cannot
be inferred from tries, see [4]. Markov sources add additional level of complications in the analysis of
suffix trees as well documented in [1]. In fact, the average size of tries under general dynamic sources
was analyzed in [2], however, specifications to Markov sources requires extra care, especially for the so
called rational Markov sources.

The proof of the convergence of the average size of the suffix tree to the average size of the trie borrows
many fundamental elements of the depth analysis in [3], for example the termqn(w) (see next section),
but the extension of the depth analysis to the size analysis require the introduction of a new termdn(w)
which has non trivial properties. The analysis of average size of the trie in a Markovian model has been
made by several author before but surprisingly we could not find a clear statement about the periodic case.
This is the reason why we have to present a sketched proof here.

2 Main Results
We consider a stationary source generating a sequence of symbols drawn from a finite alphabetA.

We first derive a formula for the average size of a suffix tree interms of the number of pattern occur-
rences. Letw be a word overA. We denote byOn(w) the number of occurrences of wordw in a sequence
of lengthn generated by a Markov source with the transition matrixP. We observe [5] that the average
sizesn of a suffix tree built over a sequence of lengthn is

sn =
∑

w∈A∗

P (On(w) ≥ 2). (1)

In fact, (1) holds for any probabilistic source. We compare it to the average sizetn of trie built overn
independent Markov sequences. IfNn(w) is the number of words which begin withw in a trie build with
n words, we have

tn =
∑

w∈A∗
P (Nn(w) ≥ 2). (2)

Let P (w) be the probability of observingw in a Markov sequence,Nn(w) is a Bernoulli(n, P (w)) and



4 Philippe Jacquet, Wojciech Szpankowski

random variabletn can be written as

tn =
∑

w∈A∗

1− (1− P (w))n − nP (w)(1 − P (w))n−1 (3)

We specifically consider a Markovian source. We assume that the source is stationary and ergodic.
We will consider a Markovian process of order 1 with a positive transition matrixP = [P (a|b)]a,b∈A.
Extensions to higher order Markov is possible since a Markovian source of orderr is simply a Markovian
source of order 1 over the alphabetAr. Notice that contrary to previous analysis we don’t assume that
P (a|b) > 0 for all (a, b) ∈ A2, since we allow that some transition may be forbiden and someother
mandatory (while keeping the source ergodic).

Our main result of the paper is formulated next,

Theorem 1 Consider a suffix tree built overn suffixes of a sequence of lengthn generated by a Markov
source with a positive state transition matrixP. There existsε > 0 such that

sn − tn = O(n1−ε) (4)

for largen.

In order to apply Theorem 1 one needs to estimate the average size of a trie under Markovian model.
This seems to be unknown except for some general dynamic sources [2]. In fact, analysis of tries under
Markovian sources is quite challenging (see [6]). But we canoffer the following result for the average
size of a trie under Markovian assumptions. A sketch of the proof is presented in Section 4.

Theorem 2 Consider a trie built overn independent sequences generated by a Markov source with pos-
itive transition probabilities. For(a, b, c) ∈ A3 define

αabc = log

[
P (a|b)P (c|a)

P (c|b)

]
. (5)

Then:
(aperiodic case)If not all {αabc} are commensurable, then

tn =
n

h
+ o(n)

whereh = −∑a,b πaP (b|a) logP (b|a) is the entropy rate of the underlying Markov source withπa,
a ∈ A, denoting the stationary probability.
(periodic case)If all {αabc} are commensurable, then

tn =
n

h
(1 +Q(n)) +O(n1−ε)

whereQ(n) is a periodic function and someε > 0.
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Remark We recall that a set of real numbers are commensurable (also known as ”rationally related”)
when their ratios are rational numbers. We observe that if for all (a, b) ∈ A2, theαabc are commensurable
for onec ∈ A, thenαabc are commensurable for all values ofc.Furthermore in the aperiodic case theo(n)
term can have a growth rate arbitrary close to ordern, depending on source settings as shown in [7] in the
memoryless case.

In the rest of this section, we present a road map of the proof of (4). For this we will make use
of ordinary generating functions. Letw ∈ Ak be a word of lengthk. We also defineN0(z, w) =∑

n>0 P (On(w) = 0)zn andN1(z, w) =
∑

n>0 P (On(w) = 1)zn for z ∈ C. We know from [9] that

N0(z, w) =
Sw(z)

Dw(z)

N1(z, w) =
zkP (w)

D2
w(z)

whereSw(z) is the autocorrelation polynomial of wordw andDw(z) is defined as follows

Dw(z) = Sw(z)(1− z) + zkP (w) (1 + Fw(z)(1− z)) , (6)

The memoryless case considersFw(z) = 0. The addition of a non zeroFw(z) is a significant change
from the analysis in the memoryless case. In fact it capturesthe correlations between characters in the
sequence and leads to non trivial developments. HereFw(z) for w ∈ A∗ −{ε} is a function that depends
on the Markov parameters of the source. It also depends only on the first and last character ofw, say
respectivelya andb for (a, b) ∈ A2 as described below.

LetP be the transition matrix of the Markov source andπ be its stationary vector withπa its coefficient
at symbola ∈ A. The vector1 is the vector with all coefficients equal to 1 andI is the identity matrix.
Assuming thata ∈ A (resp.b) is the first (resp. last) symbol ofw, we have [13, 9]

Fw(z) =
1

πa

[
(P− π ⊗ 1) (I− z(P+ π ⊗ 1))

−1
]
b,a

(7)

where[A]a,b indicates the(a, b) coefficient of the matrixA, and⊗ represents the tensor product. An
alternative way to expressFw(z) is

Fw(z) =
1

πa
〈ea(P− π ⊗ 1) (I− z(P+ π ⊗ 1))

−1
eb〉 (8)

whereec for c ∈ A is the vector with a 1 at the position corresponding to symbolc and all other coeffi-
cients are 0. Here〈x,y〉 represents the scalar product ofx andy.

Let us define two important quantities:

dn(w) = P (On(w) = 0)− (1− P (w))n,

qn(w) = P (On(w) = 1)− nP (w)(1 − P (w))n−1,

and their corresponding generating functions

∆w(z) =
∑

n>0

dn(w)z
n

Qw(z) =
∑

n>0

qn(w)z
n.
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Observe thattn − sn =
∑

w∈A∗ dn(w) + qn(w). Thus we need to estimatedn(w) andqn(w) for all
w ∈ A∗.

We denoteBk the set of words of lengthk that do not overlap with themselves over more thank/2
symbols (see [9, 5, 3] for more precise definition). To be precisew ∈ Ak −Bk if there existj > k/2 and
v ∈ Aj and(u1, u2) ∈ Ak−j such thatw = u1v = vu2. This set plays a fundamental role in the analysis
and it is already proven in [3] that ∑

w∈Ak−Bk

P (w) = O(δk1 )

whereδ1 is the largest coefficient in the Markovian transition matrix P. Since the authors of [3] only con-
sider strictly positive matrixP we haveδ1 < 1. Anyhow in the present paper we allow some coefficients
to be equal to 1 or 0, as long the source is ergodic. Thereforeδ1 may be equal to 1. To cope with this
minor problem we define

p = exp

(
lim sup

k,w∈Ak

logP (w)

k

)

q = exp

(
lim inf

k,w∈Ak,P (w) 6=0

logP (w)

k

)
.

These quantities exist and are smaller than 1 sinceA is a finite alphabet. From now we setδ =
√
p which

replaces the parameterδ1 in the previous statements.
Now we are in the position to present two crucial lemmas, proved in the next section, from which

Theorem 1 follows.

Lemma 1 There existε < 1 such that
∑

w∈A∗ qn(w) = O(nε).

Lemma 2 There exists a sequenceRn(w), for w ∈ A∗ such for all1 > ε > 0 we have

• (i) for w ∈ Bk: dn(w) = O((nP (w))εkδk) +Rn(w);

• (ii) for w ∈ Ak − Bk: dn(w) = O((nP (w))ε) +Rn(w),

whereRn(w) is such that
∑

w∈A∗ Rn(w) = O(1).

Remark: The sequencedn(w) is the main new element which makes the difference between the suffix
tree depth analysis done in [3] and the suffix tree size analysis. The later was done in [9] for the memory-
less case. The sequenceRn(w) reflects the impact of the Markovian source on the analysis inparticular
is a consequence of the introduction of a non zero functionFw(z).

Proof of Theorem 1: We already know via Lemma 1 that there existsε < 1 such that
∑

w∈A∗ qn(w) =

O(nε). Let nowd
(1)
n =

∑
k

∑
w∈Bk

(dn(w) −Rn(w)) and since for allε > 0 observe that

d(1)n =
∑

k

∑

w∈Bk

O(nεP ε(w)kδk) =
∑

k

O(nεk(pεδ)k),
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hence it converges for allε > 0. Also letd(2)n =
∑

k

∑
w∈Ak−Bk

(dn(w) −Rn(w)). Observe that

d(2)n =
∑

k

∑

w∈Ak−Bk

O(nεP ε−1(w)P (w))

=
∑

k

∑

w∈Ak−Bk

O(nεq(ε−1)kP (w))

=
∑

k

O(nε(δqε−1)k),

which converges for allε such thatδqε−1 < 1 (takeε < 1 close enough to 1) and isO(nε). Finally

d
(1)
n + d

(2)
n +

∑
w∈A∗ Rn(w) is alsoO(nε) for ε > 0 since

∑
w∈A∗ Rn(w) is finitely bounded. This

completes the proof of Theorem 1. ✷

3 Proof of Lemmas
In this section we prove Lemma 1 and Lemma 2. In the proof of Lemma 1 we shall use some facts from
[3], however, our proof follows the pattern matching approach developed in [9].

3.1 Proof of Lemma 1

The result is in fact already proven in [3]. Define

Qw(z) = P (w)

(
zk

D2
w(z)

− z

(1 − (1− P (w))z)2

)
. (9)

In [3] one definesQn(1) =
1
n

∑
w∈A∗ qn(w) and it is proven there thatQn(1) = O(n−ε) for someε > 0.

3.2 Proof of Lemma 2

First we have the following simple lemma. The largest eigenvalue ofP is 1, letλ1, λ2, . . . be a sequence
of other eigenvalues in the decreasing order of their modulus.

Lemma 3 Uniformly for allw ∈ A∗ we findFw(z) = O( 1
1−|λ1z|).

Proof: By the spectral representation ofP we know thatP = π⊗1+
∑

i>0 λiui⊗ζi whereui (resp.ζi)
are the corresponding right (resp. left) eigenvectors. In fact we can introduce the matricesD = π⊗1 and
R =

∑
i>0 λiui⊗ζi whose spectral radius is|λ1| and satisfies the orthogonal property:RD = DR = 0.

We have LetM(z) = P − π ⊗ 1) (I− z(P+ π ⊗ 1))
−1 we haveM(z) = R(1 − zR)−1. Since

Rk = O(|λ1|z) R(I − zR)−1 is defined for allz such that|z| < 1
|λ1| and isO( 1

1−|λ1z|), and so is
Fw(z) = [M(z)]a,b.

✷

The next lemma is important.
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Lemma 4 For z such that|λ1z| < 1 we have for all integersk

∑

w∈Ak+1

P (w)Fw(z) = O(λk
1 ). (10)

Proof: The functionFw(z) depends only on the first and last symbol ofw. Considering a pair of symbols
(a, b) ∈ A2 the sum of the probabilities of the words of lengthk + 1 starting witha and ending withb,∑

awb∈Ak+1 P (w), equalsπa〈ebPkea〉. Easy algebra leads to

∑

w∈Ak+1

P (w)Fw(z) =
∑

(a,b)∈A2

〈eaM(z)eb〉〈ebPkea〉 (11)

= trace
(
M(z)Pk

)
. (12)

But sincePk = D+Rk andM(z)D = 0 andRk = O(|λ1|k), we conclude the proof
✷

We now follow a parallel approach to the approach developpedin [3] and in [5, 9].
The generating function∆w(z) =

∑
n≥0 dn(w)z

n becomes

∆w(z) =
P (w)z

1− z

(
1 + (1− z)Fw(z)

Dw(z)
− 1

1− z + P (w)z

)
. (13)

We have

dn(w) =
1

2iπ

∮
∆w(z)

dz

zn+1
,

integrated on any loop encircling the origin in the definition domain ofdw(z). Extending the result in [5],
the authors of [3] show that there existsρ > 1 such that the functionDw(z) has a single root in the disk
of radiusρ. LetAw be such a root. We have via the residue formula

dn(w) = Res(∆w(z), Aw)A
−n
w − (1− P (w))n + dn(w, ρ), (14)

where Res(f(z), A) denotes the residue of functionf(z) on complex numberA and

dn(w, ρ) =
1

2iπ

∮

|z|=ρ

∆w(z)
dz

zn+1
. (15)

We have

Res(∆w(z), Aw) =
P (w) (1 + (1−Aw)Fw(Aw))

(1 −Aw)Cw
(16)

whereCw = D′
w(Aw). But sinceDw(Aw) = 0 we can write

Res(∆w(z), Aw) = −A−k
w Sw(Aw)

Cw
(17)
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We now consider asymptotic expansion ofAw andCw as it is described in [9], in Lemma 8.1.8 and
Theorem 8.2.2. Although the expansions were presented for memoryless case, but for Markov source we
simply replaceSw(1) by Sw(1) + P (w)Fw(1). We find

Aw = 1 + P (w)
Sw(1)

+P (w)2
(

k−Fw(1)
S2
w(1) − S′

w(1)
S3
w(1)

)
+O(P (w)3)

Cw = −Sw(1) + P (w)
(
k − Fw(1)− 2

S′
w(1)

Sw(1)

)

+O(P (w)2)

(18)

Notice that these expansions in the Markov model first appeared in [3].
From now follow the proof of Theorem 8.2.2 in [9]. We define thefunction

δw(x) =
A−k

w Sw(Aw)

Cw
A−x

w − (1− P (w))x. (19)

More precisely we define the function

δ̄w(x) = δw(x) − δw(0)e
−x

which has a Mellin transformδ∗w(s)Γ(s) =
∫∞
0 δ̄w(x)x

s−1dx defined for allℜ(s) ∈ (−1, 0) with

δ∗w(s) =
A−k

w Sw(Aw

Cw

[
(logAw)

−s − 1
]
+ 1− [− log(1− P (w))]

−s
. (20)

Whenw ∈ Bk with the expansion ofAw and sinceSw(1) = 1 + O(δk) andS′
w(1) = O(kδk), we find

that similarly as shown in [9]
δ∗w(s) = O(|s|kδk)P (w)1−s. (21)

Therefore, by the reverse Mellin transform, for all1 > ε > 0:

δ̄(n,w) =
1

2iπ

∫ −ε+i∞

−ε−i∞
δ∗w(s)Γ(s)n

−sds

= O(n1−εP (w)1−εkδk) (22)

Whenw ∈ Ak −Bk we don’t have theSw(1) = 1+O(δk). But it is shown in [3] that there existsα > 0
such that for allw ∈ A∗: Sw(z) > α for all z such that|z| ≤ ρ. Therefore we get

δ̄(n,w) = O(n1−εP (w)1−ε).

We set
Rn(w) = dw(0)e

−n + dn(w, ρ). (23)

We first investigate the quantitydw(0). We need to prove that
∑

w∈A∗ dw(0) converges. For this, noticing
that

Sw(Aw) = Sw(1) +
P (w)

Sw(1)
S′
w(1) +O(P (w)2)
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we obtain

−A−k
w Sw(Aw)

Cw
= 1− P (w)

Sw(1)

(
Fw(1) +

S′
w(1)

Sw(1)

)
+O(P (w)2). (24)

Thus

dw(0) = − P (w)

Sw(1)

(
Fw(1) +

S′
w(1)

Sw(1)

)
+O(P (w))2). (25)

Without the termFw(1) we would have the same expression as in [9] whose sum overw ∈ A∗ converges.
Therefore we need to prove that the sum

∑
w∈A∗

P (w)
Sw(1)Fw(1) converges. It is clear that the sum

∑

k

∑

w∈Ak−Bk

P (w)

Sw(1)
Fw(1)

converges since ∑

w∈Ak−Bk

P (w) = O(δk)

andFw(1) is uniformly bounded. Now we consider the other part

∑

k

∑

w∈Bk

P (w)

Sw(1)
Fw(1).

We know thatSw(1) = 1 +O(δk), therefore

∑

w∈Bk

P (w)

Sw(1)
Fw(1) =

∑

w∈Bk

P (w)Fw(1) +O(δk). (26)

But ∑

w∈Bk

P (w)Fw(1) =
∑

w∈Ak

P (w)Fw(1) + O(δk),

and we know by Lemma 4 that
∑

w∈Ak P (w)Fw(1) = O(λk
1). Thus the sum

∑
k

∑
w∈Ak

P (w)
Sw(1)Fw(1)

converges.
The second and last effort concentrates on the termdn(w, ρ). We proceed as in the proof of Theorem

8.2.2 in [9]. We first havedn(w, ρ) = O(P (w)ρ−n) which isO(nεP (w)ε) without any condition onw.
The issue is now to work onw ∈ Bk. In this case we haveSw(z) = 1 +O(δk) and therefore

dn(w, ρ) =
1

2iπ

∮
P (w)

1− z

(
1

Dw(z)
− 1

1− z + zP (w)

)
dz

zn+1

+
1

2iπ

∮
P (w)

Fw(z)

Dw(z)

dz

zn+1
. (27)

We notice that the function
P (w)

1− z

(
1

Dw(z)
− 1

1− z + zP (w)

)

isO(P (w)δk)+O(P (w)2), therefore the first integral isO(P (w)δkρ−n). The second functionP (w) Fw(z)
Dw(z)

is equal toP (w)Fw(z) +O(P (w)δk). We already know that
∑

w∈Bk
P (w)Fw(z) = O(λk

1), thus the se-
ries converges and the lemma is proven.
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4 Sketch of the Proof of Theorem 2
Let a ∈ A. We denote byta,n the average size of a trie overn independent Markovian sequences, all
starting with the same symbola. Then forn ≥ 2

tn = 1 +
∑

a∈A

n∑

k=0

(
n

k

)
πk
a(1− πa)

n−kta,k, (28)

and similarly forb ∈ A

tn,b = 1 +
∑

a∈A

n∑

k=0

(
n

k

)
P (a|b)k(1− P (a|b))n−kta,k, (29)

where we recallP (a|b) is the element of matrixP. LetT (z) =
∑

n tn
zn

n! e
−z andTa(z) =

∑
n ta,n

zn

n! e
−z

be the familiar Poisson transforms. Using (28) and (29) we find

T (z) = 1− (1 + z)e−z +
∑

a∈A
Ta(πaz), (30)

Tb(z) = 1− (1 + z)e−z +
∑

a∈A
Ta(P (a|b)z). (31)

Using dePoissonization arguments (see [8]) we shall obtaintn = T (n) + O( 1
nT (n)). Thus we need to

studyT (z) for largez in a cone around the real axis. For this we apply the Mellin transform that we
describe next. In fact the convergence between the quantities tn andTn could also be derived by the
application of the Rice method on the Mellin transform, since the later as an explicit form.

Let nowT(z) be the vector consisting ofTa(z) for everya ∈ A. It is not hard to see that its Mellin
transform

T∗(s) =
∫ ∞

0

T(z)zs−1dz

is defined for−1 > ℜ(s) > −2 (sinceT(z) = O(z2) whenz → 0), and

T∗(s) = −(1 + s)Γ(s)1+P(s)T∗(s) (32)

whereP(s) is the matrix consisting ofP (a|b)−s if P (a|b) > 0 and 0 otherwise. This identity leads to

T∗(s) = −(1 + s)Γ(s)(I−P(s))−11

whereI is the identity matrix. Similarly the Mellin transformT ∗(s) of T (z) satisfies

T ∗(s) = −(1 + s)Γ(s) + 〈π(s),T∗(s)〉. (33)

whereπ(s) is the vector composed ofπ−s
a .

The inverse Mellin transform ofT ∗(s) is defined as

T (n) =
1

2iπ

∫ c+i∞

c−i∞
T ∗(s)n−sds, −1 > c > −2. (34)
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In order to find asymptotic behavior ofT (z) asz → ∞ we need to study the poles ofT ∗(s) for −2 <
ℜ(s). As discussed in [6, 9] this is equivalent to analyzing the poles ofT∗(s). Since(1 + s)Γ(s) has no
pole on−2 < ℜ(s) < 0 we must consider poles of(I − P(s))−1. In other words (see [6, 9]) we need
to find s for which the eigenvalue of largest modulusλ(s) of P(s) is equal to 1. It is easy to see that
λ(−1) = 1 sinceP(−1) = P. The residue ats = −1 of n−s(I − P(s))−11 is equal ton

h1 whereh is
the entropy rate of the Markovian source.

As explained in [6] in the periodic case there are multiple values ofs such thatλ(s) = 1 andℜ(s) =
−1. Since these poles are regularly spaced on the axisℜ(s) = 0, they contribute to the oscillating terms
(functionQ in Theorem 2) in the asymptotic expansion oftn. Furthermore, the location of zeros ofλ(s) =
1 in the periodic case tells us that there existsε such that(I−P(s)) has no pole for−1 < ℜ(s) < −1+ ε
leading to the error termO(n1−ε).

In the aperiodic case there is only one pole on the lineℜ(s) = −1, thus the oscillating term disappears.
However, zeros ofλ(s) = 1 can lie arbitrarily close to the lineℜ(s) = 1, therefore the error term is just
o(n).
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Bootstrap percolation on G(n,p) revisited
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Bootstrap percolation on a graph with infection thresholdr ∈ N is an infection process, which starts from a set
of initially infected vertices and in each step every vertexwith at leastr infected neighbours becomes infected.
We consider bootstrap percolation on the binomial random graphG(n, p), which was investigated among others by
Janson, Łuczak, Turova and Valier (2012). We improve their results by strengthening the probability bounds for the
number of infected vertices at the end of the process.

Keywords: Random graph, Bootstrap percolation, Martingale

1 Introduction
Bootstrap percolation on a graph with infection thresholdr ∈ N is a deterministic infection process which
evolves in rounds. In each round every vertex has exactly oneof two possible states: it is either infected
or uninfected. We denote the set of initially infected vertices byA(0). In each round of the process
every uninfected vertexv becomes infected if it has at leastr infected neighbours, otherwise it remains
uninfected. Once a vertex has become infected, it remains infected forever. The final infected set is
denoted byAf .

Bootstrap percolation was introduced by Chalupa, Leath, and Reich [CLR79] in the context of mag-
netic disordered systems. Since then bootstrap percolation processes (and extensions) have been used to
describe several complex phenomena: from neuronal activity [Ami10, ELP+] to the dynamics of the Ising
model at zero temperature [FSS02].

In the context of social networks, bootstrap percolation provides a prototype model for the spread of
ideas. In this setting infected vertices represent individuals who have already adopted a new belief and a
person adopts a new belief if at leastr of his acquaintances have already adopted it.

On thed-dimensional grid[n]d bootstrap percolation has been studied by Balogh, Bollobás, Duminil-
Copin, and Morris [BBDCM12], when the initial infected set contains every vertex independently with
probabilityp. For the size of the final infection set they showed the existence of a sharp threshold. More
precisely, they established the threshold probabilitypc, such that ifp ≤ (1−ε)pc, then the probability that
every vertex in[n]d becomes infected tends to 0, asn → ∞, while if p ≥ (1 + ε)pc, then the probability
that every vertex in[n]d becomes infected tends to one, asn → ∞.

†Supported by Austrian Science Fund (FWF): P26826, W1230.
‡Supported by Austrian Science Fund (FWF): P26826.
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Bootstrap percolation has also been studied for several random graph models. For instance Amini and
Fountoulakis [AF14] considered the Chung-Lu model [CL02] where the vertex weights follow a power
law degree distribution and the presence of an edge{u, v} is proportional to the product of the weights of
u andv. Taking into account that in this model a linear fraction of the vertices have degree less thanr and
thus at most a linear fraction of the vertices can become infected, the authors proved the size of the final
infected setAf exhibits a phase transition.

Janson, Łuczak, Turova, and Vallier [JŁTV12] analysed bootstrap percolation on the binomial random
graphG(n, p), a graph with vertex set[n] := {1, 2, . . . , n} where every edge appears independently with
probabilityp = p(n), and the set of initially infected verticesA(0) is chosen uniformly at random from
the vertex sets of sizea. For r ≥ 2 andp satisfying bothp = ω(n−1) andp = o(n−1/r), they showed,
among other results, that with probability tending to one asn → ∞ either only a few additional vertices
are infected or almost every vertex becomes infected. In addition they determined, depending on the
number of initially infected vertices, the probability of both of these events up to an additive term tending
to zero asn → ∞.

The main contributions of this paper are threefold. First westrengthen this result by showing exponen-
tial tail bounds. Second we introduce a martingale in order to determine the number of infected vertices
during the early stages of the process. Finally in the supercritical regime we show that the subgraph
spanned by the vertices withr− 1 infected neighbours grows large enough to contain a giant component.
The infection of just one vertex in this giant component leads to every vertex in the component becoming
infected and we show that this in fact happens.

Main Results. Throughout the paper we assume thatr ≥ 2 and that bothp = ω(n−1) andp = o(n−1/r)
hold. Set

t0 :=

(
r!

npr

)1/(r−1)

.

Let π̂(t) = P[Bin(t, p) ≥ r] and define

ac := −min
t≤t0

nπ̂(t)− t

1− π̂(t)
.

In addition denote bytc the smallest valuet where this minimum is reached. Similarly to [JŁTV12] it can
be shown that

tc = (1 + o(1))((r − 1)!/(npr))1/(r−1) and ac = (1 + o(1))(1− 1/r)tc.

Theorem 1 Let ω0 be any function satisfying the conditionsω0 = ω(
√
ac) and ω0 ≤ ac − r.

If |A(0)| = ac − ω0, then with probability at least

1− exp

(
− ω2

0

10t0

)

we have|Af | < tc.

Theorem 2 Let ω0 be any function satisfying the conditionsω0 = ω(
√
ac) and ω0 ≤ t0 − ac.

If |A(0)| = ac + ω0, then with probability at least

1− exp

(
− ω2

0

10t0

)
− exp

(
−ac + ω0

4

)
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we have|Af | = (1 + o(1))n.

Proof Technique. When the number of infected vertices is small (at mostt0), we introduce a martingale
to show that the number of infected vertices is concentratedaround its expectation withexponentially
high probability. The martingale resembles the one introduced in [JŁTV12], however the maximal one
step difference in our martingale is significantly smaller and thus provides a tighter concentration bound
(Lemma 7).

In the subcritical regime, the expected number of infected vertices is less thantc < t0 and therefore the
martingale argument alone implies the result (Section 4).

In the supercritical regime, this is not enough as the numberof infected vertices will reacht0 with
exponentially high probability. In fact, at leastt0 + ac vertices become infected (Lemma 8). Now take a
subset of the infected vertices with sizet0 and consider the vertices with at leastr − 1 neighbours in this
set. The size of this set is roughlyrp−1 (Lemma 9) and the subgraph spanned by these vertices is also
a binomial random graph,G(rp−1, p). Since the seminal work of Erdős and Rényi [ER60], it is known
that this graph has with probability1 + o(1) a linear sized giant component. More recently, Bollobás
and Riordan [BR] showed that this happens with exponentially high probability (Theorem 5). Should any
vertex in the giant component have an additional infected neighbour, then every vertex in the giant will
become infected eventually. We show that this happens with exponentially high probability.

Thus we haveΩ(p−1) infected vertices. After this, the process ends in two stepsand this can be shown
by two simple applications of the Chernoff bound (Lemmas 10 and 11).

2 Preliminaries
We will use the following form of the Chernoff bound.

Theorem 3 [CL06] Let X ∼ Bin(n, p), i.e. a binomial random variable with parametersn andp. Then
for anyλ > 0

P[X − E(X) ≤ −λ] ≤ exp

(
− λ2

2E(X)

)
and P[X − E(X) ≥ λ] ≤ exp

(
− λ2

2(E(X) + λ/3)

)
.

Let M0,M1, . . . ,Mi be a sequence of random variables and denote byF(i) the filter generated by
M0, . . . ,Mi. We sayM0, . . . ,Mk forms a martingale if for every0 ≤ i ≤ k we haveE(|Mi|) < ∞ and
for every1 ≤ i ≤ k

E[Mi|F(i − 1)] = Mi−1.

The following concentration bound on martingales due to Chung and Lu [CL06] will prove to be vital.

Theorem 4 [CL06] For m0 ∈ R letM0 = m0,M1, . . . ,Mk be a martingale whose conditional variance
and differences satisfy the following: for each1 ≤ i ≤ k,

• Var[Mi|Mi−1, . . . ,M0] ≤ σ2
i ;

• |Mi −Mi−1| ≤ m for some positivem.

Then for anyλ > 0, we have

P[Mk −M0 ≥ λ] ≤ exp


− λ2

2
(∑k

i=1 σ
2
i +mλ/3

)


 .
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We will also need the following Theorem on the appearance of agiant component inG(n, p) by Bol-
lobás and Riordan [BR].

Theorem 5 [BR] Let c > 1 be a constant independent ofn and letε > 0 independent ofn. Then with
probability 1 − exp(−Ω(n)) the binomial random graphG(n, c/n) has a component of size at least
(1− ε)ρn, whereρ ∈ (0, 1) is the unique positive solution of1− ρ = exp(−cρ).

3 Setup: Martingale
In order to analyse the bootstrap percolation onG(n, p) we will use the following reformulation due to
Scalia-Tomba [ST85] as in [JŁTV12]. Roughly speaking they examine the infected vertices one by one
and determine the vertices which have at leastr neighbours in the set of previously examined vertices. The
set of examined vertices until stept is denoted byZ(t) and the set of infected vertices byA(t). Formally
letA(0) be the set of initially infected vertices of sizea and without the loss of generality we may assume
thatA(0) = {1, ..., a}. SetZ(0) = ∅. For each stept ∈ N, if A(t− 1)\Z(t− 1) 6= ∅, then letUt = {ut},
whereut is a vertex inA(t − 1)\Z(t − 1) selected according to an arbitrary rule, otherwise setUt = ∅.
SetZ(t) := Z(t − 1) ∪ Ut. Now for t ≥ 0 and eachi ∈ [n − a] := {1, . . . , n − a} let X(t, i) be the
indicator random variable for the event that the vertexa+ i has at leastr neighbours inZ(t) and set

A(t) := A(0) ∪ {a+ i : X(t, i) = 1, i ∈ [n− a]}.

The process stops whent = n.
ClearlyZ(t) ⊂ A(t). Let T denote the smallest value oft such thatA(t) = Z(t). Note thatt ≤ T

implies that|Z(t)| = t and thusT is also the smallestt such that|A(t)| = t. Since|A(t)| ≤ n for every
natural number0 ≤ t ≤ n we have thatT ≤ n. Note further thatA(T ) = Af .

In order to have a better control on the maximal number of vertices which can become infected in a
single step, we refine the process by dividing every step intorounds, in such a way that in each round
exactly one vertexv ∈ [n]\A(0) is examined (regardless whether it was examined in earlier rounds or
not). Thus each step1 ≤ t ≤ n consists ofn − a rounds and roundi of stept is denoted by(t, i). We
denote the step following(t, i) by (t, i) + 1 and the preceding step by(t, i)− 1. Also the ordering of the
rounds is given by the lexicographical order i.e.(τ, ι) < (t, i) if either τ < t or τ = t andι < i.

In roundi of stept we examine if vertexa+ i has at leastr neighbours inZ(t) and if it has we add it
to the set of infected vertices. Formally for(t, i) ≥ (1, 1)

A((t, i) + 1) := A(0) ∪ {a+ j : j ≤ i,X(t, j) = 1} ∪ {a+ j : j > i,X(t− 1, j) = 1}.

Clearly we haveA(t) = A(t, n− a). For consistency defineA(0, n− a) := A(0).
Define a functionπ : N → [0, 1] by

π(t) :=

{
P[Bin(t, p) ≥ r], for t ≤ T
P[Bin(T, p) ≥ r], for t > T

and note thatπ(t) is a random variable.
For (t, i) ≥ (0, n− a), define the random variable

M(t, i) :=

i∑

j=1

X(t, j)− π(t)

1− π(t)
+

n−a∑

j=i+1

X(t− 1, j)− π(t− 1)

1− π(t− 1)
. (1)
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We will denote byF(t, i) the filter generated byM(0, n− a), . . . ,M(t, i).

Lemma 6 The sequence of random variablesM(0, n− a), . . . ,M(n, n− a) forms a martingale.

Proof: Fix 1 ≤ t ≤ n and1 ≤ i ≤ n − a. For everyτ < t, we can express from (1) the number of
infected vertices in stepτ :

|A(τ)| = a+

n−a∑

ι=1

X(τ, ι)
(1)
= a+M(τ, n− a)(1 − π(τ)) + (n− a)π(τ). (2)

Recall thatπ̂(t) = P[Bin(t, p) ≥ r]. We will denote byT ′ the smallest value oft which satisfies
a+M(t, n−a)(1− π̂(t))+ (n−a)π̂(t) = t. Becauseπ(t) = π̂(t) whent ≤ T , we haveT = T ′. Given
the filterF((t, i)− 1) one can establish ifa+M(τ, n−a)(1− π̂(τ))+ (n−a)π̂(τ) = τ for someτ < t.
Therefore, it can be determined whether the eventT ′ < t or t ≥ T ′ holds. In particular, ifT ′ < t, then
the exact value ofT ′ can be determined.

For eachτ ≤ t, sinceπ(τ) depends only on the value ofT = T ′, we can also determine the value of
π(τ), i.e.E[π(τ)|F((t, i) − 1)] = π(τ) for τ ≤ t.

Note thatX(0, i) = 0 for every1 ≤ i ≤ n− a and that for every(1, 1) ≤ (τ, ι) < (t, i) we can easily
compute from (1)

M(τ, ι)−M((τ, ι) − 1) =
X(τ, ι)− π(τ)

1− π(τ)
− X(τ − 1, ι)− π(τ − 1)

1− π(τ − 1)
. (3)

Therefore, based on the filterF((t, i)−1), the value ofX(τ, ι) can be determined for every(τ, ι) < (t, i).
Next we shall show that

E
[
X(t, i)− π(t)

1− π(t)

∣∣∣∣F((t, i)− 1)

]
=

E[X(t, i)|F((t, i)− 1)]− π(t)

1− π(t)
=

X(t− 1, i)− π(t− 1)

1− π(t− 1)
. (4)

To this end, observe that ifX(t− 1, i) = 1, then we haveX(t, i) = 1 with probability 1 and in this case
both sides of equation (4) equal 1.

Now assume thatX(t− 1, i) = 0. Whent > T , we haveX(t, i) = X(t, i − 1) = 0 with probability
1 and by the definition ofπ(t) we haveπ(t) = π(t − 1) = π̂(T ). Evaluating both sides of equation (4)
gives us−π̂(T )/(1− π̂(T )). Whent ≤ T andX((t, i)− 1) = 0, we haveπ(t) = π̂(t) and thus

P [X(t, i) = 0|F((t, i)− 1)] =
1− π̂(t)

1− π̂(t− 1)
= 1− π̂(t)− π̂(t− 1)

1− π̂(t− 1)
.

Therefore in this case

E
[
X(t, i)− π(t)

1− π(t)

∣∣∣∣F((t, i)− 1)

]
= − π̂(t)

1− π̂(t)

1− π̂(t)

1− π̂(t− 1)
+ 1 · π̂(t)− π̂(t− 1)

1− π̂(t− 1)
= − π̂(t− 1)

1− π̂(t− 1)

and thus (4) holds. According to (3) we have that

E[M(t, i)−M((t, i)− 1)|F((t, i)− 1)]

= E
[
X(t, i)− π(t)

1− π(t)

∣∣∣∣F((t, i)− 1)

]
− X(t− 1)− π(t− 1)

1− π(t− 1)

(4)
= 0.

✷
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Lemma 7 Let t ∈ {0, . . . , n} andλ ∈ R+ be given.

P


 ∧

(0,n−a)≤(τ,i)≤(t,n−a)

M(τ, i) > −λ


 ≥ 1− exp

(
− λ2(1− π̂(t))3

2(nπ̂(t) + λ/3)

)

and

P


 ∧

(0,n−a)≤(τ,i)≤(t,n−a)

M(τ, i) < λ


 ≥ 1− exp

(
− λ2(1− π̂(t))3

2(nπ̂(t) + λ/3)

)
.

Proof: We will only show the bound on the probability thatM(τ, i) < λ for each(τ, i) ≤ (t, n− a). The
other case follows simply from the fact that if the random variablesM(0, n− a), . . . ,M(t, n− a) form
a martingale, then−M(0, n − a), . . . ,−M(t, n − a) is also a martingale and they both have the same
conditional variance and maximal difference. In order to show that the bounds hold for each round, we
introduce the following martingale:

M̂(τ, i) =

{
M(τ, i) if M̂((τ, i)− 1) < λ

M̂((τ, i)− 1) otherwise.

Similarly toM(t, i) we denote the filter generated bŷM(0, n− a), . . . , M̂(t, i) with F̂(t, i). Note that if
there exists a round(τ, i) such thatM(τ, i) ≥ λ, then we haveM̂(τ ′, i′) ≥ λ for every(τ ′, i′) ≥ (τ, i).
ThereforeM̂(t, n− a) < λ implies that for every(τ, i) ≤ (t, n− a) we haveM(τ, i) < λ.

By (3) and sinceπ(τ) ≤ π̂(τ) with probability 1, we have

|M̂(τ, ι) − M̂((τ, ι) − 1)| ≤ max

{
π̂(τ)

1− π̂(τ)
− π̂(τ − 1)

1− π̂(τ − 1)
, 1 +

π̂(τ − 1)

1− π̂(τ − 1)

}
=

1

1− π̂(τ − 1)
.

Note thatM(0, n− a) = 0. SinceVar[M̂(τ, i)|F̂((τ, i)− 1)] = 0 if M̂((τ, ι) − 1) ≥ λ and

Var[M̂(τ, i)|F̂((τ, i)− 1)] = Var[M(τ, i)|F((τ, i)− 1)]

otherwise, Theorem 4 implies that

P[M̂(t, n− a) ≥ λ] ≤ exp

(
− λ2

2(S + λ/(3(1− π̂(τ − 1))))

)

where

S ≤
t∑

τ=1

n−a∑

i=1

Var[M(τ, i)|F((τ, i)− 1)]. (5)

Note that

Var[M(τ, i)|F((τ, i)− 1)] = Var

[
X(τ, i)

1− π(t)

∣∣∣∣F((τ, i)− 1)

]

≤ 1

(1− π̂(t))2
Var[X(τ, i)|F((τ, i)− 1)]. (6)
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Recall thatX(τ − 1, i) = 1 impliesX(τ, i) = 1 and thatτ > T impliesX(τ, i) = X(τ − 1, i). In
both of these cases we have

Var[X(τ, i)|F((τ, i)− 1)] = 0
π̂(t)≥π̂(t−1)

≤ π̂(t)− π̂(t− 1)

1− π̂(t)
. (7)

Now assumeτ ≤ T andX(τ − 1, i) = 0. SinceX(t, i) is an indicator random variable, we have

Var[X(τ, i)|F((τ, i)− 1)] ≤ E[X(τ, i)|F((τ, i)− 1)] =
π̂(τ) − π̂(τ − 1)

1− π̂(τ − 1)
≤ π̂(τ) − π̂(τ − 1)

1− π̂(τ)
. (8)

Putting (5)-(8) together, we obtain

S ≤
t∑

τ=1

n−a∑

i=1

π̂(τ)− π̂(τ − 1)

(1 − π̂(τ))3
≤

t∑

τ=1

n(π̂(τ) − π̂(τ − 1))

(1− π̂(t))3
≤ nπ̂(t)

(1 − π̂(t))3
.

✷

The previous lemma allows us to analyse the process in the first t0 steps. This will be used in the proofs
of Theorems 1 and 2.

4 Proof of Theorem 1
We want to investigate the number of infected vertices at time tc. By the definition ofac andtc, we have

ac = −min
t≤t0

nπ̂(t)− t

1− π̂(t)
=

tc − nπ̂(tc)

1− π̂(tc)
. (9)

By the definition ofM(t, i), we have

|A(tc)| (2)
= a+ (1− π(tc))M(tc, n− a) + (n− a)π(tc).

Sinceπ(t) ≤ π̂(t) anda = ac − ω0, we obtain

|A(tc)| ≤ a+M(tc, n− a) + (n− a)π̂(tc)

= (ac − ω0)(1 − π̂(tc)) + nπ̂(tc) +M(tc, n− a)

(9)
= tc − nπ̂(tc) + nπ̂(tc)− ω0(1− π̂(tc)) +M(tc, n− a)

π̂(tc)≤π̂(t0)

≤ tc − ω0(1 − π̂(t0)) +M(tc, n− a). (10)

Usingnp = ω(1) andt0 = (r!/(npr))1/(r−1), we have

t0p = O

((
1

npr

)1/(r−1)

p

)
= O

((
1

np

)1/(r−1)
)

= o(1). (11)
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Furthermore,

π̂(t0) = P[Bin(t0, p) ≥ r] =

t0∑

j=r

(
t0
j

)
pj(1− p)t0−j (11)

= (1 + o(1))
tr0p

r

r!

= (1 + o(1))
tr−1
0 pr

r!
t0 = (1 + o(1))

t0
n

np=ω(1)
= o (t0p)

(11)
= o(1). (12)

Applying Lemma 7 withλ = ω0/2, we have that with probability at least

1− exp

(
− ω2

0

8((1 + o(1))nπ̂(tc) + ω0/6)

)
≥ 1− exp

(
− ω2

0

10t0

)

M(tc, n− a) < ω0/2. This together with (10) implies

|A(tc)| ≤ tc − (1 + o(1))ω0 + ω0/2 < tc.

ThereforeT < tc and thus|Af | = T < tc.

5 Proof of Theorem 2
Before proving Theorem 2 we begin with an observation onA(t0), the set of infected vertices after the
first t0 steps.

Lemma 8 Let ω0 be any function satisfying the conditionsω0 = ω(
√
ac) and ω0 ≤ t0 − ac.

If |A(0)| = ac + ω0, then with probability at least

1− exp

(
− ω2

0

9.5t0

)

we haveT > t0 and|A(t0)| ≥ t0 + (1 + o(1))ac + ω0/2.

Proof: By the definition ofac, for everyt ≤ t0 we have

ac ≥
t− nπ̂(t)

1− π̂(t)
. (13)

Assume thatM(t, i) > −ω0/2 for everyt ≤ t0 and1 ≤ i ≤ n−a. First we will show by induction that
if M(t, i) satisfies this lower bound, thenT > t0. ClearlyT > 0. Now assume that for somet ≤ t0 − 1

we have thatT > t− 1. Thereforeπ(t) = π̂(t). Fort ≤ t0 we havêπ(t) ≤ π̂(t0)
(12)
= o(1) and thus

|A(t)| (2)
= a+ (1 − π(t))M(t, n− a) + (n− a)π(t)

M(t,i)>−ω0/2

≥ (1− π̂(t))(ac + ω0) + nπ̂(t)− (1 + o(1))ω0/2

(13)
≥ t+ (1 + o(1))ω0/2.



Bootstrap percolation on G(n,p) revisited 9

Therefore|A(t)| > t which together withT > t− 1 impliesT > t.
Also note that

|A(t0)| (2)
= a+M(t0, n− a)(1 − π(t0)) + (n− a)π̂(t0)

(12)
≥ (1 + o(1))ac + (1 + o(1))t0 + (1 + o(1))ω0/2. (14)

Let t1 := ((r − 1)!/npr)1/(r−1). Thent1 ≤ t0 and so

ac ≥
t1 − nπ̂(t1)

1− π̂(t1)
. (15)

Also

π̂(t1) = P[Bin[t1, p) ≥ r] =

t0∑

j=r

(
t0
j

)
pj(1 − p)t1−j (11)

= (1 + o(1))
tr1p

r

r!

= (1 + o(1))
tr−1
1 pr

r!
t1 = (1 + o(1))

t1
rn

. (16)

From this and (15)

ac ≥
t1 − (1 + o(1))t1/r

1− π̂(t1)
= (1 + o(1))

(
1− 1

r

)
t1 = Ω(t0), (17)

which together with (14) andω0 ≤ t0 implies

|A(t0)| = t0 + (1 + o(1))ac + ω0/2.

Lemma 7 withλ = ω0/2 implies the result.
✷

We will need to establish the size of the giant component in the set of vertices which have at leastr− 1
neighbours inZ(t0). For this we first need to determine the number of vertices which have at leastr − 1
neighbours inZ(t0).

Lemma 9 Let A ⊂ [n] with |A| = o(n). Conditional onT ≥ t0, A(t0) andZ(t0), with probability
1− exp(−Ω(p−1)) we have that the number of vertices in[n]\(Z(t0)∪A) with at leastr− 1 neighbours
in Z(t0) is at least3rp−1/4.

Proof: Let Xv be the indicator random variable that a vertexv ∈ [n]\(Z(t0) ∪ A) has at leastr − 1
neighbours inZ(t0) and setX :=

∑
v∈[n]\(Z(t0)∪A)Xv. Clearly

P[Xv = 1|v ∈ A(t0)] = 1.

Note that ifXv = 1 andv 6∈ A(t0), thenv has exactlyr − 1 neighbours inZ(t0) and thus

P[Xv = 1|v 6∈ A(t0)] ≥ P[Xv = 1, v 6∈ A(t0)] =

(
t0

r − 1

)
pr−1(1− p)t0−r+1

(11)
= (1 + o(1))

tr−1
0

(r − 1)!
pr−1 = (1 + o(1))

r

np
.
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Since the set of random variables{Xv|v ∈ [n]\(Z(t0)∪A)} are mutually independent,X stochastically
dominates the binomial random variablêX = Bin(n − t0 − |A|, (1 + o(1))r/np). Becauset0 = o(n)
and|A| = o(n), we have

E[X̂ ] = (1 + o(1))rp−1

and Theorem 3 implies

P[X − E(X̂) ≤ −(1 + o(1))rp−1/4] ≤ exp

(
−(1 + o(1))

r2p−2

32rp−1

)
≤ exp

(
−p−1

32

)
.

✷

In the following two lemmas we look at the number of vertices with at leastr neighbours in a set of
orderp−1 and set of ordern. Estimating the probability that a vertex has at leastr neighbours in such sets
differs significantly and are discussed separately.

Lemma 10 LetU,W ⊂ [n] in G(n, p) satisfy|U | = p−1/2 and |W | = o(n). With probability at least
1 − exp(−Ω(n)) the number of vertices in[n]\(U ∪ W ) with at leastr neighbours inU is at least
n/(2rr!

√
e).

Proof: Let Yv be the indicator random variable that a vertexv ∈ [n]\(U ∪W ) has at leastr neighbours
in U and setY =

∑
v∈[n]\(U∪W ) Yv. We have that

P[Yv = 1] = 1−
r−1∑

j=0

(
p−1/2

j

)
pj(1− p)p

−1/2−j

= 1− (1− p)p
−1/2

r−1∑

j=0

(
p−1/2

j

)(
p

1− p

)j

= 1− (1 + o(1))e−1/2
r−1∑

j=0

(2p)−j

j!
pj

= 1− (1 + o(1))e−1/2
r−1∑

j=0

1

j!2j
.

Clearly 1 ≥ P[Yv = 1] > 1/(2rr!
√
e). Set η := P[Yv = 1] − 1/(2rr!

√
e) and note that

η = Ω(1). Furthermore the set of random variables{Yv|v ∈ [n]\(U ∪W )} are mutually independent and
|[n]\(U ∪W )| = (1 + o(1))n. Therefore, by Theorem 3 we have

P[Y < n/(2rr!
√
e)] ≤ exp

(
−(1 + o(1))

η2n2

2n

)
= exp(−Ω(n)).

✷

Lemma 11 LetU,W ⊂ [n] in G(n, p) satisfy|U | = n/(2rr!
√
e). Then with probabilityexp(−Ω(p−1))

all but at mostp−1 vertices in[n]\(U ∪W ) have at leastr neighbours inU .
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Proof: LetBv be the indicator random variable that a vertexv ∈ [n]\(U ∪W ) has less thanr neighbours
in U and setB :=

∑
v∈[n]\(U∪W ) Bv. Sincenp = ω(1), we have

P[Bv = 1] =

r−1∑

j=0

(|U |
j

)
pj(1− p)|U|−j ≤ exp(−|U |p)

r−1∑

j=0

(np)j

j!
≤ exp(−|U |p)(np)r−1.

Since|[n]\(U ∪W )| ≤ n andnp = ω(1), we have

E[B] ≤ exp(−|U |p)n(np)r−1 = exp(−Ω(np))nrpr−1 = o(p−1).

Note that the set of random variables{Bv|v ∈ [n]\(U ∪W )} are mutually independent and therefore,
by Theorem 3 we have

P[B > p−1] ≤ exp
(
−Ω(p−1)

)
.

✷

Proof of Theorem 2: According to Lemma 8 with probability at least1 − exp(−ω2
0/(9.5t0)) we have

that|A(t)| > t for everyt ≤ t0 andA(t0) ≥ t0 + (1 + o(1))ac + ω0/2. Therefore the process runs for at
leastt0 steps and there exists a setA ⊆ |A(t0)\Z(t0)| of sizeac/2 + ω0/2.

Lemma 9 implies that conditional onA(t0) andZ(t0) with probability at least1−exp(−Ω(p−1)) there
is a set of vertices in[n]\(Z(t0) ∪A) with size at least3rp−1/4 where every vertex in the set has at least
r− 1 neighbours inZ(t0) and select a subsetW of these vertices of size exactly3rp−1/4. Note that until
this point every event depends only on edges with one end inZ(t0).

According to Theorem 5, with probability1 − exp(−Ω(p−1)) there is a setU ⊂ W such that the
vertices inU form a connected component and|U | ≥ (1 − ε)ρp−1 for arbitraryε > 0 independent ofn,
whereρ is the unique solution of1− ρ = exp(−3ρr/4). Since

1− ρ >

4∑

k=0

(−3ρr/4)k

k!
> exp(−3ρr/4)

when0 < ρ ≤ 1/2, we haveρ > 1/2 and thus we have that|U | ≥ p−1/2. Also this event depends only
on the edges with both endpoints inU and thus it is independent of the previous events.

Note that if a vertex inA is connected to a vertex inU , then every vertex inU will become infected.
The probability that no vertex inA is connected to any vertex inU is

(1− p)|U|(ac+ω)/2 ≤ exp(−(ac + ω)/4).

This event depends on edges betweenA andU and thus it is independent of the previous events.
Now takeU ′ ⊂ U such that|U ′| = p−1/2 and denote the set of vertices in[n]\(W ∪A∪Z(t0)) which

have at leastr neighbours inU ′ with B. Since|W ∪ A ∪ Z(t0)| = o(n) by Lemma 10 with probability
1−exp(−Ω(n)) we have that|B| ≥ n/(2rr!

√
e). Note thatB ⊂ |Af |. This event depends only on edges

betweenU ′ and[n]\(U ∪W ∪ A ∪ Z(t0)) and thus it is independent of the previous events.
Finally letB′ ⊂ B with |B′| = n/(2rr!

√
e) and consider the set of vertices in[n]\(B∪U ∪Z(t0)∪A)

which contain at leastr neighbours inB′. Note that all of these vertices will be infected. By Lemma 11
we have with probability1− exp(−Ω(p−1)) that all but at mostp−1 vertices in[n]\(B ∪U ∪Z(t0)∪A)
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will become infected. Similarly as before this event depends only on edges which we haven’t considered
previously and thus it is independent of the previous events. Recall thatB ∪ U ∪ Z(t0) ∪ A ⊂ Af and
thus|Af | = (1 + o(1))n.

Sincep−1 = ω(t0) andn = ω(p−1), we have that the probability that almost every vertex becomes
infected is at least

1− exp

(
− ω2

0

10t0

)
− exp

(
−ac + ω0

4

)
.

✷
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q-Quasiadditive Functions
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In this paper, we introduce the notion ofq-quasiadditivity of arithmetic functions, as well as the related concept
of q-quasimultiplicativity, which generalises strongq-additivity and -multiplicativity, respectively. We showthat
there are many natural examples for these concepts, which are characterised by functional equations of the form
f(qk+ra + b) = f(a) + f(b) or f(qk+ra + b) = f(a)f(b) for all b < qk and a fixed parameterr. In addition to
some elementary properties ofq-quasiadditive andq-quasimultiplicative functions, we prove characterisations ofq-
quasiadditivity andq-quasimultiplicativity for the special class ofq-regular functions. The final main result provides
a general central limit theorem that includes both classical and new examples as corollaries.

Keywords: q-additive function,q-quasiadditive function,q-regular function, central limit theorem

1 Introduction
Arithmetic functions based on the digital expansion in somebaseq have a long history (see, e.g., [3–8,11])
The notion of aq-additivefunction is due to [11]: an arithmetic function (defined on nonnegative integers)
is calledq-additive if

f(qka+ b) = f(qka) + f(b)

whenever0 ≤ b < qk. A stronger version of this concept isstrong(or complete) q-additivity: a function
f is said to be stronglyq-additive if we even have

f(qka+ b) = f(a) + f(b)

whenever0 ≤ b < qk. The class of (strongly)q-multiplicative functions is defined in an analogous
fashion. Loosely speaking, (strong)q-additivity of a function means that it can be evaluated by breaking
up the base-q expansion. Typical examples of stronglyq-additive functions are theq-ary sum of digits and
the number of occurrences of a specified nonzero digit.

†The first author is supported by the Austrian Science Fund (FWF): P 24644-N26.
‡The second author is supported by the National Research Foundation of South Africa under grant number 96236.
§The authors were also supported by the Karl Popper Kolleg “Modeling–Simulation–Optimization” funded by the Alpen-Adria-

Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF). Part of this paper was written while the second
author was a Karl Popper Fellow at the Mathematics Institutein Klagenfurt. He would like to thank the institute for the hospitality
received.
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There are, however, many simple and natural functions basedon theq-ary expansion that are notq-
additive. A very basic example of this kind areblock counts: the number of occurrences of a certain block
of digits in theq-ary expansion. This and other examples provide the motivation for the present paper, in
which we define and study a larger class of functions with comparable properties.
Definition. An arithmetic function (a function defined on the set of nonnegative integers) is calledq-
quasiadditiveif there exists some nonnegative integerr such that

f(qk+ra+ b) = f(a) + f(b) (1)

whenever0 ≤ b < qk. Likewise,f is said to beq-quasimultiplicativeif it satisfies the identity

f(qk+ra+ b) = f(a)f(b) (2)

for some fixed nonnegative integerr whenever0 ≤ b < qk.
We remark that the special caser = 0 is exactly strongq-additivity, so strictly speaking the term

“strongly q-quasiadditive function” might be more appropriate. However, since we are not considering a
weaker version (for which natural examples seem to be much harder to find), we do not make a distinction.
As a further caveat, we remark that the term “quasiadditivity” has also been used in [1] for a related, but
slightly weaker condition.

In the following section, we present a variety of examples ofq-quasiadditive andq-quasimultiplicative
functions. In Section 3, we give some general properties of such functions. Since most of our examples
also belong to the related class ofq-regular functions, we discuss the connection in Section 4.Finally, we
prove a general central limit theorem forq-quasiadditive and -multiplicative functions that contains both
old and new examples as special cases.

2 Examples of q-quasiadditive and q-quasimultiplicative functions
Let us now back up the abstract concept ofq-quasiadditivity by some concrete examples.

Block counts
As mentioned in the introduction, the number of occurrencesof a fixed nonzero digit is a typical example
of a q-additive function. However, the number of occurrences of agiven blockB = ǫ1ǫ2 · · · ǫℓ of digits
in the expansion of a nonnegative integern, which we denote bycB(n), does not represent aq-additive
function. The reason is simple: theq-ary expansion ofqka+ b is obtained by joining the expansions ofa
andb, so occurrences ofB in a and occurrences ofB in b are counted bycB(a) + cB(b), but occurrences
that involve digits of botha andb are not.

However, ifB is a block different from00 · · ·0, thencB is q-quasiadditive: note that the representation
of qk+ℓa+ b is of the form

a1a2 · · · aµ︸ ︷︷ ︸
expansion ofa

00 · · ·0︸ ︷︷ ︸
ℓ zeros

b1b2 · · · bν︸ ︷︷ ︸
expansion ofb

whenever0 ≤ b < qk, so occurrences of the blockB have to belong to eithera or b only. This implies that
cB(q

k+ℓa + b) = cB(a) + cB(b), with one small caveat: if the block starts and/or ends with asequence
of zeros, then the count needs to be adjusted by assuming the digital expansion of a nonnegative integer
to be padded with zeros on the left and on the right.
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For example, letB be the block0101 in base2. The binary representations of469 and22 are111010101
and10110, respectively, so we havecB(469) = 2 andcB(22) = 1 (note the occurrence of0101 at the
beginning of10110 if we assume the expansion to be padded with zeros), as well as

cB(240150) = cB(2
9 · 469 + 22) = cB(469) + cB(22) = 3.

Indeed, the blockB occurs three times in the expansion of240150, which is111010101000010110.

The number of runs and the Gray code
The number of ones in the Gray code of a nonnegative integern, which we denote byhGRAY(n), is also
equal to the number of runs (maximal sequences of consecutive identical digits) in the binary representa-
tions ofn (counting the number of runs in the representation of0 as0); the sequence defined byhGRAY(n)
is A005811 in Sloane’s On-Line Encyclopedia of Integer Sequences [17]. An analysis of its expected
value is performed in [10]. The functionhGRAY is 2-quasiadditive up to some minor modification: set
f(n) = hGRAY(n) if n is even andf(n) = hGRAY(n) + 1 if n is odd. The new functionf can be inter-
preted as the total number of occurrences of the two blocks01 and10 in the binary expansion (considering
binary expansions to be padded with zeros at both ends), so the argument of the previous example applies
again and shows thatf is 2-quasiadditive.

The nonadjacent form and its Hamming weight
The nonadjacent form (NAF) of a nonnegative integer is the unique base-2 representation with digits
0, 1,−1 (−1 is usually represented as1 in this context) and the additional requirement that there may not
be two adjacent nonzero digits, see [18]. For example, the NAF of 27 is 100101. It is well known that the
NAF always has minimum Hamming weight (i.e., the number of nonzero digits) among all possible binary
representations with this particular digit set, although it may not be unique with this property (compare,
e.g., [18] with [15]).

The Hamming weighthNAF of the nonadjacent form has been analysed in some detail [13,20], and it
is also an example of a2-quasiadditive function. It is not difficult to see thathNAF is characterised by the
recursionshNAF(2n) = hNAF(n), hNAF(4n+ 1) = hNAF(n) + 1, hNAF(4n− 1) = hNAF(n) + 1 together
with the initial valuehNAF(0) = 0. The identity

hNAF(2
k+2a+ b) = hNAF(a) + hNAF(b)

can be proved by induction. In Section 4, this example will begeneralised and put into a larger context.

The number of optimal {0, 1,−1}-representations
As mentioned above, the NAF may not be the only representation with minimum Hamming weight among
all possible binary representations with digits0, 1,−1. The number of optimal representations of a given
nonnegative integern is therefore a quantity of interest in its own right. Its average over intervals of the
form [0, N) was studied by Grabner and Heuberger [12], who also proved that the numberrOPT(n) of
optimal representations ofn can be obtained in the following way:

Lemma 1 (Grabner–Heuberger [12]). Let sequencesui (i = 1, 2, . . . , 5) be given recursively by

u1(0) = u2(0) = · · · = u5(0) = 1, u1(1) = u2(1) = 1, u3(1) = u4(1) = u5(1) = 0,



4 Sara Kropf, Stephan Wagner

and

u1(2n) = u1(n), u1(2n+ 1) = u2(n) + u4(n+ 1),

u2(2n) = u1(n), u2(2n+ 1) = u3(n),

u3(2n) = u2(n), u3(2n+ 1) = 0,

u4(2n) = u1(n), u4(2n+ 1) = u5(n+ 1),

u5(2n) = u4(n), u5(2n+ 1) = 0.

The numberrOPT(n) of optimal representations ofn is equal tou1(n).

A straightforward calculation shows that

u1(8n) = u2(8n) = · · · = u5(8n) = u1(8n+ 1) = u2(8n+ 1) = u1(n),

u3(8n+ 1) = u4(8n+ 1) = u5(8n+ 1) = 0.
(3)

This gives us the following result (see the full version of this extended abstract for a detailed proof):

Lemma 2. The number of optimal{0, 1,−1}-representations of a nonnegative integer is a2-quasimulti-
plicative function. Specifically, for any three nonnegative integersa, b, k with b < 2k, we have

rOPT(2
k+3a+ b) = rOPT(a)rOPT(b).

In Section 4, we will show that this is also an instance of a more general phenomenon.

The run length transform and cellular automata
Therun length transformof a sequence is defined in a recent paper of Sloane [19]: it is based on the binary
representation, but could in principle also be generalisedto other bases. Given a sequences1, s2, . . ., its
run length transform is obtained by the rule

t(n) =
∏

i∈L(n)

si,

whereL(n) is the multiset of run lengths ofn (lengths of blocks of consecutive ones in the binary rep-
resentation). For example, the binary expansion of1910 is 11101110110, so the multisetL(n) of run
lengths would be{3, 3, 2}, giving t(1910) = s2s

2
3.

A typical example is obtained for the sequence of Jacobsthalnumbers given by the formulasn =
1
3 (2

n+2 − (−1)n). The associated run length transformtn (sequence A071053 in the OEIS [17]) counts
the number of odd coefficients in the expansion of(1 + x + x2)n, and it can also be interpreted as the
number of active cells at then-th generation of a certain cellular automaton. Further examples stemming
from cellular automata can be found in Sloane’s paper [19].

The argument that provedq-quasiadditivity of block counts also applies here, and indeed it is easy to
see that the identity

t(2k+1a+ b) = t(a)t(b),

where0 ≤ b < 2k, holds for the run length transform of any sequence, meaningthat any such transform
is 2-quasimultiplicative. In fact, it is not difficult to show that every2-quasimultiplicative function with
parameterr = 1 is the run length transform of some sequence.
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3 Elementary properties
Now that we have gathered some motivating examples for the concepts ofq-quasiadditivity andq-quasi-
multiplicativity, let us present some simple results aboutfunctions with these properties. First of all, let
us state an obvious relation betweenq-quasiadditive andq-quasimultiplicative functions:

Proposition 3. If a functionf is q-quasiadditive, then the function defined byg(n) = cf(n) for some
positive constantc is q-quasimultiplicative. Conversely, iff is a q-quasimultiplicative function that only
takes positive values, then the function defined byg(n) = logc f(n) for some positive constantc 6= 1 is
q-quasiadditive.

The next proposition deals with the parameterr in the definition of aq-quasiadditive function:

Proposition 4. If the arithmetic functionf satisfiesf(qk+ra+ b) = f(a)+ f(b) for some fixed nonnega-
tive integerr whenever0 ≤ b < qk, then it also satisfiesf(qk+sa+ b) = f(a) + f(b) for all nonnegative
integerss ≥ r whenever0 ≤ b < qk.

Proof. If a, b are nonnegative integers with0 ≤ b < qk, then clearly also0 ≤ b < qk+s−r if s ≥ r, and
thus

f(qk+sa+ b) = f(q(k+s−r)+ra+ b) = f(a) + f(b).

Corollary 5. If two arithmetic functionsf and g are q-quasiadditive functions, then so is any linear
combinationαf + βg of the two.

Proof. In view of the previous proposition, we may assume the parameterr in (1) to be the same for both
functions. The statement follows immediately.

Finally, we observe thatq-quasiadditive andq-quasimultiplicative functions can be computed by break-
ing theq-ary expansion into pieces. A detailed proof can be found in the full version:

Lemma 6. If f is a q-quasiadditive (q-quasimultiplicative) function, then

• f(0) = 0 (f(0) = 1, respectively, unlessf is identically0),

• f(qa) = f(a) for all nonnegative integersa.

Proposition 7. Suppose that the functionf is q-quasiadditive with parameterr, i.e., f(qk+ra + b) =
f(a) + f(b) whenever0 ≤ b < qk. Going from left to right, split theq-ary expansion ofn into blocks
by inserting breaks after each run ofr or more zeros. If these blocks are theq-ary representations of
n1, n2, . . . , nℓ, then we have

f(n) = f(n1) + f(n2) + · · ·+ f(nℓ).

Moreover, ifmi is the greatest divisor ofni which are not divisible byq for i = 1, . . . , ℓ, then

f(n) = f(m1) + f(m2) + · · ·+ f(mℓ).

Analogous statements hold forq-quasimultiplicative functions, with sums replaced by products.
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Proof. This is obtained by a straightforward induction onℓ together with the fact thatf(qha) = f(a),
which follows from the previous lemma.

Example1. Recall that the Hamming weight of the NAF (which is the minimum Hamming weight of
a {0, 1,−1}-representation) is2-quasiadditive with parameterr = 2. To determinehNAF(314 159 265),
we split the binary representation, which is10010101110011011000010100001, into blocks by inserting
breaks after each run of at least two zeros:

100|101011100|110110000|1010000|1.

The numbersn1, n2, . . . , nℓ in the statement of the proposition are now4, 348, 432, 80, 1 respectively,
and the numbersm1,m2, . . . ,mℓ are therefore1, 87, 27, 5, 1. Now we use the valueshNAF(1) = 1,
hNAF(5) = 2, hNAF(27) = 3 andhNAF(87) = 4 to obtain

hNAF(314 159 265) = 2hNAF(1) + hNAF(5) + hNAF(27) + hNAF(87) = 11.

Example2. In the same way, we consider the number of optimal representations rOPT, which is 2-
quasimultiplicative with parameterr = 3. Consider for instance the binary representation of204 280 974,
namely1100001011010001010010001110. We split into blocks:

110000|101101000|101001000|1110.

The four blocks correspond to the numbers48 = 16 · 3, 360 = 8 · 45, 328 = 8 · 41 and14 = 2 · 7. Since
rOPT(3) = 2, rOPT(45) = 5, rOPT(41) = 1 andrOPT(7) = 1, we obtainrOPT(204 280 974) = 10.

4 q-Regular functions
In this section, we introduceq-regular functions and examine the connection to our concepts. See [2] for
more background onq-regular sequences.

A functionf is q-regular if it can be expressed asf = utf for a vectoru and a vector-valued function
f , and there are matricesMi, 0 ≤ i < q, satisfying

f (qn+ i) = Mif(n) (4)

for 0 ≤ i < q, qn+ i > 0. We setv = f (0).
Equivalently, a functionf is q-regular if and only iff can be written as

f(n) = ut
L∏

i=0

Mniv (5)

wherenL · · ·n0 is theq-ary expansion ofn.
The notion ofq-regular functions is a generalisation ofq-additive andq-multiplicative functions. How-

ever, we emphasise thatq-quasiadditive andq-quasimultiplicative functions are not necessarilyq-regular:
aq-regular sequence can always be bounded byO(nc) for a constantc, see [2, Thm. 16.3.1]. In our setting
however, the values off(n) can be chosen arbitrarily for thosen whoseq-ary expansion does not contain
0r. Therefore aq-quasiadditive or -multiplicative function can grow arbitrarily fast.
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We call(u, (Mi)0≤i<q ,v) a linear representationof theq-regular functionf . Such a linear represen-
tation is calledzero-insensitiveif M0v = v, meaning that in (5), leading zeros in theq-ary expansion of
n do not change anything. We call a linear representationminimal if the dimension of the matricesMi is
minimal among all linear representations off .

Following [9], everyq-regular function has a zero-insensitive minimal linear representation.

4.1 When is a q-regular function q-quasimultiplicative?
We now give a characterisation ofq-regular functions that areq-quasimultiplicative. Proofs of the results
in this and the following subsection can be found in the full version.

Theorem 8. Letf be aq-regular sequence with zero-insensitive minimal linear representation(5). Then
the following two assertions are equivalent:

• The sequencef is q-quasimultiplicative with parameterr.

• M r
0 = vut.

Example3 (The number of optimal{0, 1,−1}-representations). The number of optimal{0, 1,−1}-repre-
sentations as described in Section 2 is a2-regular sequence by Lemma 1. A minimal zero-insensitive linear
representation for the vector(u1(n), u2(n), u3(n), u1(n+ 1), u4(n+ 1), u5(n+ 1))t is given by

M0 =




1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0




, M1 =




0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0




,

ut = (1, 0, 0, 0, 0, 0) andv = (1, 1, 1, 1, 0, 0)t.
As M3

0 = vut, this sequence is2-quasimultiplicative with parameter3, which is the same result as in
Lemma 2.
Remark.The condition on the minimality of the linear representation in Theorem 8 is necessary as illus-
trated by the following example:

Consider the sequencef(n) = 2s2(n) wheres2(n) is the binary sum of digits function. This sequence
is 2-regular and2-(quasi-)multiplicative with parameterr = 0. A minimal linear representation is given
byM0 = 1, M1 = 2, v = 1 andu = 1. As stated in Theorem 8, we haveM0

0 = vut = 1.
If we use the zero-insensitive non-minimal linear representation defined byM0 =

(
1 13
0 2

)
, M1 =(

2 27
0 5

)
, v = (1, 0)t andut = (1, 0) instead, we haverankM r

0 = 2 for all r ≥ 0. ThusM r
0 6= vut.

4.2 When is a q-regular function q-quasiadditive?
The characterisation ofq-regular functions that are alsoq-quasiadditive is somewhat more complicated.
Again, we consider a zero-insensitive (but not necessarilyminimal) linear representation. We letU be the
smallest vector space such that all vectors of the formut

∏
i∈I Mni lie in the affine subspaceut + U t

(U t is used as a shorthand for{xt : x ∈ U}). Such a vector space must exist, sinceut is a vector of this
form (corresponding to the empty product, whereI = ∅). Likewise, letV be the smallest vector space
such that all vectors of the form

∏
j∈J Mnjv lie in the affine subspacev + V .
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Theorem 9. Let f be aq-regular sequence with zero-insensitive linear representation (5). The sequence
f is q-quasiadditive with parameterr if and only if all of the following statements hold:

• utv = 0,

• U t is orthogonal to(M r
0 − I)v, i.e.,xt(M r

0 − I)v = xtM r
0v − xtv = 0 for all x ∈ U ,

• V is orthogonal tout(M r
0 − I), i.e.,ut(M r

0 − I)y = utM r
0y − uty = 0 for all y ∈ V ,

• U tM r
0V = 0, i.e.,xtM r

0y = 0 for all x ∈ U andy ∈ V .

Example4. For the Hamming weight of the nonadjacent form, a zero-insensitive (and also minimal) linear
representation for the vector(hNAF(n), hNAF(n+ 1), hNAF(2n+ 1), 1)t is

M0 =




1 0 0 0
0 0 1 0
1 0 0 1
0 0 0 1


 , M1 =




0 0 1 0
0 1 0 0
0 1 0 1
0 0 0 1


 ,

ut = (1, 0, 0, 0) andv = (0, 1, 1, 1)t.
The three vectorsw1 = utM1 − ut, w2 = utM2

1 − ut andw3 = utM1M0M1 − ut are linearly
independent. If we letW be the vector space spanned by those three, it is easily verified thatM0 andM1

map the affine subspaceut +W t to itself, soU = W is spanned by these vectors.
Similarly, the three vectorsM1v − v, M2

1v − v andM1M0M1v − v spanV .
The first condition of Theorem 9 is obviously true. We only have to verify the other three conditions

with r = 2 for the basis vectors ofU andV , which is done easily. ThushNAF is a2-regular sequence that
is also2-quasiadditive, as was also proved in Section 2.

Finding the vector spacesU andV is not trivial. But in a certain special case ofq-regular functions,
we can give a sufficient condition forq-additivity, which is easier to check. Theseq-regular functions are
output sums of transducers as defined in [14]: a transducer transforms theq-ary expansion of an integern
(read from the least significant to the most significant digit) deterministically into an output sequence and
leads to a states. The output sum is then the sum of this output sequence together with the final output of
the states. This defines the value of theq-regular function evaluated atn. The functionhNAF discussed
in the example above, as well as many other examples, can be represented in this way.

Proposition 10. The output sum of a connected transducer isq-additive with parameterr if the following
conditions are satisfied:

• The transducer has the reset sequence0r going to the initial state, i.e., readingr zeros always leads
to the initial state of the transducer.

• For every state, the output sum along the path of the reset sequence0r equals the final output of this
state.

• Additional zeros at the end of the input sequence do not change the output sum.
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5 A central limit theorem for q-quasiadditive and -multiplicative
functions

In this section, we prove a central limit theorem forq-quasimultiplicative functions taking only positive
values. By Proposition 3, this also implies a central limit theorem forq-quasiadditive functions.

To this end, we define a generating function: letf be aq-quasimultiplicative function with positive
values, letMk be the set of all nonnegative integers less thanqk (i.e., those positive integers whoseq-ary
expansion needs at mostk digits), and set

F (x, t) =
∑

k≥0

xk
∑

n∈Mk

f(n)t.

The decomposition of Proposition 7 now translates directlyto an alternative representation forF (x, t):
let B be the set of all positive integers not divisible byq whoseq-ary representation does not contain the
block0r, let ℓ(n) denote the length of theq-ary representation ofn, and define the functionB(x, t) by

B(x, t) =
∑

n∈B
xℓ(n)f(n)t.

We remark that in the special case whereq = 2 andr = 1, this simplifies greatly to

B(x, t) =
∑

k≥1

xkf(2k − 1)t. (6)

Proposition 11. The generating functionF (x, t) can be expressed as

F (x, t) =
1

1− x
· 1

1− xr

1−xB(x, t)

(
1+(1+x+· · ·+xr−1)B(x, t)

)
=

1 + (1 + x+ · · ·+ xr−1)B(x, t)

1− x− xrB(x, t)
.

Proof. The first factor stands for the initial sequence of leading zeros, the second factor for a (possibly
empty) sequence of blocks consisting of an element ofB andr or more zeros, and the last factor for the
final part, which may be empty or an element ofB with up to r − 1 zeros (possibly none) added at the
end.

Under suitable assumptions on the growth of aq-quasiadditive orq-quasimultiplicative function, we
can exploit the expression of Proposition 11 to prove a central limit theorem in the following steps (full
proofs can again be found in the full version).

Definition. We say that a functionf hasat most polynomial growthif f(n) = O(nc) andf(n) = Ω(n−c)
for a fixedc ≥ 0. We say thatf hasat most logarithmic growthif f(n) = O(log n).

Note that our definition of at most polynomial growth is slightly different than usual: the extra condition
f(n) = Ω(n−c) ensures that the absolute value oflog f(n) does not grow too fast.

Lemma 12. Assume that the positive,q-quasimultiplicative functionf has at most polynomial growth.
There exist positive constantsδ andǫ such that

• B(x, t) has radius of convergenceρ(t) > 1
q whenever|t| ≤ δ.
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• For |t| ≤ δ, the equationx+ xrB(x, t) = 1 has a complex solutionα(t) with |α(t)| < ρ(t) and no
other solutions with modulus≤ (1 + ǫ)|α(t)|.

• Thus the generating functionF (x, t) has a simple pole atα(t) and no further singularities of
modulus≤ (1 + ǫ)|α(t)|.

• Finally, α is an analytic function oft for |t| ≤ δ.

Lemma 13. Assume that the positive,q-quasimultiplicative functionf has at most polynomial growth.
With δ andǫ as in the previous lemma, we have, uniformly int,

[xk]F (x, t) = κ(t) · α(t)−k
(
1 +O((1 + ǫ)−k)

)

for some functionκ. Bothα andκ are analytic functions oft for |t| ≤ δ, andκ(t) 6= 0 in this region.

Theorem 14. Assume that the positive,q-quasimultiplicative functionf has at most polynomial growth.
LetNk be a randomly chosen integer in{0, 1, . . . , qk − 1}. The random variableLk = log f(Nk) has

meanµk +O(1) and varianceσ2k +O(1), where the two constants are given by

µ =
Bt(1/q, 0)

q2r

and

σ2 = −Bt(1/q, 0)
2q−4r+1(q − 1)−1 + 2Bt(1/q, 0)

2q−3r+1(q − 1)−1 −Bt(1/q, 0)
2q−4r(q − 1)−1

− 4rBt(1/q, 0)
2q−4r +Btt(1/q, 0)q

−2r − 2Bt(1/q, 0)Btx(1/q, 0)q
−4r−1. (7)

If f is not the constant functionf ≡ 1, thenσ2 6= 0 and the normalised random variable(Lk −
µk)/(σ

√
k) converges weakly to a standard Gaussian distribution.

Corollary 15. Assume that theq-quasiadditive functionf has at most logarithmic growth.
Let Nk be a randomly chosen integer in{0, 1, . . . , qk − 1}. The random variableLk = f(Nk) has

meanµ̂k + O(1) and varianceσ̂2k + O(1), where the two constantsµ and σ2are given by the same
formulas as in Theorem 14, withB(x, t) replaced by

B̂(x, t) =
∑

n∈B
xℓ(n)ef(n)t.

If f is not the constant functionf ≡ 0, then the normalised random variable(Lk − µ̂k)/(σ̂
√
k)

converges weakly to a standard Gaussian distribution.

Remark.By means of the Cramér-Wold device (and Corollary 5), we alsoobtain joint normal distribution
of tuples ofq-quasiadditive functions.

We now revisit the examples discussed in Section 2 and state the corresponding central limit theorems.
Some of them are well known while others are new. We also provide numerical values for the constants
in mean and variance.
Example5 (see also [8, 16]). The number of blocks0101 occurring in the binary expansion ofn is a
2-quasiadditive function of at most logarithmic growth. Thus by Corollary 15, the standardised random
variable is asymptotically normally distributed, the constants beinĝµ = 1

16 andσ̂2 = 17
256 .
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Example6 (see also [13, 20]). The Hamming weight of the nonadjacent form is2-quasiadditive with
at most logarithmic growth (as the length of the NAF ofn is logarithmic). Thus by Corollary 15, the
standardised random variable is asymptotically normally distributed. The associated constants areµ̂ = 1

3
andσ̂2 = 2

27 .
Example7 (see Section 2). The number of optimal{0, 1,−1}-representations is2-quasimultiplicative.
As it is always greater or equal to1 and2-regular, it has at most polynomial growth. Thus Theorem 14
implies that the standardised logarithm of this random variable is asymptotically normally distributed with
numerical constants given byµ ≈ 0.060829, σ2 ≈ 0.038212.
Example8 (see Section 2). Suppose that the sequences1, s2, . . . satisfiessn ≥ 1 andsn = O(cn) for a
constantc ≥ 1. The run length transformt(n) of sn is 2-quasimultiplicative. Assn ≥ 1 for all n, we
havet(n) ≥ 1 for all n as well. Furthermore, there exists a constantA such thatsn ≤ Acn for all n, and
the sum of all run lengths is bounded by the length of the binary expansion, thus

t(n) =
∏

i∈L(n)

si ≤
∏

i∈L(n)

(Aci) ≤ (Ac)1+log2 n.

Consequently,t(n) is positive and has at most polynomial growth. By Theorem 14,we obtain an asymp-
totic normal distribution for the standardised random variablelog t(Nk). The constantsµ andσ2 in mean
and variance are given by

µ =
∑

i≥1

(log si)2
−i−2

and

σ2 =
∑

i≥1

(log si)
2
(
2−i−2 − (2i− 1)2−2i−4

)
−

∑

j>i≥1

(log si)(log sj)(i + j − 1)2−i−j−3.

These formulas can be derived from those given in Theorem 14 by means of the representation (6), and
the terms can also be interpreted easily: writelog t(n) =

∑
i≥1 Xi(n) log si, whereXi(n) is the number

of runs of lengthi in the binary representation ofn. The coefficients in the two formulas stem from mean,
variance and covariances of theXi(n).

In the special case thatsn is the Jacobsthal sequence (sn = 1
3 (2

n+2 − (−1)n), see Section 2), we have
the numerical valuesµ ≈ 0.429947, σ2 ≈ 0.121137.
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We give combinatorial descriptions of two stochastic growth models for series-parallel networks introduced by Hosam
Mahmoud by encoding the growth process via recursive tree structures. Using decompositions of the tree structures
and applying analytic combinatorics methods allows a study of quantities in the corresponding series-parallel net-
works. For both models we obtain limiting distribution results for the degree of the poles and the length of a random
source-to-sink path, and furthermore we get asymptotic results for the expected number of source-to-sink paths.

Keywords: series-parallel networks, growth models, distributional analysis, source-to-sink paths, node degrees

1 Introduction
Series-parallel networks are two-terminal graphs, i.e., they have two distinguished vertices called the
source and the sink, that can be constructed recursively by applying two simple composition operations,
namely the parallel composition (where the sources and the sinks of two series-parallel networks are
merged) and the series composition (where the sink of one series-parallel network is merged with the
source of another series-parallel network). Here we will always consider series-parallel networks as di-
graphs with edges oriented in direction from the north-pole, the source, towards the south-pole, the sink.
Such graphs can be used to model the flow in a bipolar network, e.g., of current in an electric circuit
or goods from the producer to a market. Furthermore series-parallel networks and series-parallel graphs
(i.e., graphs which are series-parallel networks when some two of its vertices are regarded as source and
sink; see, e.g., [2] for exact definitions and alternative characterizations) are of interest in computational
complexity theory, since some in general NP-complete graph problems are solvable in linear time on
series-parallel graphs (e.g., finding a maximum independent set).

Recently there occurred several studies concerning the typical behaviour of structural quantities (as,
e.g., node-degrees, see [6]) in series-parallel graphs and networks under a uniform model of randomness,
i.e., where all series-parallel graphs of a certain size (counted by the number of edges) are equally likely.
In contrast to these uniform models, Mahmoud [11, 12] introduced two interesting growth models for
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series-parallel networks, which are generated by starting with a single directed arc from the source to
the sink and iteratively carrying out serial and parallel edge-duplications according to a stochastic growth
rule; we call them uniform Bernoulli edge-duplication rule (“Bernoulli model” for short) and uniform
binary saturation edge-duplication rule (“binary model” for short). A formal description of these models
is given in Section 2. Using the defining stochastic growth rules and a description via Pólya-Eggenberger
urn models (see, e.g., [10]), several quantities for series-parallel networks (as the number of nodes of small
degree and the degree of the source for the Bernoulli model, and the length of a random source-to-sink
path for the binary model) are treated in [11, 12].

The aim of this work is to give an alternative description of these growth models for series-parallel
networks by encoding the growth of them via recursive tree structures, to be precise, via edge-coloured
recursive trees and so-called bucket-recursive trees (see [9] and references therein). The advantage of
such a modelling is that these objects allow not only a stochastic description (the tree evolution process
which reflects the growth rule of the series-parallel network), but also a combinatorial one (as certain
increasingly labelled trees or bucket trees), which gives rise to a top-down decomposition of the structure.
An important observation is that indeed various interesting quantities for series-parallel networks can be
studied by considering certain parameters in the corresponding recursive tree model and making use of the
combinatorial decomposition. We focus here on the quantities degreeDn of the source and/or sink, length
Ln of a random source-to-sink path and the number Pn of source-to-sink paths in a random series-parallel
network of size n, but mention that also other quantities (as, e.g., the number of ancestors, node-degrees,
or the number of paths through a random or the j-th edge) could be treated in a similar way. We obtain
limiting distribution results for Dn and Ln (thus answering questions left open in [11, 12]), whereas for
the r.v. Pn (whose distributional treatment seems to be considerably more involved) we are able to give
asymptotic results for the expectation.

Mathematically, an analytic combinatorics treatment of the quantities of interest leads to studies of first
and second order non-linear differential equations. In this context we want to mention that another model
of series-parallel networks called increasing diamonds has been introduced recently in [1]. A treatment
of quantities in such networks inherently also yields a study of second order non-linear differential equa-
tions; however, the definition as well as the structure of increasing diamonds is quite different from the
models treated here as can be seen also by comparing the behaviour of typical graph parameters (e.g.,
the number of source-to-sink paths Pn in increasing diamonds is trivially bounded by n, whereas in the
models studied here the expected number of paths grows exponentially). We mention that the analysis of
the structures considered here has further relations to other objects; e.g., it holds that the Mittag-Leffler
limiting distributions occurring in Theorem 3.1 & 3.2 also appear in other combinatorial contexts as in
certain triangular balanced urn models (see [8]) or implicitly in the recent study of an extra clustering
model for animal grouping [5] (after scaling, as continuous part of the characterization given in [5, Theo-
rem 2], since it is possible to simplify some of the representations given there). Also the characterizations
of the limiting distribution for Dn and Ln of binary series-parallel networks via the sequence of r-th
integer moments satisfies a recurrence relation of “convolution type” similar to ones occurring in [3],
for which asymptotic studies have been carried out. Furthermore, the described top-down decomposition
of the combinatorial objects makes these structures amenable to other methods, in particular, it seems
that the contraction method, see, e.g., [13, 14], allows an alternative characterization of limiting distribu-
tions occurring in the analysis of binary series-parallel networks. Moreover, the combinatorial approach
presented is flexible enough to allow also a study of series-parallel networks generated by modifications
of the edge-duplication rules, in particular, one could treat also a Bernoulli model with a “preferential
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edge-duplication rule”, or a b-ary saturation model by encoding the growth process via other recursive
tree structures (edge-coloured plane increasing trees and bucket-recursive trees with bucket size b ≥ 2,
respectively); the authors plan to comment on that in a journal version of this work.

2 Series-parallel networks and description via recursive tree struc-
tures

2.1 Bernoulli model
In the Bernoulli model in step 1 one starts with a single edge labelled 1 connecting the source and the
sink, and in step n, with n > 1, one of the n− 1 edges of the already generated series-parallel network is
chosen uniformly at random, let us assume it is edge j = (x, y); then either with probability p, 0 < p < 1,
this edge is doubled in a parallel way(i), i.e., an additional edge (x, y) labelled n is inserted into the graph
(let us say, right to edge e), or otherwise, thus with probability q = 1− p, this edge is doubled in a serial
way, i.e., edge (x, y) is replaced by the series of edges (x, z) and (z, y), with z a new node, where (x, z)
gets the label j and (z, y) will be labelled by n.

The growth of series-parallel networks corresponds to the growth of random recursive trees, where one
starts in step 1 with a node labelled 1, and in step n one of the n− 1 nodes is chosen uniformly at random
and node n is attached to it as a new child. Thus, a doubling of edge j in step nwhen generating the series-
parallel network corresponds in the recursive tree to an attachment of node n to node j. Additionally, in
order to keep the information about the kind of duplication of the chosen edge, the edge incident to n
is coloured either blue encoding a parallel doubling, or coloured red encoding a serial doubling. Such
combinatorial objects of edge-coloured recursive trees can be described via the formal equation

T = Z2 ∗ SET(B · T +R · T ),

with B and R markers (see [7]). Of course, one has to keep track of the number of blue and red edges to
get the correct probability model according to

P{T ∈ Tn is chosen} =
p#blue edges of T · q#red edges of T

Tn
,

where Tn = {T ∈ T : T has order n} and Tn := |Tn| = (n−1)!. Throughout this work the term order of
a tree T shall denote the number of labels contained in T , which, of course, for recursive trees coincides
with the number of nodes of T . Then, each edge-coloured recursive tree of order n and the corresponding
series-parallel network of size n occur with the same probability. An example for a series-parallel network
grown via the Bernoulli model and the corresponding edge-coloured recursive tree is given in Figure 1.

2.2 Binary model
In the binary model again in step 1 one starts with a single edge labelled 1 connecting the source and the
sink, and in step n, with n > 1 one of the n− 1 edges of the already generated series-parallel network is
chosen uniformly at random; let us assume it is edge j = (x, y); but now whether edge j is doubled in a
parallel or serial way is already determined by the out-degree of node x: if node x has out-degree 1 then

(i) In the original work [11] the rôles of p and q are switched, but we find it catchier to use p for the probability of a parallel doubling.
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Fig. 1: Growth of a series-parallel network under the Bernoulli model and of the corresponding edge-coloured recur-
sive tree. In the resulting graph the degree of the source is 4, the length of the leftmost source-to-sink path is 2 and
there are 5 different source-to-sink paths.

we carry out a parallel doubling by inserting an additional edge (x, y) labelled n into the graph right to
edge j, but otherwise, i.e., if node x has out-degree 2 and is thus already saturated, then we carry out a
serial doubling by replacing edge (x, y) by the edges (x, z) and (z, y), with z a new node, where (x, z)
gets the label j and (z, y) will be labelled by n.

It turns out that the growth model for binary series-parallel networks corresponds with the growth model
for bucket-recursive trees of maximal bucket size 2, i.e., where nodes in the tree can hold up to two labels:
in step 1 one starts with the root node containing label 1, and in step n one of the n − 1 labels in the
tree is chosen uniformly at random, let us assume it is label j, and attracts the new label n. If the node
x containing label j is saturated, i.e., it contains already two labels, then a new node containing label n
will be attached to x as a new child, otherwise, label n will be inserted into node x, then containing the
labels j and n. As has been pointed out in [9] such random bucket-recursive trees can also be described
in a combinatorial way by extending the notion of increasing trees: namely a bucket-recursive tree is
either a node labelled 1 or it consists of the root node labelled (1, 2), where two (possibly empty) forests
of (suitably relabelled) bucket-recursive trees are attached to the root as a left forest and a right forest.
A formal description of the family B of bucket-recursive trees (of bucket size at most 2) is in modern
notation given as follows:

B = Z2 + Z2 ∗ (Z2 ∗ (SET(B) ∗ SET(B))) .

It follows from this formal description that there are Tn = (n − 1)! different bucket-recursive trees with
n labels, i.e., of order n, and furthermore it has been shown in [9] that this combinatorial description
(assuming the uniform model, where each of these trees occurs with the same probability) indeed corre-
sponds to the stochastic description of random bucket-recursive trees of order n given before. An example
for a binary series-parallel network and the corresponding bucket-recursive tree is given in Figure 2.

In our analysis of binary series-parallel networks the following link between the decomposition of a
bucket-recursive tree T into its root (1, 2) and the left forest (consisting of the trees T [L]

1 , . . . , T
[L]
` ) and

the right forest (consisting of the trees T [R]
1 , . . . , T

[R]
r ), and the subblock-structure of the corresponding

binary network G is important: G consists of a left half G[L] and a right half G[R] (which share the
source and the sink), where G[L] is formed by a series of blocks (i.e., maximal 2-connected components)
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Fig. 2: Growth of a binary series-parallel network and of the corresponding bucket-recursive tree. In the resulting
graph the degree of the sink is 2, the length of the leftmost source-to-sink path is 2 and there are 3 different source-
to-sink paths.

1 2

T [L]
1 T [L]

2 T [L]
l T [R]

1 T [R]
2 T [R]

r

⇐⇒

1 2

T1
[L]

T1
[R]

T [R]T2
[L]

T [L] Tr
[R]

l

2

Fig. 3: Decomposition of a bucket recursive tree T into its root and the left and right forest, respectively, and the
subblock-structure of the corresponding binary network.

consisting of the edge labelled 1 followed by binary networks corresponding to T [L]
` , T [L]

`−1, . . . , T [L]
1 ,

and G[R] is formed by a series of blocks consisting of the edge labelled 2 followed by binary networks
corresponding to T [R]

r , T [R]
r−1, . . . , T [R]

1 ; see Figure 3 for an example.

3 Uniform Bernoulli edge-duplication growth model
3.1 Degree of the source
Let Dn = Dn(p) denote the r.v. measuring the degree of the source in a random series-parallel network
of size n for the Bernoulli model, with 0 < p < 1. A first analysis of this quantity has been given in [11],
where the exact distribution ofDn as well as exact and asymptotic results for the expectation E(Dn) could
be obtained. However, questions concerning the limiting behaviour of Dn and the asymptotic behaviour
of higher moments of Dn have not been touched; in this context we remark that the explicit results for the
probabilities P{Dn = m} as obtained in [11] and restated in (6) are not easily amenable for asymptotic
studies, because of large cancellations of the alternating summands in the corresponding formula. We
will reconsider this problem by applying the combinatorial approach introduced in Section 2, and in order
to get limiting distribution results we apply methods from analytic combinatorics. As has been already
remarked in [11] the degree of the sink is equally distributed as Dn due to symmetry reasons, although a
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simple justification of this fact via direct “symmetry arguments” does not seem to be completely trivial (the
insertion process itself is a priori not symmetric w.r.t. the poles, since edges are always inserted towards
the sink); however, it is not difficult to show this equality by establishing and treating a recurrence for the
distribution of the sink, which is here omitted.

When considering the description of the growth process of these series-parallel networks via edge-
coloured recursive trees it is apparent that the degree of the source in such a graph corresponds to
the order of the maximal subtree containing the root node and only blue edges, i.e., we have to count
the number of nodes in the recursive tree that can be reached from the root node by taking only blue
edges; for simplicity we denote this maximal subtree by “blue subtree”. Thus, in the recursive tree
model, Dn measures the order of the blue subtree in a random edge-coloured recursive tree of order
n. To treat Dn we introduce the r.v. Dn,k, whose distribution is given as the conditional distribution
Dn

∣∣{the tree has exactly k blue edges}, and the trivariate generating function

F (z, u, v) :=
∑

n

∑

k

∑

m

Tn

(
n− 1

k

)
P{Dn,k = m}z

n

n!
ukvm, (1)

with Tn = (n − 1)! the number of recursive trees of order n. Thus Tn
(
n−1
k

)
P{Dn,k = m} counts the

number of edge-coloured recursive trees of order n with exactly k blue edges, where the blue subtree
has order m. Additionally we introduce the auxiliary function N(z, u) :=

∑
n

∑
k Tn

(
n−1
k

)
zn

n! u
k =

1
1+u log

(
1

1−z(1+u)

)
, i.e., the exponential generating function of the number of edge-coloured recursive

trees of order n with exactly k blue edges.
The decomposition of a recursive tree into its root node and the set of branches attached to it immedi-

ately can be translated into a differential equation for F (z, u, v), where we only have to take into account
that the order of the blue subtree in the whole tree is one (due to the root node) plus the orders of the
blue subtrees of the branches which are connected to the root node by a blue edge (i.e., only branches
which are connected to the root node by a blue edge will contribute). Namely, with F := F (z, u, v) and
N := N(z, u), we get the first order separable differential equation

F ′ = v · euF+N , (2)

with initial condition F (0, u, v) = 0. Throughout this work, the notation f ′ for (multivariate) functions
f(z, . . . ) shall always denote the derivative w.r.t. the variable z. The exact solution of (2) can be obtained
by standard means and is given as follows:

F (z, u, v) =
1

u
log

(
1

1− v + v(1− z(1 + u))
u

1+u

)
. (3)

Since we are only interested in the distribution of Dn we will actually consider the generating function

F (z, v) :=
∑

n

∑

m

TnP{Dn = m}z
n

n!
vm =

∑

n

∑

m

P{Dn = m}z
n

n
vm. (4)

According to the definition of the conditional r.v. Dn,k it holds that P{Dn = m} =
∑n−1
k=0 P{Dn,k =

m}
(
n−1
k

)
pkqn−1−k, which, after simple computations, gives the relation F (z, v) = 1

qF (qz, pq , v). Thus
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we obtain the following explicit formula for F ′(z, v), which has been obtained already in [11] by using a
description of Dn via urn models:

F ′(z, v) =
v

v(1− z) + (1− v)(1− z)1−p . (5)

Extracting coefficients from (5) immediately yields the explicit result for the probability distribution of
Dn, with 1 ≤ m ≤ n, stated in [11]:

P{Dn = m} = [zn−1vm]F ′(z, v) =
m−1∑

j=0

(
m− 1

j

)
(−1)n+j−1

(
p(j + 1)− 1

n− 1

)
. (6)

In order to describe the limiting distribution behaviour of Dn we first study the integer moments. To
do this we introduce F̃ (z, w) := F (z, 1 + w), since we get for its derivative the relation F̃ ′(z, w) =∑
n

∑
r E(D

r
n)zn−1w

r

r! , with E(D
r
n) = E(Dn · (Dn − 1) · · · (Dn − r+ 1)) the r-th factorial moment of

Dn. Plugging v = 1 +w into (5), extracting coefficients and applying Stirling’s formula for the factorials
easily gives the following explicit and asymptotic result for the r-th factorial moments of Dn, with r ≥ 1:

E(Dr
n) = r!

r−1∑

j=0

(
r − 1

j

)
(−1)r−1−j

(
n+ p(j + 1)− 1

n− 1

)
∼ r! · nrp

Γ(rp+ 1)
,

from which we further deduce

E
((Dn

np
)r
)
∼ r!

Γ(rp+ 1)
. (7)

Thus, the r-th integer moments of the suitably scaled r.v. Dn converge to the integer moments of a so-
called Mittag-Leffler distribution D = D(p) with parameter p (see, e.g., [8]), which, by an application of
the theorem of Fréchet and Shohat, indeed characterizes the limiting distribution of Dn.

From the explicit formula (5) it is also possible to characterize the density function f(x) of D (We
remark that alternatively we can obtain f(x) from the moment generating function M(z) = E(eDz) =∑
r≥0 E(Dr) z

r

r! and applying the inverse Laplace transform.). Namely, it holds

P{Dn = m} = [zn−1vm]F ′(z, v) =
1

2πi

∮
(1− (1− z)p)m−1
zn(1− z)1−p dz, (8)

where we have to choose as contour a positively oriented simple closed curve around the origin, which
lies in the domain of analyticity of the integrand. To evaluate the integral asymptotically (and uniformly)
for m = O(np+δ), δ > 0 and n → ∞ one can adapt the considerations done in [15] for the particular
instance p = 1

2 . After straightforward computations one obtains the following asymptotic equivalent of
these probabilities, which determines the density function f(x) of the limiting distribution D:

P{Dn = m} ∼ 1

np
· 1

2πi

∫

H

e−t−
m
np (−t)p

(−t)1−p dt,

with H a Hankel contour starting from e2πi∞, passing around 0 and terminating at +∞. The results are
collected in the following theorem.
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Theorem 3.1. The degree Dn of the source or the sink in a randomly chosen series-parallel network of
size n generated by the Bernoulli model converges after scaling, for n → ∞, in distribution to a Mittag-

Leffler distribution D = D(p) with parameter p: Dn

np

(d)−−→ D, where D is characterized by the sequence
of its r-th integer moments:

E(Dr) =
r!

Γ(rp+ 1)
, for r ≥ 0,

as well as by its density function f(x) (withH a Hankel contour):

f(x) =
1

2πi

∫

H

e−t−x(−t)
p

(−t)1−p dt, for x > 0.

We remark that after simple manipulations we can also write f(x) as the following real integral:

f(x) =
1

πp

∫ ∞

0

e−w
1
p−xw cos(πp) sin(πp− xw sin(πp))dw, for x > 0.

We further remark that for the particular instance p = 1
2 one can evaluate the Hankel integral above and

obtains that the limiting distribution D is characterized by the density function f(x) = 1√
π
· e− x2

4 , x > 0.

Thus, f(x) is the density function of a so-called half-normal distribution with parameter σ =
√

2.

3.2 Length of a random path from source to sink
We consider the length Ln = Ln(p) (measured by the number of edges) of a random path from the source
to the sink in a randomly chosen series-parallel network of size n for the Bernoulli model. In this context,
the following definition of a random source-to-sink path seems natural: we start at the source and walk
along outgoing edges, such that whenever we reach a node of out-degree d, d ≥ 1, we choose one of these
outgoing edges uniformly at random, until we arrive at the sink.

The following two observations are very helpful in the analysis of this parameter. First it holds that
the length Ln of a random path is distributed as the length L[L]

n of the leftmost source-to-sink path in a
random series-parallel network of size n; the meaning of the leftmost path is, that whenever we reach a
node of out-degree d, we choose the first (i.e., leftmost) outgoing edge. Unfortunately, so far we do not see
a simple symmetry argument to show this fact (such an argument easily shows that the rightmost path has
the same distribution as the leftmost path, but it does not seem to explain the general situation). However,
we are able to show this in a somehow indirect manner: namely, it is possible to establish a more involved
distributional recurrence for the length of a random path Ln and show that the explicit solution for the
probability distribution of the length of the leftmost path L[L]

n is indeed the solution of the recurrence for
Ln. These computations will be given in the journal version of this work, here we have to omit them.

Second we use that the length of the leftmost source-to-sink path in a series-parallel network has the
following simple description in the corresponding edge-coloured recursive tree: namely, an edge is lying
on the leftmost source-to-sink path if and only if the corresponding node in the recursive tree can be
reached from the root by using only red edges (i.e., edges that correspond to serial edges). This means
that the length ` of the leftmost source-to-sink path corresponds in the edge-coloured recursive tree model
to the order of the maximal subtree containing the root node and only red edges. If we switch the colours
red and blue in the tree we obtain an edge-coloured recursive tree where the maximal blue subtree has the
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same order, i.e., where the source-degree of the corresponding series-parallel network is `. But switching
colours in the tree model corresponds to switching the probabilities p and q = 1 − p for generating a

parallel and a serial edge, respectively, in the series-parallel network. Thus it simply holds L[L]
n (p)

(d)
=

Dn(1− p), where Dn denotes the source-degree in a random series-parallel network of size n.
Combining these considerations and the results for Dn obtained in Section 3.1 we obtain the following

theorem.

Theorem 3.2. The length Ln of a random path from the source to the sink in a randomly chosen series-
parallel network of size n generated by the Bernoulli model has the following probability distribution:

P{Ln = m} =

m−1∑

j=0

(
m− 1

j

)
(−1)n+j−1

(
j − p(j + 1)

n− 1

)
, for 1 ≤ m ≤ n.

Moreover, Ln has, for n → ∞, the following limiting distribution behaviour: Ln

n1−p

(d)−−→ L, where the
limiting distribution L is a Mittag-Leffler distribution with parameter 1− p, i.e., L is characterized by the
sequence of its r-th integer moments:

E(Lr) =
r!

Γ(r(1− p) + 1)
, for r ≥ 0,

as well as by its density function g(x) (withH a Hankel contour):

g(x) =
1

2πi

∫

H

e−t−x(−t)
1−p

(−t)p dt, for x > 0,

3.3 Number of paths from source to sink
Let Pn = Pn(p) denote the r.v. measuring the number of different paths from the source to the sink in a
randomly chosen series-parallel network of size n for the Bernoulli model. Again we use the description
of the growth of the graphs via edge-labelled recursive trees, but in contrast to the previous studies of
parameters, here it seems advantageous to use an alternative decomposition of recursive trees with respect
to the edge connecting nodes 1 and 2, which allows to establish a stochastic recurrence for the r.v. Pn.
Namely, it is not difficult to show (see, e.g., [4]) that when starting with a random recursive tree T of
order n ≥ 2 and removing the edge 1 − 2, both resulting trees T ′ and T ′′ are (after an order-preserving
relabelling) again random recursive trees of smaller orders; moreover, if Un denotes the order of the
resulting tree T ′ rooted at the former label 2 (and thus n − Un gives the order of the tree T ′′ rooted at
the original root of the tree T ), it holds that Un follows a discrete uniform distribution on the integers
{1, . . . , n − 1}, i.e., P{Un = k} = 1

n−1 , for 1 ≤ k ≤ n − 1. Depending on the colour of the edge
1− 2 in the edge-labelled recursive tree, it corresponds to a parallel edge (colour blue, which occurs with
probability p) or a serial edge (colour red, which occurs with probability q = 1− p) in the series-parallel
network: if it is a parallel edge then the number of source-to-sink paths in the corresponding substructures
have to be added, whereas for a serial edge they have to be multiplied in order to obtain the total number
of source-to-sink paths in the whole graph. Thus Pn satisfies the following stochastic recurrence:

Pn
(d)
= 1{Bn=1} ·

(
P ′Un

+ P ′′n−Un

)
+ 1{Bn=0} ·

(
P ′Un
· P ′′n−Un

)
, for n ≥ 2, P1 = 1, (9)
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where Bn and Un are independent of each other and independent of (Pn), (P ′n) and (P ′′n ), and where
(P ′n) and (P ′′n ) are independent copies of (Pn). Here Bn is the indicator variable of the event that 1 − 2
is a blue edge in the recursive tree, thus Bn is a Bernoulli distributed r.v. with success probability p, i.e.,
P{Bn = 1} = p. Furthermore, the r.v. Un measuring the order of the subtree rooted at 2, is uniformly
distributed on {1, 2, . . . , n− 1}, i.e., P{Un = k} = 1

n−1 , for 1 ≤ k ≤ n− 1.
Starting with (9) and taking the expectations yields after simple manipulations the following recurrence:

E(Pn) =
2p

n− 1

n−1∑

k=1

E(Pk) +
1− p
n− 1

n−1∑

k=1

E(Pk)E(Pn−k), n ≥ 2, E(P1) = 1. (10)

To treat this recurrence we introduce the generating function E(z) :=
∑
n≥1 E(Pn)zn−1, which gives

the following non-linear first order differential equation of Bernoulli type:

E′(z) =
2p

1− zE(z) + (1− p)
(
E(z)

)2
, E(0) = 1. (11)

Equation (11) can be treated by a standard technique for Bernoulli type differential equations and leads
to the following solution, where we have to distinguish whether p = 1

2 or not:

E(z) =





1−2p
(1−p)(1−z)−p(1−z)2p , for p 6= 1

2 ,
2

2(1−z)−(1−z) log( 1
1−z )

, for p = 1
2 .

(12)

From the formula (12) for the generating function E(z) one can easily deduce explicit results for the
expected value E(Pn) = [zn−1]E(z), which, however, due to alternating signs of the summands are not
easily amenable for asymptotic considerations. Instead, in order to obtain the asymptotic behaviour of
E(Pn) we consider the formulæ for the generating function E(z) stated in (12) and describe the structure
of the singularities: for 0 < p < 1 the dominant singularity at z = ρ < 1 is annihilating the denominator;
there E(z) has a simple pole, which due to singularity analysis [7] yields the main term of E(Pn), i.e.,
the asymptotically exponential growth behaviour; the (algebraic or logarithmic) singularity at z = 1 de-
termines the second and higher order terms in the asymptotic behaviour of E(Pn), which differ according
to the ranges 0 < p < 1

2 , p = 1
2 , and 1

2 < p < 1. This yields the following theorem.

Theorem 3.3. The expectation E(Pn) of the number of paths Pn from source to sink in a random series-
parallel network of size n generated by the Bernoulli model is given by the following explicit formula:

E(Pn) =





∑n−1
j=0 (−1)n+j−1

(
(2p−1)j−1

n−1
)∑n−1

k=0

(
k
j

) (
p

2p−1

)k
, for p 6= 1

2 ,∑n−1
k=0

(−1)k
2k
·Bk(−H(1)

n−1,−H
(2)
n−1,−2H

(3)
n−1, . . . ,−(k − 1)!H

(k)
n−1), for p = 1

2 ,

where Bk(x1, x2, . . . , xk) denotes the k-th complete Bell polynomial and where H(m)
n :=

∑n
j=1

1
jm

denote the m-th order harmonic numbers (see [16]).
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The asymptotic behaviour of E(Pn) is, for n→∞, given as follows:

E(Pn) =
1

1− p · α
n
p +Rp(n),

where αp =
1

1−
(

p
1−p
) 1

1−2p

, for p 6= 1

2
, and αp =

1

1− e−2 = lim
p→ 1

2

1

1−
(

p
1−p
) 1

1−2p

, for p =
1

2
,

and Rp(n) = − 1− 2p

pΓ(2p)
n2p−1 +O(n2(2p−1)), for 0 < p <

1

2
, Rp(n) = − 2

log n
+O(

1

log2 n
), for p =

1

2
,

Rp(n) = −2p− 1

1− p +O(n1−2p), for
1

2
< p < 1.

4 Uniform binary saturation edge-duplication growth model
4.1 Length of a random path from source to sink
We are interested in the length of a typical source-to-sink path in a series-parallel network of size n. Again,
it is natural to start at the source of the graph and move along outgoing edges, in a way that whenever
we have the choice of two outgoing edges we use one of them uniformly at random to enter a new node,
until we finally end at the sink. Let us denote by Ln the length of such a random source-to-sink path in
a random series-parallel network of size n for the binary model. Due to symmetry reasons it holds that

Ln
(d)
= L

[L]
n , where L[L]

n denotes the length of the leftmost source-to-sink path in a random series-parallel
network of size n, i.e., the source-to-sink path, where in each node we choose the left outgoing edge to
enter the next node.

In order to analyse L[L]
n we use the description of the growth of series-parallel networks via bucket-

recursive trees: the length of the left path is equal to 1 (coming from the root node of the tree, i.e.,
stemming from the edge 1 in the graph) plus the sum of the lengths of the left paths in the subtrees
contained in the left forest (which correspond to the blocks of the left part of the graph). When we
introduce the generating function

F (z, v) :=
∑

n≥1

∑

m≥0
TnP{Ln = m}z

n

n!
vm =

∑

n≥1

∑

m≥0
P{Ln = m}z

n

n
vm, (13)

then the above description yields the following differential equation:

F ′′(z, v) = veF (z,v)eN(z) =
v

1− z e
F (z,v), F (0, v) = 0, F ′(0, v) = v, (14)

where N(z) = log 1
1−z is the exponential generating function of the number Tn = (n − 1)! of bucket-

recursive trees of order n. In order to compute the expectation we consider E(z) := ∂
∂vF (z, v)

∣∣
v=1

=∑
n≥1 E(Ln) z

n

n , which satisfies the following linear second order differential equation of Eulerian type:

E′′(z) =
1

(1− z)2E(z) +
1

(1− z)2 , E(0) = 0, E′(0) = 1.

The explicit solution can be obtained by a standard technique and is given as follows:

E(z) =
3 +
√

5

2
√

5

1

(1− z)
√

5−1
2

− 3−
√

5

2
√

5
(1− z) 1+

√
5

2 − 1.
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Extracting coefficients and applying Stirling’s formula immediately yields the following explicit and
asymptotic result for the expectation:

E(Ln) = n

(
3 +
√

5

2
√

5

(
n+

√
5
2 − 3

2

n

)
− 3−

√
5

2
√

5

(
n−

√
5
2 − 3

2

n

))
∼ 1 +

√
5

2
√

5

n
√

5−1
2

Γ(
√
5−1
2 )

. (15)

In order to characterize the limiting distribution of Ln we will compute iteratively the asymptotic be-
haviour of all its integer moments. To this aim it is advantageous to consider G(z, v) := F ′(z, v).
Differentiating (14) shows that G(z, v) satisfies the following differential equation:

G′′(z, v) = G′(z, v)G(z, v) +
1

1− zG
′(z, v), G(0, v) = v, G′(0, v) = v. (16)

Introducing Mr(z) := ∂r

∂vrG(z, v)
∣∣
v=1

=
∑
n≥1 E(L

r
n)zn−1, differentiating (16) r times w.r.t. v and

evaluating at v = 1 yields

M ′′r (z) =
2

1− zM
′
r(z) +

1

(1− z)2Mr(z) +Rr(z),

with Rr(z) =
∑r−1
k=1

(
r
k

)
M ′k(z)Mr−k(z). Thus Mr(z) satisfies for each r an Eulerian differential equa-

tion, where the inhomogeneous part Rr(z) depends on the functions Mk(z), with k < r. The asymptotic
behaviour of Mr(z) around the dominant singularity z = 1 can be established inductively, namely it
holds:

Mr(z) ∼
cr

(1− z)rφ̃+1
,

with φ̃ =
√
5−1
2 , and where the constants cr satisfy a certain recurrence of “convolution type”. Singular-

ity analysis and an application of the theorem of Fréchet and Shohat shows then the following limiting
distribution result.

Theorem 4.1. The length Ln of a random path from the source to the sink in a random series-parallel
network of size n generated by the binary model satisfies, for n→∞, the following limiting distribution
behaviour, with φ̃ =

√
5−1
2 :

Ln

nφ̃
(d)−−→ L,

where the limiting distribution L is characterized by its sequence of r-th integer moments via

E(Lr) =
r! · c̃r

Γ(rφ̃+ 1)
, r ≥ 0,

and where the sequence c̃r satisfies the recurrence c̃r = 1
φ̃(r−1)((r+1)φ̃+1)

∑r−1
k=1(kφ̃ + 1)c̃k c̃r−k, for

r ≥ 2, with c̃0 = 1 and c̃1 = 3+φ̃
5 .
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4.2 Degree of the sink
Whereas the (out-)degree of the source of a binary series-parallel network is two (if the graph has at
least two edges), typically the (in-)degree of the sink is quite large, as will follow from our treatments.
Let us denote by Dn the degree of the sink in a random series-parallel network of size n for the binary
model. For a binary series-parallel network, the value of this parameter can be determined recursively
by adding the degrees of the sinks in the last block of each half of the graph; in the case that a half only
consists of one edge then the contribution of this half is of course 1. When considering the corresponding
bucket-recursive tree this means that the degree of the sink can be computed recursively by adding the
contributions of the left and the right forest attached to the root, where the contribution of a forest is either
given by 1 in case that the forest is empty (then the corresponding root node contributes to the degree of
the sink) or it is the contribution of the first tree in the forest (which corresponds to the last block), see
Figure 3. Introducing the generating functions

F (z, v) :=
∑

n≥1

∑

m≥0
TnP{Dn = m}z

n

n!
vm, A(z, v) :=

∑

n≥0

∑

m≥0
T̃nP{D̃n = m}z

n

n!
vm, (17)

with D̃n denoting the corresponding quantity for the left or right forest and T̃n = n! counting the num-
ber of forests of order n, the combinatorial decomposition of bucket-recursive trees yields the following
system of differential equations:

F ′′(z, v) =
(
A(z, v)

)2
, A′(z, v) =

1

1− z · F
′(z, v). (18)

From system (18) the following non-linear differential equation for F (z, v) can be obtained:

F ′′′(z, v) =
2

1− z
√
F ′′(z, v)F ′(z, v), F (0, v) = 0, F ′(0, v)v, F ′′(0, v) = v2,

which, by considering E(z) := ∂
∂vF (z, v)

∣∣
v=1

and solving an Eulerian differential equation, allows to
compute an exact and asymptotic expression for the expectation; namely it holds

E(Dn) =
1 +
√

2

2

(
n+
√

2− 2

n− 1

)
−
√

2− 1

2

(
n−
√

2− 2

n− 1

)
∼ 1 +

√
2

2

n
√
2−1

Γ(
√

2)
. (19)

However, for asymptotic studies of higher moments it seems to be advantageous to consider the fol-
lowing second order non-linear differential equation for A(z, v), which follows immediately from (18):

A′′(z, v) =
1

1− zA
′(z, v) +

1

1− z
(
A(z, v)

)2
, A(0, v) = v, A′(0, v) = v. (20)

Introducing the functions M̃r(z) := ∂r

∂vrA(z, v)
∣∣
v=1

and differentiating (20) r times, one obtains that
M̃r(z) satisfies for r ≥ 1 the following second order Eulerian differential equation:

M̃ ′′r (z) =
1

1− z M̃
′
r(z) +

2

(2− z)2 M̃r(z) +Rr(z), (21)
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with Rr(z) := 1
1−z

∑r−1
k=1

(
r
k

)
M̃k(z)M̃r−k(z). From (21) one can inductively show that the local be-

haviour of the functions M̃r(z) around the (unique) dominant singularity z = 1 is given as follows:

M̃r(z) ∼
cr

(1− z)r
√
2−(r−1) , r ≥ 1,

where the constants cr are determined recursively. Actually we are interested in the functions Mr(z) :=
∂r

∂vrF (z, v)
∣∣
v=1

=
∑
n≥1 E(D

r
n) z

n

n , which are, due to (18), related to M̃r(z) via M ′′r (z) = (1 −
z)M̃ ′′r (z) − M̃ ′r(z). Singularity analysis as well as the theorem of Fréchet and Shohat show then the
following limiting distribution result.

Theorem 4.2. The degree Dn of the sink in a random series-parallel network of size n generated by the
binary model satisfies, for n→∞, the following limiting distribution behaviour:

Dn

n
√
2−1

(d)−−→ D,

where the limiting distribution D is characterized by its sequence of r-th integer moments via

E(Dr) =
r!(r(

√
2− 1) + 1)c̃r

Γ(r(
√

2− 1) + 1)
, r ≥ 0,

where the sequence c̃r satisfies the recurrence c̃r = 1
(r(
√
2−1)+1)2−2

∑r−1
k=1 c̃k c̃r−k, for r ≥ 2, with c̃0 = 1

and c̃1 = 1+
√
2

2
√
2

.

4.3 Number of paths from source to sink
As for the Bernoulli model we are interested in results concerning the number of different paths from the
source to the sink in a series-parallel network and denote by Pn the number of source-to-sink paths in a
random series-parallel network of size n for the binary model. In order to study Pn it seems advantageous
to start with a stochastic recurrence for this random variable obtained by decomposing the bucket-recursive
tree into the root node and the left and right forest (of bucket-recursive trees) attached to the root node.
As auxiliary r.v. we introduce Qn, which denotes the number of source-to-sink paths in the series-parallel
network corresponding to a forest (i.e., a set) of bucket-recursive trees, where each tree in the forest
corresponds to a subblock in the left or right half of the graph. By decomposing the forest into its leftmost
tree and the remaining set of trees and taking into account that the number of source-to-sink paths in the
forest is the product of the number of source-to-sink paths in the leftmost tree and the corresponding paths
in the remaining forest, we obtain the following system of stochastic recurrences:

Pn
(d)
= Q′Un

+Q′′n−2−Un
, for n ≥ 2, Qn

(d)
= P ′Vn

·Q′′′n−Vn
, for n ≥ 1, (22)

withP0 = 0, P1 = 1,Q0 = 1, and where the r.v.Un and Vn are independent of each other and independent
of (Pn), (Pn)′, (Qn), (Qn)′, (Qn)′′ and (Qn)′′′. Furthermore, they are distributed as follows:

P{Un = k} =
1

n− 1
, 0 ≤ k ≤ n− 2, P{Vn = k} =

1

n
, 1 ≤ k ≤ n.
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Introducing En := E(Pn) and Ẽn := E(Qn), the stochastic recurrence above yields the following system
of equations for En and Ẽn (with E0 = 0, E1 = 1 and Ẽ0 = 1):

En =
2

n− 1

n−2∑

k=0

Ẽk, n ≥ 2, Ẽn =
1

n

n∑

k=1

EkẼn−k, n ≥ 1.

Introducing E(z) :=
∑
n≥1Enz

n−1 and Ẽ(z) :=
∑
n≥0 Ẽnz

n one obtains that E(z) satisfies the fol-
lowing non-linear second order differential equation:

E′′(z) =
1

1− zE
′(z) + E(z)E′(z), E(0) = 1, E′(0) = 2. (23)

Differential equation (23) is not explicitly solvable; furthermore, the so-called Frobenius method to deter-
mine a singular expansion fails for E(z). However, it is possible to apply the so-called Psi-series method
in the setting introduced in [3], i.e., assuming a logarithmic Psi-series expansion of E(z) when z lies near
the (unique) dominant singularity ρ on the positive real axis. This yields the following result.

Theorem 4.3. The expectation E(Pn) of the number Pn of paths from source to sink in a random series-
parallel network of size n generated by the binary model has, for n → ∞, the following asymptotic
behaviour, with ρ ≈ 0.89 . . . :

E(Pn) =
2

ρn
·
(

1− ρ2

(ρ− 1)2(n− 1)(n− 2)
+O

( log n

n4

))
.
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Corners in tree–like tableaux

Paweł Hitczenko1†and Amanda Lohss1
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Abstract. In this paper, we study tree–like tableaux, combinatorial objects which exhibit a natural tree structure and
are connected to the partially asymmetric simple exclusionprocess (PASEP). There was a conjecture made on the
total number of corners in tree–like tableaux and the total number of corners in symmetric tree–like tableaux. In this
paper, we prove the first conjecture leaving the proof of the second conjecture to the full version of this paper. Our
proofs are based on the bijection with permutation tableauxor type–B permutation tableaux and consequently, we
also prove results for these tableaux.

Keywords: Tree–like tableaux, permutation tableaux, type–B permutation tableaux

1 Introduction
Tree–like tableaux are relatively new objects which were introduced in Aval et al. (2013). They are
in bijection with permutation tableaux and alternative tableaux but are interesting in their own right as
they exhibit a natural tree structure (see Aval et al. (2013)). They also provide another avenue in which
to study the partially asymmetric simple exclusion process(PASEP), an important model from statistical
mechanics. See Aval et al. (2013) and Laborde Zubieta (2015a) for more details on the connection between
tree–like tableaux and the PASEP. See also Burstein (2007),Corteel and Nadeau (2009), Corteel and
Williams (2007b), Corteel and Williams (2007a), Nadeau (2011), Steingrı́msson and Williams (2007) and
Viennot (2008) for more details on permutation and alternative tableaux.

In Laborde Zubieta (2015a), the expected number of occupiedcorners in tree–like tableaux and the
number of occupied corners in symmetric tree–like tableauxwere computed (see Section 2 for definitions).
In addition, it was conjectured (see Conjectures 4.1 and 4.2in Laborde Zubieta (2015a)) that the total
number of corners in tree–like tableaux of sizen isn!× n+4

6 and the total number of corners in symmetric
tree–like tableaux of size2n+ 1 is 2n × n!× 4n+13

12 .
We have proven both conjectures and in this paper, we will present the proof of the first conjecture

(note that Laborde Zubieta (2015b) was able to prove the firstconjecture independently using a different
method). The proof of the second conjecture will be given in the full version of this paper Hitczenko and
Lohss (2015). Our proofs are based on the bijection with permutation tableaux or type–B permutation
tableaux and consequently, we also have results for these tableaux (see Theorems 4 and 11 below for
precise statements).

†Partially supported by a grant from Simons Foundation (grant #208766)
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The rest of the paper is organized as follows. In the next section we introduce the necessary definitions
and notation. Section 3 contains the proof of the conjecturefor tree–like tableaux. Section 4 develops the
tools necessary to prove the second conjecture for symmetric tree–like tableaux. The proof then follows
similarly to the proof of the first conjecture and will be leftto the full version of this paper Hitczenko and
Lohss (2015).

2 Preliminaries
A Ferrers diagram, F , is a left–aligned sequence of cells with weakly decreasingrows. Thehalf–
perimeterof F is the number of rows plus the number of columns. Theborder edgesof a Ferrers diagram
are the edges of the southeast border, and the number of border edges is equal to the half–perimeter. We
will occasionally refer to a border edge as a step (south or west). A shifted Ferrers diagramis a diagram
obtained from a Ferrers diagram withk columns by addingk rows above it of lengthsk, (k − 1), . . . , 1,
respectively. The half–perimeter of the shifted Ferrers diagram is the same as the original Ferrers diagram
(and similarly, the border edges are the same). The right–most cells of added rows are calleddiagonal
cells.

Let us recall the following two definitions introduced in Aval et al. (2013) and Steingrı́msson and
Williams (2007), respectively.

Definition 1 A tree–like tableau of sizen is a Ferrers diagram of half-perimetern + 1 with some cells
(called pointed cells) filled with a point according to the following rules:

1. The cell in the first column and first row is always pointed (this point is known as the root point).

2. Every row and every column contains at least one pointed cell.

3. For every pointed cell, all the cells above are empty or allthe cells to the left are empty.

Definition 2 A permutation tableau of sizen is a Ferrers diagram of half–perimetern filled with0’s and
1’s according to the following rules:

1. There is at least one1 in every column.

2. There is no0 with a1 above it and a1 to the left of it simultaneously.

We will also need a notion of type–B tableaux originally introduced in Lam and Williams (2008). Our
definition follows a more explicit description given in (Corteel and Kim, 2011, Section 4).

Definition 3 A type–B permutation tableau of sizen is a shifted Ferrers diagram of half–perimetern
filled with0’s and1’s according to the following rules:

1. There is at least one1 in every column.

2. There is no0 with a1 above it and a1 to the right of it simultaneously.

3. If one of the diagonal cells contains a0 (called a diagonal0), then all the cells in that row are0.
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Fig. 1: (i) A tree–like tableau of size13. (ii) A permutation tableau of size12. (iii) A type-B permutation tableau of
size6.

Let Tn be the set of all tree–like tableaux of sizen, Pn denote the set of all permutation tableaux of
sizen, andBn denote the set of all type–B permutation tableaux of sizen. In addition to these tableaux,
we are also interested insymmetric tree–like tableaux, a subset of tree–like tableaux which are symmetric
about their main diagonal (see (Aval et al., 2013, Section 2.2) for more details). As noticed in Aval et al.
(2013), the size of a symmetric tree–like tableaux must be odd, and thus, we letT sym

2n+1 denote the set of
all symmetric tree–like tableaux of size2n+ 1. It is a well–known fact that|Pn| = n! and|Bn| = 2nn!.
Consequently,|Tn| = n! and |T sym

2n+1| = 2nn! since by Aval et al. (2013), there are bijections between
these objects. We letXn ∈ {Tn, T sym

2n+1,Pn,Bn} be any of the four sets of tableaux defined above.
In permutation tableaux and type–B permutation tableaux, arestricted0 is a 0 which has a1 above

it in the same column. Anunrestricted rowis a row which does not contain any restricted0’s (and for
type–B permutation tableaux, also does not contain a diagonal 0). We letUn(T ) denote the number of
unrestricted rows in a tableauT of sizen. It is also convenient to denote a topmost1 in a column by1T
and a right-most restricted0 by 0R.

Cornersof a Ferrers diagram (or the associated tableau) are the cells in which both the right and bottom
edges are border edges (i.e. a south step followed by a west step). In tree–like tableaux (symmetric or
not)occupied cornersare corners that contain a point.

Our proofs will rely on techniques developed in Corteel and Hitczenko (2007) (see also Hitczenko and
Janson (2010)). These two papers used probabilistic language and we adopt it here, too. Thus, instead of
talking about the number of corners in tableaux we letPn be a probability distribution onXn defined by

Pn(T ) =
1

|Xn|
, T ∈ Xn, (1)

and we consider a random variableCn on the probability space(Xn,Pn) defined by

Cn(T ) = k if and only if T hask corners, T ∈ Xn, k ≥ 0.

For convenience, letSk indicate that thekth step (border edge) is south andWk indicate that thekth step
is west. Thus,

Cn =

n−1∑

k=1

ISk,Wk+1
, (2)
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whereIA is the indicator random variable of the eventA.
A tableau chosen fromXn according to the probability measurePn is usually referred to as a random

tableau of sizen andCn is referred to as the number of corners in a random tableau of sizen. We letEn

denote the expected value with respect to the measurePn. If c(Xn) denotes the total number of corners in
tableaux inXn then, in view of (1), we have the following simple relation:

EnCn =
c(Xn)

|Xn|
or, equivalently, c(Xn) = |Xn|EnCn. (3)

3 Corners in Tree-Like Tableaux
The main result of this section is the proof of the first conjecture of Laborde Zubieta.

Theorem 1 (see (Laborde Zubieta, 2015a, Conjecture 4.1)) Forn ≥ 2 we have

c(Tn) = n!× n+ 4

6
.

To prove this, we will use the bijection between tree–like tableaux and permutation tableaux. According
to Proposition 1.3 of Aval et al. (2013), there exists a bijection between permutation tableaux and tree–
like tableaux which transforms a tree–like tableau of shapeF to a permutation tableau of shapeF ′ which
is obtained fromF by removing the SW–most edge fromF and the cells of the left–most column (see
Figure 2).

0
0 0

1

1 1 1

←→

•

•

•

• •
•
•

Fig. 2: An example of the bijection between permutation tableaux and tree–like tableaux of size7.

The number of corners inF is the same as the number of corners inF ′ if the last edge ofF ′ is horizontal
and it is one more than the number of corners inF ′ if the last edge ofF ′ is vertical. Furthermore, as is
clear from a recursive construction described in (Corteel and Hitczenko, 2007, Section 2), any permutation
tableau of sizen whose last edge is vertical is obtained as the unique extension of a permutation tableau
of sizen− 1. Therefore, there are(n− 1)! such tableaux and we have a simple relation

c(Tn) = c(Pn) + |{P ∈ Pn : Sn}| = c(Pn) + (n− 1)!. (4)

Thus, it suffices to determine the number of corners in permutation tableaux of sizen. Since|Pn| = n!,
Equation (3) becomes

c(Pn) = n!EnCn. (5)

In order to determine the number of corners in permutation tableaux, we first have the following result.
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Theorem 2 For permutation tableaux of sizen, the probability of having a corner with border edgesk
andk + 1 is given by

Pn

(
ISk,Wk+1

)
=

n− k + 1

n
− (n− k)2

n(n− 1)
.

Proof: The theorem can be proven by using techniques developed in Corteel and Hitczenko (2007).
Specifically, ifk + 1 ≤ n − 1 thenISk,Wk+1

is a random variable onPn−1 (denoted byTn−1 in Corteel
and Hitczenko (2007) and Hitczenko and Janson (2010)). A relationship between the measures onPn and
Pn−1 was derived in Corteel and Hitczenko (2007) and is given by (see (Corteel and Hitczenko, 2007,
Equation (7)) and (Hitczenko and Janson, 2010, Section 2, Equation (2.1))),

EnXn−1 =
1

n
En−1(2

Un−1Xn−1) (6)

whereXn−1 is any random variable defined onPn−1.
Therefore,

Pn

(
ISk,Wk+1

)
= En

(
ISk,Wk+1

)
=

1

n
En−1

(
2Un−1ISk,Wk+1

)

=
1

n
En−1E

(
2Un−1ISk,Wk+1

|Fn−2

)
,

whereFn−2 is aσ–subalgebra onPn−1 obtained by grouping into one set all tableaux inPn−1 that are
obtained by extending the same tableau inPn−2 (we refer to (Hitczenko and Janson, 2010, Section 2) for
a detailed explanation). Now, ifk+ 1 ≤ n− 2 thenISk,Wk+1

is measurable with respect to theσ-algebra
Fn−2. Thus by the properties of conditional expectation the above is:

En

(
ISk,Wk+1

)
=

1

n
En−1ISk,Wk+1

E
(
2Un−1 |Fn−2

)
.

By (Corteel and Hitczenko, 2007, Equation (4)), the conditional distribution ofUn givenUn−1 is given
by

L(Un|Fn−1) = 1 + Bin(Un−1),

whereBin(m) denotes a binomial random variable with parametersm and1/2. By this result and the
fact thatEaBin(m) =

(
a+1
2

)m
,

1

n
En−1ISk,Wk+1

E
(
2Un−1 |Fn−2

)
=

1

n
En−1ISk,Wk+1

E
(
21+Bin(Un−2)|Fn−2

)

=
2

n
En−1ISk,Wk+1

(
3

2

)Un−2

=
2

n(n− 1)
En−2ISk,Wk+1

3Un−2 (7)

where the last step follows from (6). Iterating(n− 1)− (k + 1) times, we obtain

2 · 3 · · · · · (n− k − 1)

n(n− 1) · · · · · (k + 2)
Ek+1ISk,Wk+1

(n− k)Uk+1 . (8)
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Thus, we need to compute
Ek+1ISk,Wk+1

(n− k)Uk+1 (9)

for 1 ≤ k ≤ n− 1 (note thatk + 1 = n givesEnISn−1,Wn which is exactly the summand omitted earlier
by the restrictionk + 1 ≤ n − 1). This can be computed as follows. First, by the tower property of the
conditional expectation and the fact thatSk isFk–measurable, we obtain

Ek+1ISk,Wk+1
(n− k)Uk+1 = Ek+1ISk

E(IWk+1
(n− k)Uk+1 |Fk).

And now

E(IWk+1
(n− k)Uk+1 |Fk) = E((n− k)Uk+1 |Fk)− E(ISk+1

(n− k)Uk+1 |Fk)

because the two indicators are complementary. The first conditional expectation on the right–hand side,
by a computation similar to (7) (see also (Hitczenko and Janson, 2010, Equation (2.2))) is

(n− k)E
(
(n− k)Uk+1 |Fk

)
= (n− k)

(
n− k + 1

2

)Uk

. (10)

To compute the second conditional expectation, note that onthe setSk+1, Uk+1 = 1+ Uk so that

E(ISk+1
(n− k)Uk+1 |Fk) = (n− k)1+UkE(ISk+1

|Fk)

= (n− k)1+UkP(ISk+1
|Fk)

= (n− k)1+Uk
1

2Uk

where the last equation follows from the fact that for every tableauP ∈ Pk only one of its2Uk(P )

extensions to a tableau inPk+1 hasSk+1 (see Corteel and Hitczenko (2007); Hitczenko and Janson
(2010) for more details and further explanation). Combining with (10) yields

E(IWk+1
(n− k)Uk+1 |Fk) = (n− k)

((
n− k + 1

2

)Uk

−
(
n− k

2

)Uk
)

and thus (9) equals

(n− k)Ek+1

(
ISk

((
n− k + 1

2

)Uk

−
(
n− k

2

)Uk
))

.

The expression inside the expectation is a random variable on Pk so that we can use the same argument
as above (based on (Corteel and Hitczenko, 2007, Equation 5)or (Hitczenko and Janson, 2010, Equa-
tion (2.1))) to reduce the size by one and obtain that the expression above is

n− k

k + 1
EkISk

(
(n− k + 1)

Uk − (n− k)
Uk

)
.

Furthermore, on the setSk, Uk = Uk−1 + 1 so that the above is

n− k

k + 1
Ek

((
(n− k + 1)1+Uk−1 − (n− k)1+Uk−1

)
E(ISk

|Fk−1)
)
,
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which, by the same argument as above, equals

n− k

k + 1
Ek

((
(n− k + 1)

1+Uk−1 − (n− k)
1+Uk−1

) 1

2Uk−1

)
.

After reducing the size one more time we obtain

n− k

(k + 1)k

(
Ek−1 (n− k + 1)

1+Uk−1 − Ek−1 (n− k)
1+Uk−1

)
. (11)

As computed in (Hitczenko and Janson, 2010, Equation (2.4))for a positive integerm the generating
function ofUm is given by

EmzUm =
Γ(z +m)

Γ(z)m!
.

(There is an obvious omission in (2.4) there; thez+n in the third expression should bez+n− 1.) Using
this withm = k − 1 andz = n− k + 1 and then withz = n− k we obtain

Ek−1

(
(n− k + 1)

1+Uk−1

)
= (n− k + 1)

(n− 1)!

(n− k)!(k − 1)!
(12)

and

Ek−1

(
(n− k)

1+Uk−1

)
= (n− k)

(n− 2)!

(n− k − 1)!(k − 1)!
. (13)

Combining Equations (8), (11), (12), and (13),

En

(
ISk,Wk+1

)
=

(n− k − 1)!(k + 1)!

n!
· n− k

k(k + 1)

(
(n− k + 1)(n− 1)!

(k − 1)!(n− k)!
− (n− k)(n− 2)!

(k − 1)!(n− k − 1)!

)

=
n− k + 1

n
− (n− k)2

n(n− 1)
,

and the conclusion follows. ✷

The relationship between permutation tableaux and tree–like tableaux given by (4) allows us to deduce
the following corollary to Theorem 6.

Corollary 3 For tree–like tableaux of sizen, n ≥ 2, the probability of having a corner with border edges
k andk + 1 is given by

Pn

(
ISk,Wk+1

)
=

{
n−k+1

n − (n−k)2

n(n−1) k = 1, . . . , n− 1;
1
n k = n.

Finally, we establish the following result which, when combined with (4) and (5), completes the proof
of Theorem 1.

Theorem 4 For permutation tableaux of sizen we have

EnCn =
n+ 4

6
− 1

n
.
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Proof: In view of (2) we are interested in

En

(
n−1∑

k=1

ISk,Wk+1

)
=

n−1∑

k=1

En

(
ISk,Wk+1

)
.

Therefore, the result is obtained by summing the expressionfrom Theorem 2 fromk = 1 to n− 1. ✷

To conclude this section, note that Theorem 1 could also be obtained by summing the expression from
Corollary 3 fromk = 1 to n.

4 Corners in Symmetric Tree-Like Tableaux
The main result of this section concerns the second conjecture of Laborde Zubieta.

Theorem 5 (see (Laborde Zubieta, 2015a, Conjecture 4.2)) Forn ≥ 2 we have

c(T sym
2n+1) = 2n × n!× 4n+ 13

12
.

As in Section 3, we will use a bijection between symmetric tree–like tableaux and type–B permutation
tableaux to relate the corners ofT sym

2n+1 to the corners ofBn. In Section 2.2 of Aval et al. (2013), it was
mentioned that there exists such a bijection; however, no details were given. Thus, we give a description
of one such bijection which will be useful to us (see Figure 3).

1

1

10
0 0

←→

•
•

•
•

•

•

•
•
•
• •

Fig. 3: An example of the bijectionFas defined in Lemma 6 between type–B permutation tableaux of size 5 and
symmetric tree–like tableaux of size11.

Lemma 6 ConsiderF : T sym
2n+1 → Bn defined by the following rules,

1. Replace the topmost point in each column with1T ’s.

2. Replace the leftmost points in each row with0R’s

3. Fill in the remaining cells according to the rules of type–B permutation tableaux.

4. Remove the cells above the diagonal.

5. Remove the first column.

andF−1 : Bn → T sym
2n+1 defined by:
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1. Add a column and point all cells except those in a restricted row.

2. Replace all0R’s with points unless that0R is in the same row as a diagonal0.

3. Replace all non-diagonal1T ’s with points.

4. Delete the remaining numbers, add a pointed box in the upper–left–hand corner (the root point),
and then add the boxes necessary to make the tableau symmetric.

ThenF is a bijection betweenT sym
2n+1 andBn.

Proof: The details of this proof are straightforward and will be given in the full version of this paper
Hitczenko and Lohss (2015). ✷

As mentioned earlier, Lemma 6 will allow us to relate the corners of symmetric tree–like tableaux to the
corners of type–B permutation tableaux. To carry out the calculations for type–B permutation tableaux
we will develop techniques similar to those developed in Corteel and Hitczenko (2007) for permutation
tableaux. First, we briefly describe an extension procedurefor B–type tableaux that mimics a construction
given in (Corteel and Hitczenko, 2007, Section 2). Fix anyB ∈ Bn−1 and letUn−1 = Un−1(B) be the
number of unrestricted rows inB. We can extend the size ofB to n by inserting a new row or a new
column. The details of this insertion will be left for the full version of this paper. However, ifUn is the
number of unrestricted rows in the extended tableaux,Un = 1, . . . , Un−1+1, the (conditional) probability
thatUn = Un−1 + 1 is given by inserting a row,

P(Un = Un−1 + 1|Fn−1) = P(Sn|Fn−1) =
1

2Un−1+1
. (14)

(Here, analogously to permutation tableaux (see the proof of Theorem 4 above or (Hitczenko and Janson,
2010, Section 2))Fn−1 is aσ–subalgebra onBn obtained by grouping together all tableaux inBn that are
obtained as the extension of the same tableau fromBn−1.) The (conditional) probability of the remaining
cases is given by inserting a column,

P(Un = k|Fn−1) =
1

2Un−1+1

((
Un−1

k − 1

)
+

(
Un−1

k − 1

))
=

1

2Un−1

(
Un−1

k − 1

)
,

for k = 1, . . . , Un−1. This agrees with (14) whenk = Un+1. Thus,

L(Un|Fn−1) = 1 + Bin(Un−1),

where the left–hand side means the conditional distribution of Un givenUn−1 andBin(m) denotes a
binomial random variable with parametersm and 1/2. Note that this is the same relationship as for
permutation tableaux (see (Hitczenko and Janson, 2010, Equation (2.2)) or (Corteel and Hitczenko, 2007,
Equation 4)).

As in the case of permutation tableaux, the uniform measurePn onBn induces a measure (still denoted
by Pn) onBn−1 via a mappingBn → Bn−1 that assigns to anyB′ ∈ Bn the unique tableau of sizen− 1
whose extension isB′. These two measures onBn−1 are not identical, but the relationship between them
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can be easily calculated (see (Corteel and Hitczenko, 2007,Section 2) or (Hitczenko and Janson, 2010,
Section 2) for more details and calculations for permutation tableaux). Namely,

Pn(B) = 2Un−1(B)+1 |Bn−1|
|Bn|

Pn−1(B), B ∈ Bn−1.

This relationship implies that for any random variableX onBn−1,

EnX =
2|Bn−1|
|Bn|

En−1(2
Un−1(Bn−1)X). (15)

This allows us to provide a direct proof of the following wellknown fact,

Proposition 7 For all n ≥ 0, |Bn| = 2nn!.

Proof: By considering all the extensions of a type–B permutation tableau of sizen − 1, we have the
following relationship,

|Bn| =
∑

B∈Bn−1

2Un−1(B)+1.

Thus,

|Bn| = |Bn−1|En−1

(
2Un−1+1

)

= 2|Bn−1|En−1E
(
21+Bin(Un−2)|Un−2

)

= 2 · 2|Bn−1|En−1

(
3

2

)Un−2

= 2 · 2|Bn−1|
2|Bn−2|
|Bn−1|

En−2

(
2Un−2

(
3

2

)Un−2
)

= 22 · 2! |Bn−2|En−23
Un−2 .

Iteratingn times,

|Bn| = 23 · 3! |Bn−3|En−34
Un−3 = 2n−1(n− 1)!|B1|E1n

U1

= 2nn!,

where the final equality holds because|B1| = 2 andU1 ≡ 1. ✷

Given Proposition 7, (15) reads

EnX =
1

n
En−1(2

Un−1(Bn−1)X). (16)

This is exactly the same expression as (Corteel and Hitczenko, 2007, Equation (7)) which means that the
relationship betweenEn andEn−1 is the same regardless of whether we are consideringPn orBn. Thus,
any computation forB–type tableaux based on (16) will lead to the same expressionas the analogous
computation for permutation tableaux based on (Corteel andHitczenko, 2007, Equation (7)).

Now we have the tools necessary to obtain a relationship between corners in symmetric tree–like
tableaux and type–B permutation tableaux which is analogous to (4).
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Lemma 8 The number of corners in symmetric tree–like tableaux is given by,

c(T sym
2n+1) = 2c(Bn) + 2n(n− 1)! + 2n−1n!. (17)

Proof: The bijection described in Lemma 6 leads to the following relationship,

c(T sym
2n+1) = 2c(Bn) + 2|{B ∈ Bn : Sn}|+ |{B ∈ Bn : W1}|. (18)

The result is then obtained by the extension process described above. The details will be given in the full
version of this paper Hitczenko and Lohss (2015). ✷

It follows from Lemma 8 that to prove Theorem 5, it suffices to determine the number of corners in
type–B permutation tableaux of sizen. Since|Bn| = 2nn!, Equation (3) becomes

c(Bn) = 2nn!EnCn. (19)

In order to determine the number of corners in type–B permutation tableaux, we first have the following
result.

Theorem 9 For type–B permutation tableaux of sizen, the probability of having a corner with border
edgesk andk + 1 is given by

Pn

(
IMk=S,Mk+1=W

)
=

n− k + 1

2n
− (n− k)2

4n(n− 1)
.

Proof: The proof is similar to the proof of Theorem 2, using the techniques developed in this section for
type–B permutation tableaux. The details will be given in the full version of this paper Hitczenko and
Lohss (2015). ✷

The relationship between permutation tableaux and tree–like tableaux given by (17) allows us to deduce
the following corollary to Theorem 9.

Corollary 10 For symmetric tree–like tableaux of size2n+ 1, n ≥ 2, the probability of having a corner
with border edgesk andk + 1 is given by

Pn

(
ISk,Wk+1

)
=





1
2n k = 1
k
2n −

(k−1)2

4n(n−1) k = 2, . . . n,
1
2 k = n+ 1
2n−k+2

2n − (2n−k+1)2

4n(n−1) k = n+ 2, . . . 2n
1
2n k = 2n+ 1.

Finally, we establish the following result which, when combined with (17) and (19), completes the proof
of Theorem 5.

Theorem 11 For type–B permutation tableaux of sizen we have

EnCn =
4n+ 7

24
− 1

2n
.

Proof: The result is obtained by summing the expression from Theorem 9 fromk = 1 to n− 1. ✷

To conclude this section, note that Theorem 5 could also be obtained by summing the expression from
Corollary 10 fromk = 1 to 2n+ 1.
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Variance of additive functions defined on
random assemblies
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Abstract. An inequality for the variance of an additive function defined on random decomposable structures, called
assemblies, is established. The result generalizes estimates obtained earlier in the cases of permutations and mappings
of a finite set into itself. It is analogous to the Turán-Kubilius inequality for additive number-theoretic functions.

Keywords: Labeled decomposable structure, additive function, moments, Turán-Kubilius inequality.

We deal with additive functions defined on combinatorial structures such as permutations, mappings of
a finite set into itself, 2-regular graphs etc. If a structureis taken at random, such functions are sums of
dependent random variables; sometimes, they are calledseparable statistics. Their value distribution is a
complex problem. One of the useful tools in analysing it are estimates of the variance. This is our main
objective. On the other hand, our interest has been highly stimulated by the Turán-Kubilius inequality in
probabilistic number theory or by analogous inequalities in the theory of additive arithmetical semigroups.

An assembly is a construction defined on a set by its partitionand some structure introduced in all
subsets, afterwards called components of the assembly. Assume that given a subset of sizej we can
introducegj < ∞ structures, then the number of assemblies spanned over ann set (assemblies of the
ordern) equals

G(n) = n!
∑

ℓ(s̄)=n

n∏

j=1

(gj
j!

)sj 1

sj!
=: n!Q(n).

Heren ∈ N, ℓ(s̄) := 1s1 + · · ·+ nsn if s̄ = (s1, . . . , sn) ∈ Nn
0 and the summation is over such vectors

satisfyingℓ(s̄) = n. We will denote the class of assemblies byG and the set of assemblies of the ordern
by Gn ⊂ G.

Let λj := gj/j!. In the past decades much attention was paid to thelogarithmicclass defined by the
asymptotic conditionρjjλj ∼ θ for some positive constantsθ, Θ andρ asj → ∞ (see [1]). Extensions
were initiated in the first author’s paper [2], where a condition

0 < θ ≤ ρjjλj ≤ Θ, j ≥ 1, (1)

was used. The lower bound excluded, for example, the class of2-regular graphs, however. Basing upon
the experience, in the present paper we confine ourselves to aclass of assemblies characterized by some
positive constantsρ, Θ, θ, θ′, andn0 ≥ 1.



2 Eugenijus Manstavičius and Vytautas Stepas

Definition. We say that a class of assemblies is weakly logarithmic if thefollowing conditions are satis-
fied:

ρjjλj ≤ Θ, j ≥ 1; (2)

∑

j≤n

ρjjλj ≥ θn, n ≥ n0; (3)

nQ(n)ρn ≥ θ′ exp

{∑

j≤n

λjρ
j

}
, n ≥ 1. (4)

Let kj(σ) ≥ 0 be the number of components of sizej in σ ∈ Gn and1 ≤ j ≤ n. An additive function
h : Gn → R is defined by a real two-dimensional array{hj(k)}, wherej, k ∈ N, jk ≤ n, andhj(0) = 0
for all j ≤ n, by setting

h(σ) =

n∑

j=1

hj

(
kj(σ)

)
. (5)

Apart from the most popular example of the number-of-components functionw(σ) = k1(σ) + · · · +
kn(σ), they appear in many algebraic and combinatorial problems.Particular additive functions appear in
physical models as a part of Hamiltonians in the Bose gas theory.

Let Enh andVnh denote the expectation and the variance ofh = h(σ) with respect to uniform
probability measure. The problem is to estimate

Vnh =
1

G(n)

∑

σ∈Gn

(h(σ)−Enh)
2
= Enh

2 − (Enh)
2

in terms of the valueshj(k) wherejk ≤ n and parameters characterizing the class of assemblies.
In the sequel, letQ{j}(n) be defined by

Q{j}(n) =
∑

ℓ(s̄)=n
sj=0

∏

i≤n

λsi
i

si!
, j ≤ n

and≪ be an analog of the symbolO(·).
Now, the results.

Theorem 1. Assume thatG is weakly logarithmic andh : Gn → R is an arbitrary additive function.
Then

Vnh ≪
∑

jk≤n

λk
j hj(k)

2

k!

Q{j}(n− jk)

Q(n)
(6)

for n ≥ 1.

Inequality (6) sharpens a bit Theorem 3 in [3] proved for an arbitrary additive function defined on
weighted permutations under condition (1).

A completely additive functionh is defined by the arrayhj(k) = ajk, whereaj ∈ R andjk ≤ n. For
such functions, inequality (6) takes a simpler form.
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Theorem 2. Assume thatG is weakly logarithmic andh : Gn → R is a completely additive function
defined viahj(s) = ajs wherejs ≤ n. Then

Vnh ≪
∑

j≤n

λja
2
j

Q(n− j)

Q(n)
. (7)

Inequality (7) for weighted permutations satisfying condition (1) has a longer history (see [3])).
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Abstract. The density, denoted byκ(n, r), of permutations having no cycles of length less thanr+1 in a symmetric
groupSn is explored. New asymptotic formulas forκ(n, r) are obtained using the saddle-point method when5 ≤
r < n andn → ∞.

Keywords: symmetric group, long cycles, Buchstab’s function, Dickman’s function, saddle-point method

The probabilityκ(n, r) that a permutation sampled from the symmetric groupSn uniformly at random
has no cycles of length less thanr + 1, where1 ≤ r < n andn → ∞, is explored. New asymptotic
formulas valid in specified regions are obtained using the saddle-point method. One of the results is
applied to show that estimate of the total variation distance for permutations can be expressed only through
the functionν(n, r) which is a probability that a permutation sampled from theSn uniformly at random
has no cycles of length greater thanr.

To address the problem, we need recollect the following functions. Buchstab’s functionω(v) is defined
as a solution to difference-differential equation

(vω(v))′ = w(v − 1)

for v > 2 with the initial conditionω(v) = 1/v if 1 ≤ v ≤ 2. Dickman’s function̺ (v) is the unique
continuous solution to the equation

v̺′(v) + ̺(v − 1) = 0

for v > 1 with initial condition̺(v) = 1 if 0 ≤ v ≤ 1.
The interest to the problem begins with the classical example of derangements

κ(n, 1) =

n∑

j=0

(−1)
j

j!
= e−1 +O

(
1

n!

)

and the trivial caseκ(n, r) = 1/n if n/2 ≤ r < n. There was a series of works concerning general
asymptotic formulas of the probabilityκ(n, r) the strongest of which are presented here as Proposition 1
and Proposition 2.
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Proposition 1 For 1 ≤ r < n, we have

κ(n, r) = e−Hr+γω(n/r) + O

(
1

r2

)
.

See [6, Theorem 3].

Proposition 2 Letu = n/r. For 1 ≤ r ≤ n/ logn,

κ(n, r) = e−Hr +O

(
(u/e)−u

r2

)
.

If r ≥ 3, we can replacee by 1 in the error term.

See [12, Proposition 2]. Together these propositions provide stronger estimates ofκ(n, r) than those in
[2], [3], [4]. New results are the following theorems:

Theorem 1 For
√
n logn ≤ r < n, we have

κ(n, r) = e−Hr+γω(n/r) +O

(
̺(n/r)

r2

)
.

Proof. The result is a corollary of Theorem 1 in [7]. It is obtained from the probability generating function
using saddle-point method, the technique is elaborated in[11].

Theorem 2 For (logn)4 ≤ r < n, we have

κ(n, r) = e−Hr +O

(
̺(n/r)

r

)
.

Proof. The saddle-point method is applied to the Cauchy’s integralrepresentation ofκ(n, r), as in the
proof of Theorem 1. However, there are some other technical difficulties one must to overcome.

Theorem 3 For 5 ≤ r < n, we have

κ(n, r) = e−Hr +O

(
ν(n, r)

r

)
.

Proof. Quite the same technique to that used in the proof of Theorem 2is employed, just a different
approximation of the saddle point is taken and Corollary 5 of[8] is applied.

Theorem 1 and Theorem 2 (see also Corollary 2.3 in [5]) improve on Proposition 1 and Proposition 2.
Theorem 3 is of separate interest; as we see, it can be useful in formulas where both probabilitiesκ(n, r)
andν(n, r) are involved. Here is an example.
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Letkj(σ) equal the number of cycles of lengthj in a permutationσ ∈ Sn, k(σ) = (k1(σ), k2(σ), . . . , kn(σ)) ,
andZ = (Z1, Z2, . . . , Zn), whereZj are Poisson random variables such thatEZj = 1/j, j ∈ N. Thus,
if 5 ≤ r < n, we have (see Lemma 3.1 on p. 69 of [1])

dTV (n, r) = sup
V ⊆Zr

+

∣∣∣∣
#{σ : k(σ) ∈ V }

n!
− Pr(Z ∈ V )

∣∣∣∣

=
1

2

∞∑

m=0

ν(m, r)
∣∣κ(n−m, r) − e−Hr

∣∣

=
e−Hr

2

∞∑

m=n−r

ν(m, r) +
1

2
ν(n, r) +O

(
1

r

n−r−1∑

m=0

ν(m, r)ν(n −m, r)

)
.

Consequently, only results on the probabilityν(n, r) are needed attempting to improve on the order of
notable estimate fordTV (n, r) in [2].
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[9] E. Manstavičius and R. Petuchovas, Permutations without long or short cycles,Electronic Notes in
Discrete Mathematics, 2015,49, 153-158.

[10] G. Tenenbaum,Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press,
1995.



4 Robertas Petuchovas
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Thirty years ago, the Robin Hood collision resolution strategy was introduced for open addressing hash tables, and
a recurrence equation was found for the distribution of its search cost. Although this recurrence could not be solved
analytically, it allowed for numerical computations that,remarkably, suggested that the variance of the search cost
approached a value of1.883 when the table was full. Furthermore, by using a non-standard mean-centered search
algorithm, this would imply that searches could be performed in expected constant time even in a full table.

In spite of the time elapsed since these observations were made, no progress has been made in proving them. In this
paper we introduce a technique to work around the intractability of the recurrence equation by solving instead an
associated differential equation. While this does not provide an exact solution, it is sufficiently powerful to prove a
bound for the variance, and thus obtain a proof that the variance of Robin Hood is bounded by a small constant for
load factors arbitrarily close to 1. As a corollary, this proves that the mean-centered search algorithm runs in expected
constant time.

We also use this technique to study the performance of Robin Hood hash tables under a long sequence of insertions
and deletions, where deletions are implemented by marking elements asdeleted. We prove that, in this case, the
variance is bounded by1/(1− α) +O(1), whereα is the load factor.

To model the behavior of these hash tables, we use a unified approach that can be applied also to study the First-
Come-First-Served and Last-Come-First-Served collisionresolution disciplines, both with and without deletions.

Keywords: Robin Hood Hashing, full tables, constant variance, constant expected search time

1 Introduction
In 1986, Celiset al [3, 4] introduced the Robin Hood collision resolution strategy for open addressing
hash tables. Under this discipline, collisions are decidedin favor of the element that is farthest from its
home location. While this does not change the expected search cost, it turns out to have a dramatic effect

†Supported in part by NIC Chile
‡This work has been partially supported by Project CSIC I+D ”Combinatoria Anaĺıtica y aplicaciones en criptografı́a, comuni-

caciones y recuperación de la información”, fondos 2015-2016.
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on itsvariance. In effect, unlike other disciplines where the variance tends to infinity as the table becomes
full, the variance of Robin Hood seems to remain constant, and very small. This fact, conjectured from
numerical computations, has not been proved in the years since it was observed, and is the main focus
of our work. This problem has been hard to solve because the distribution of the search cost obeys a
nonlinear recurrence equation for which no successful lineof attack has been found.

To show the kind of recurrence involved, we quote now Theorem3.1 from [3] (our notation will be
slightly different):
Theorem 3.1 In the asymptotic model for an infinite Robin Hood hash table with load factorα (α < 1),
the probabilitypi(α) that a record is placed in thei-th or further position in its probe sequence is equal
to

p1(α) = 1, pi+1(α) = 1−
(
1− α

α

)(
eα(p1(α)+···+pi(α))

)
. (1)

They then go on to define another functionri(α) = α(pi(α) + · · · + p∞(α)), in terms of which the
variance can be expressed as

V (α) =
2

α

∞∑

i=1

ri(α) +
ln(1− α)

α
− ln2(1− α)

α2
. (2)

They show thatri(α)satisfies the following recurrence equation:

ri(α) − ri+1(α) = 1− e−ri(α) (3)

with r1(α) = − ln(1 − α). By leaving the “(α)” implicit and using the∆ operator (defined as∆ri =
ri+1 − ri), this can be rewritten as∆ri = f(ri) wheref is the functionf(x) = −1 + e−x.

This seemingly simpler equation has, nonetheless, so far remained unsolved.
In this paper, we will introduce a technique applicable to equations of this form, and we will use it first

to prove a bound on the variance of Robin Hood hashing. Then wewill use it to study another recurrence
equation of the same type arising from the problem of hashingwith deletions.

2 Modeling hashing algorithms
In this paper we will study the search cost of a random elementin a hash table, using therandom probing
model. This is an open addressing hashing scheme in which collisions are resolved by additional probes
into the table. The sequence of these probes are considered to be random and depends only on the value of
the key. The difference with uniform probing is that positions may be repeated in this sequence. We use
theasymptotic modelfor a hash table with load factorα [9, 8, 4, 12], where we assume that the number
of keysn and the table sizem both tend to infinity, maintaining constant their ratioα = n/m.

Each element has associated with it an infinite probe sequence consisting of i.i.d. integers uniformly
distributed over{0, . . . ,m−1}, representing the consecutive places of probes for that element. The probe
sequence for elementx is denoted byh1(x), h2(x), h3(x), . . .. Elements are inserted sequentially into the
table. If elementx is placed in positionhj(x), then we say that elementx has agej, as it requiresj probes
to reach the element in case of a search. When an elementx of agej and an elementy of agek compete
for the same slot (hj(x) = hk(y)), a collision resolution strategy is needed.

In the standard method, a collision is resolved in favor of the incumbent key, so the incoming key
continues probing to its next location. We call this a First-Come-First-Served (FCFS) collision resolution
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discipline. Several authors [2, 1, 7] observed that a collision could be resolved in favor ofanyof the keys
involved, and used this additional degree of freedom to decrease the expected search time in the table.

Celis et al [3, 4] were the first to observe that collisions could be resolved having insteadvariance
reductionas a goal. They defined the Robin Hood (RH) heuristic, in whicheach collision occurring
during an insertion is resolved in favor of the key that is farthest away from its home location (i.e., oldest
in terms ofage). Later, Poblete and Munro [14] defined the Last-Come-First-Served heuristic, where
collisions are resolved in favor of theincomingkey.

In both cases, the variance is reduced, and this can be used tospeed up searches by replacing the
standard search algorithm by amean-centeredone that first searches in the vicinity of where we would
expect the element to havedrifted to, rather than in its initial probe location. Thismean-centeredapproach
was introduced in [3] (and called “organ-pipe search”) to speed up successful searches in the Robin
Hood heuristic, with expected cost bounded by the standard deviation of this random variable. Numerical
computations in [3] suggest that for full tables the variance of the search cost for RH is constant, but no
formal proof is given.

In this paper we formally settle this conjecture, by provingthat this is in fact the case, and give an
explicit upper bound (although not as tight as the numericalresults seem to suggest). As a consequence
we prove that the mean-centered searching algorithm in [3] has constant expected cost for full tables.

In section 4 we extend this approach to perform the analysis of hashing with deletions. Deletions in
open addressing hash tables are often handled by marking thecells asdeletedinstead ofempty, because
otherwise the search algorithm might fail to find some of the keys. The space used by deleted cells
may be reused by subsequent insertions. Intuitively, search times should deteriorate as tables become
contaminated with deleted cells and, as Knuth[11] points out, in the long run the average successful
search time should approach the averageunsucessfulsearch time.

In this paper we analize the effect of a long sequence of insertions and deletions in the asymptotic
regime (α-full tables with0 ≤ α < 1) and prove a bound for the variance of RH with deletions that is
close to numerical results.

There is an alternative algorithm designed to keep variancelow in the presence of deletions. This
method marks cells as deleted, but keeps the key values (these cells are calledtombstones). In this paper
we do not study the algorithm with tombstones. We note that [12] derives equations for this algorithm,
but only obtains numerical solutions.

3 Analysis without deletions
To analyze the cost of searching for a random element, we begin by presenting a general framework,
based on the one used in [5]. This framework applies also to FCFS and LCFS, but in this paper we use
it to analyze RH, which has been a long standing open problem.As stated before, we use the asymptotic
model for a hash table with load factorα and random probing.

Under this model, if collisions are resolved without “looking ahead” in the table, the cost of inserting a
random element is 1 plus a random variable that follows a geometric distribution with parameter1 − α,
and therefore its expected cost is1/(1− α), independently of the collision resolution discipline used.

Let pi(α) be the probability that a randomly chosen key has agei when the table has load factorα.
Suppose we insert a new element. Depending on the insertion discipline used, a number of keys will

change locations and therefore increase their ages as a consequence of the arrival of the new element. Let
us callti(α) the expected number of probes made by keys of agei during the course of the insertion. It is
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easy to see that

t1(α) = 1,
∑

i≥1

ti(α) =
1

1− α
. (4)

Before the insertion, the expected number of keys of agei is αmpi(α). After the insertion, it is

(αm+ 1)pi(α+
1

m
) = αmpi(α) + ti(α) − ti+1(α) (5)

If we write∆α = 1/m andqi(α) = αpi(α), this equation becomes

qi(α+∆α) − qi(α)

∆α
= ti(α)− ti+1(α) (6)

and, as∆α → 0 (i.e.m → ∞),
∂αqi(α) = ti(α)− ti+1(α), (7)

where∂α denotes a derivative with respect toα, and with the initial conditionqi(0) = 0.
We introduce a notation that we will use throughout the paper. For any sequenceai we define itstail ai

as
ai =

∑

j≥i

aj. (8)

Using this, equation (7) can be rewitten as

∂αqi(α) = ti(α). (9)

We note that this equation is valid for all three collision resolution strategies, and it generalizes formula
(10) in [12], where it is proved only for RH.

The mean of the search cost can be obtained using the tail notation, as

µα = p1(α) =
1

α
q1(α) (10)

and the variance as

σ2
α = 2p1(α) − µα − µ2

α =
2

α
q1(α) − µα − µ2

α (11)

We note that we can already compute the expected search cost,without needing to know the exact form
of the functionti(α). Taking tails in both sides of (9), we have∂αqi(α) = ti(α).

Now settingi = 1 and using (10), we obtain∂α(αµα) =
1

1−α , and from this we obtain

µα =
1

α
ln

1

1− α
(12)

independently of the collision resolution discipline used.
The fact that the mean search cost is independent of the collision resolution discipline used does not

necessarily carry over to higher moments or to the distribution of the search cost. To compute them, we
need to know theti(α) for the specific discipline.
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For RH, a key will be forced to try its(i + 1)st probe location or higher each time there is a collision
between an incoming key of agei or higher and another key in the table that is also of agei or higher.
Therefore, and leaving the “(α)” implicit, to simplify notation, we have:

ti+1 = tiqi (13)

Together with equation (7) this implies∂αqi = (1 − qi)∂αqi. Then, after integrating both sides of the
equation we haveln 1

1−qi
= qi from where we obtainqi = 1 − e−qi . Moreover, by expressingq as the

difference of twoq, we arrive at

Theorem 1 Under the asymptotic model for an infinite hash table with random probing, and Robin Hood
collision resolution discipline, the double tail of the probability distribution of the search cost of a random
element satisfies the recurrence

qi+1 = qi − 1 + e−qi (14)

with the initial conditionq1 = ln 1
1−α . ✷

This is exactly equation (3) that we quoted from [3], but we obtained it through a completely different
derivation. As we mentioned before, numerical computations performed in [4] indicate that asα → 1, the
variance converges to a small constant, approximately equal to 1.883.

3.1 Bounding the variance of RH
Since we are interested in the behavior of the method asα → 1, we will introduce a variableβ defined as
β = 1

1−α , so thatα = 1− 1
β → 1 asβ → ∞. Now we rewrite equation (14) as

∆qi = −1 + e−qi , (15)

with q1 = lnβ. This equation is of the form

∆qi = f(qi), (16)

wheref is the functionf(x) = −1+ e−x. This recurrence equation seems very hard to solve exactly,but
we will be able to obtain useful information about its solution by studying instead the differential equation

Q′(x) = f(Q(x)) (17)

with the same initial conditionQ(1) = lnβ. The solution to this equation is

Q(x) = ln (β − 1 + ex−1)− x+ 1. (18)

Figure 1 compares the solutionqi (polygonal line) of recurrence equation (16) to the solution Q(x)
(smooth line) of differential equation (17). This plot suggests thatQ(i) is an upper bound forqi. This is
true, and will follow from the following lemma.

Lemma 1 Letai satisfy the recurrence equation∆ai = f(ai), andA(x) satisfy the differential equation
A′(x) = f(A(x)), wheref : [0,+∞) → (−∞, 0] is a decreasing function. Then

A(i) ≥ ai =⇒ A(i + 1) ≥ ai+1 (19)

for all i ≥ 1.
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Fig. 1: Comparison ofqi andQ(x) for β = 10
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Fig. 2: Proof of Lemma 1
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Proof: We begin by noting that botha andA are decreasing functions, becausef is negative. Reasoning
by contradiction, suppose thatA(i) ≥ ai butA(i + 1) < ai+1. Therefore, there exists anx ∈ (i, i + 1)
such thatA(x) intersects the straight line joining points(i, ai) and(i+1, ai+1), as illustrated in Figure 2.
The slope of this line atx is f(ai) and the slope ofA at pointx is f(A(x)). At the intersection we must
havef(ai) > f(A(x)). But ai > A(x) impliesf(ai) < f(A(x)), a contradiction. ✷

Corollary 1
qi ≤ Q(i) ∀i ≥ 1. (20)

Using this, we can rewrite equation (11) to obtain the following upper bound for the variance:

σ2
α ≤ 2

α

∑

i≥1

Q(i)− µα − µ2
α (21)

To approximate the summation, we use Euler’s summation formula [10],

∑

i≥1

Q(i) =

∫ ∞

1

Q(x)dx +

m∑

k=1

Bk

k!
(Q(k−1)(∞)−Q(k−1)(1)) +Rm, (22)

where theBk are the Bernoulli numbers (B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , . . .). From

[10] Exercise 1.2.11.2-3, we know that for evenm, if Q(m)(x) ≥ 0 for x ≥ 1 then

| Rm | ≤ | Bm

m!
(Q(m−1)(∞)−Q(m−1)(1)) | . (23)

We note that, asx → ∞, all derivatives ofQ(x) tend to zero, because they all contain the factorf(Q(x)),
by repeated differentiation of equation (17), and sinceQ(∞) = 0, we havef(Q(∞)) = f(0) = 0.

In our case, we will apply this formula withm = 2. We note thatQ(1) = q1 = αµα andQ′(1) =
f(Q(1)) = f(q1) = ∆q1 = −q1 = −α. Furthermore,Q(2)(x) ≥ 0 for x ≥ 1 becauseQ′(x) = f(Q(x))
is an increasing function. Therefore, we have

∑

i≥1

Q(i) =

∫ ∞

1

Q(x)dx+
1

2
Q(1)− 1

12
Q′(1) +R2 ≤

∫ ∞

1

Q(x)dx+
1

2
αµα +

1

6
α (24)

and therefore the bound for the variance can be written as

σ2
α ≤ 2

α

∫ ∞

1

Q(x)dx +
1

3
− µ2

α (25)

Note that, until now, we have not made use of the specific form of the functionQ(x). Using now
formulas (18) and (12), we obtain the following upper bound for the variance:

Theorem 2 Under the asymptotic model for an infiniteα-full hash table with random probing and RH
collision resolution discipline, the variance of the search cost of a random element satisfies (withβ =
1/(1− α))

σ2
α ≤ π2

3
+

1

3
+O

(
lnβ

β

)
. (26)
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✷

This gives us an upper bound of3.6232 . . . for the variance of Robin Hood Hashing. Although a
numerically computed value of approximately1.883 has been known for a long time, this is the first proof
that this variance is bounded by a small constant asα → 1. As Celiset al. observed, the fact that the
variance is very small can be used to carry out a more efficientmean-centered search. If we call X the
random variable “search cost of a random key” the expected cost of this modified search isΘ(E|X−µα|).
But Jensen’s inequality implies that

E|X − µα| = E
√

(X − µα)2 ≤
√
E(X − µα)2 = σα (27)

so, themean valueof the search cost of a mean-centered search is proportionalto thestandard deviationof
the cost of a standard seach. Theorem 2 then implies that thissearch algorithm runs in expected constant
time in a full table.

3.2 Bounding the tail of RH
We focus now on the tail of the distribution of the search cost, i.e. we study

Pr{X ≥ i} = pi =
1

α
qi =

β

β − 1
qi. (28)

We proved earlier thatqi ≤ Q(i). By applyingf to both sides and recalling thatf is a decreasing function,
we havef(qi) ≥ f(Q(i)). Using equations (16) and (17), we have∆qi = −qi ≥ Q′(i), and therefore

Pr{X ≥ i} ≤ − β

β − 1
Q′(i) =

β

β − 1 + ei−1
. (29)

If we take the upper bound as the tail β
β−1+ex−1 of a continuous probability function, its density function

would be

p(x) =
βex−1

(β − 1 + ex−1)2
, (30)

which is symmetric around its mean (and mode) located at the point x such thatex−1 = β − 1, i.e.,
x = 1 + ln (β − 1).

As a consequence, by equation (29), the probability that thesearch cost will exceed this amount by a
given number of stepsk:

Pr{X ≥ 1 + ln (β − 1) + k} ≤ β

β − 1

1

ek + 1
→ 1

ek + 1
(31)

asβ → ∞.
Therefore, as the table becomes full, the mean moves to the right without bound, but the distribution

remains tightly packed to the right of the mean, and the probability that the search cost exceeds the mean
by a given amount decreases exponentially with the distance.

Finally, it is interesting to note that if we shift to the leftthe density function (30) so it is centered
around zero, we obtain

p(1 + ln (β − 1) + x) =
β

β − 1

ex

(1 + ex)2
(32)

which, asβ → ∞, converges to ex

(1+ex)2 , or, equivalently, e−x

(1+e−x)2 , the density function of a Logistic(0,1)
distribution.
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4 Analysis with deletions
We assume a process where we first insert keys until the table reaches load factorα, and then we enter an
infinite cycle where we alternate one random insertion followed by one random deletion.

If the distribution of the retrieval cost is given bypi(α) and a random element is inserted, the effect is
described by equation (5). If we then perform a random deletion, the following classical lemma[6] shows
that the distribution remains unchanged:

Lemma 2 Suppose a set containsn balls of colors1, 2, . . . , k, such that the probability that a ball chosen
at random is of colori is pi. Then, if one ball is chosen at random and discarded, thea posteriori
probability that a random ball is of colori is still pi.

Proof: Call p′i the probability that a random ball is of colori after the deletion. The expected number
of balls of colori afterwards is(n − 1)p′i, but that number can also be obtained as the expected number
before,npi, minus the expected number of balls of colori lost, i.e.,

(n− 1)p′i = npi − 1 · pi. (33)

The result follows. ✷

Therefore, equation (5) describes also the probability distribution after one insert-delete step. Now,
assume the process reaches a steady state. In that case, the distribution after the insert-delete must be
equal to the distribution before, i.e.pi(α+ 1

m ) = pi(α), and replacing this in (5) we have

pi(α) = ti(α) − ti+1(α). (34)

and equivalently,
pi(α) = ti(α). (35)

These equations play the role that equation (7) did for the case without deletions. Taking tails in both
sides of this equation and settingi = 1, we can obtain the expected search costµα as

µα = p1 = t1 =
1

1− α
, (36)

confirming the prediction that the expected successful search cost should approach the expectedunsuc-
cessfulsearch cost when deletions are allowed.

For RH, from (35) we getpi = ti, and combining this with (13) we obtain

p1 =
1

1− α
, pi+1 =

αp
2
i

1 + αpi
(37)

We can use this recurrence to compute numerically the distribution for RH.
Figure 3 shows the value of the variance of RH as a function ofβ = 1/(1 − α), and from the plot

we may see that the variance is very close toβ. Moreover, Figure 4 shows the distribution of the search
cost for the three methods, forα = 0.99. As proven in [13] it can be seen that FCFS and LCFS are
now identical and have very large dispersion (σ2

α = α
(1−α)2 ), while RH retains a much more concentrated

shape. We prove that this is indeed the case.



10 P.V Poblete and A. Viola

0 100
0

100

β

σ2

Fig. 3: The variance of RH with deletions as a function ofβ
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Fig. 4: Distribution of search costs for FCFS, LCFS and RH forα = 0.99
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4.1 Bounding the variance of RH with deletions

We begin by rewriting the recurrence equation (37) as

q1 = β − 1, ∆qi = − qi
1 + qi

(38)

This equation is of the form∆qi = f(qi) for f(x) = − x
1+x , and all the conditions required in section

3.1 are satisfied, so we can apply the exact same technique used there. Solving the associated differential
equation

Q′(x) = f(Q(x)), Q(1) = β − 1 (39)

we find the solution
Q(x) = W ((β − 1)eβ−x), (40)

whereW is Lambert’s function satisfyingx = W (x)eW (x). As a consequence, proceeding as in the proof
of Theorem 2, we obtain the following result:

Theorem 3 Under the asymptotic model for an infiniteα-full hash table with random probing and RH
collision resolution discipline, in the steady state of a sequence of insert-delete operations, the variance
of the search cost of a random element satisfies (withβ = 1/(1− α))

σ2
α ≤ β +

1

3
=

1

1− α
+

1

3
. (41)

✷

This proves our earlier conjecture that the variance was very close to 1
1−α .
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A tree functional is called additive if it satisfies a recursion of the formF (T ) =
∑k

j=1 F (Bj) + f(T ), where
B1, . . . , Bk are the branches of the treeT andf(T ) is a toll function. We prove a general central limit theorem for
additive functionals ofd-ary increasing trees under suitable assumptions on the toll function. The same method also
applies to generalised plane-oriented increasing trees (GPORTs). One of our main applications is a log-normal law
that we prove for the size of the automorphism group ofd-ary increasing trees, but many other examples (old and
new) are covered as well.

Keywords: additive tree functional, increasing trees, random trees,central limit theorem, automorphisms

1 Introduction
In this paper, we are interested in functionals of rooted trees that satisfy anadditiverelation, i.e. a recursion
of the form

F (T ) =

k∑

j=1

F (Bj) + f(T ), (1)

whereB1, . . . , Bk are the branches of the treeT andf(T ) is a so-called toll function, which often only
depends on specific features of the tree such as the size or theroot degree, but can in principle be arbitrary.
The trees in our context will be labelled; it is assumed that the toll function only depends on the relative
order of the labels, not the labels themselves, so that it is also well-defined if the labels are not necessarily
1, 2, . . . , n. It is consistent with (1) to assume that we have the identityF (

⊙
) = f(

⊙
) for the tree

T =
⊙

consisting only of a single labelled vertex. Important examples include

• the number of leaves, which corresponds to the toll function

f(T ) =

{
1 |T | = 1,

0 otherwise.

†This material is based upon work supported financially by theNational Research Foundation of South Africa under grant
number 96236.
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• the number of vertices of outdegreek, in which case one can simply take

f(T ) =

{
1 if the root ofT has outdegreek,

0 otherwise.

• the internal path length, i.e., the sum of the distances fromthe root to all vertices, which can be
obtained from the toll functionf(T ) = |T | − 1.

• the log-product of the subtree sizes [11], also called the “shape functional” [6], corresponding to
f(T ) = log |T |,

• the logarithm of the size of the automorphism group: here, itis not difficult to see that the toll
function isf(T ) = log(R(T )), whereR(T ) is the size of the symmetry group of the collection of
root branches.

Such functionals also arise frequently in the study of divide-and-conquer algorithms, e.g. quicksort [9].
An alternative viewpoint is based on the notion offringe subtrees: a fringe subtree of a tree is a subtree
induced by a vertex and all its descendants. If we letF(T ) denote the collection of all fringe subtrees of
a treeT , then it is easy to verify that

F (T ) =
∑

S∈F(T )

f(S).

In particular, the number of occurrences of a specific tree asa fringe subtree is an additive functional
(corresponding to the case that the toll functionf is an indicator function), and every additive functional
can be obtained as a linear combination of such special functionals.

There are several recent papers providing central limit theorems for rather general additive tree func-
tionals [3, 5, 6, 8, 10, 14]. Specifically, Holmgren and Janson [8] proved such a central limit theorem for
binary increasing trees (which are also equivalent to binary search trees) and recursive trees. Both are
instances of so-calledincreasing trees: labelled trees with the additional property that the labels increase
along any path starting at the root.

Varieties of increasing trees were studied systematicallyin [1] (see also [4, Section 1.3.3]). The ex-
ponential generating functionY (x) associated with a variety of increasing trees satisfies a differential
equation of the characteristic shape

Y ′(x) = Φ(Y (x)), Y (0) = 0 (2)

for some functionΦ(t). Varieties of increasing trees for which a uniformly randomtree with a given
number of vertices can also be generated by a growth process have been of particular interest. There are
three such types [12]:

• The variety of recursive trees is perhaps the most basic instance: these are simply labelled rooted
unordered trees (“unordered” meaning that the order of branches does not matter) with the afore-
mentioned property that the labels increase along paths starting at the root. Uniformly random
recursive trees can be obtained by the following growth process: starting from a single vertex (the
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root, carrying label1), the vertex labelledn is attached in then-th step to one of the previous ver-
tices, chosen uniformly at random. As mentioned earlier, the order of children attached to a vertex
does not matter. To obtain a canonical representation, one can e.g. always make the newly added
vertex the rightmost child. In this example, the functionΦ is the exponential function. It is easy to
see that the generating function isY (x) = − log(1− x), and for every positive integern, there are
(n− 1)! recursive trees.

• Plane-oriented recursive trees (PORTs) differ from recursive trees in only one aspect: trees are
regarded as embedded in the plane, the order of branches is taken into account. The growth process
to generate uniformly random PORTs follows a “preferentialattachment” rule: it is essentially the
same as for recursive trees, but the probability that the vertex labelledn is attached to a specific
vertexv is proportional to1 plus the current outdegree ofv. Here, we haveΦ(t) = (1 − t)−1, so
the generating function isY (x) = 1 −

√
1− 2x, and the number of plane oriented recursive trees

with n vertices is(2n− 3)!!.

Generalised plane oriented recursive trees (GPORTs) are obtained by introducing an additional
parameter: for some positive real numberα, we let the probability that the vertex labelledn is
attached to a specific vertexv be proportional toα plus the current outdegree ofv. An equivalent
description uses weighted PORTs: to each PORTT , we associate a weight based on its outdegrees.
If Nj(T ) is the number of vertices whose outdegree isj, we set

w(T ) =
∏

j≥1

(
α+ j − 1

j

)Nj(T )

.

In choosing a random GPORT, the probability of a tree to be chosen is proportional to its weight.
In the exponential generating functionY (x), each tree is also weighted withw(T ). The functionΦ
in (2) is now given byΦ(t) = (1 − t)−α. It follows thatY (x) = 1 − (1 − (α + 1)x)1/(1+α), the
total weight of all trees withn vertices is

∏n−1
j=1 ((α + 1)j − 1).

• Finally, we have the variety ofd-ary increasing trees, which will be the focus of this paper:here,
every vertex hasd possible places to which a child can be attached (for example, in the binary case,
there are left and right children). In the construction of uniform d-ary increasing trees by a growth
process, we simply attach the vertex labelledn to one of the(d − 1)(n − 1) + 1 places available
in total, once again selected uniformly at random. Therefore, the probability that the new vertex is
attached to an existing vertexv is proportional tod minus the current outdegree ofv (in particular,
if v already hasd children, no further vertices can be attached to it). Here,Φ(t) = (1 + t)d and
Y (x) = (1 − (d − 1)x)−1/(d−1) − 1. The total number ofd-ary increasing trees withn vertices is∏n−1

j=1 ((d− 1)j + 1).

Remark 1 We remark that recursive trees andd-ary increasing trees can also be seen as weighted
PORTs, with weights

w(T ) =
∏

j≥1

c
Nj(T )
j ,

wherecj = 1
j! for recursive trees (to factor out the different ways of ordering the branches) andcj =

(
d
j

)

(to take thed possible points of attachment into account) respectively.
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In the following, we state and prove a central limit theorem for additive tree functionals of uniformly
randomd-ary increasing trees under certain technical conditions on the toll function. As mentioned earlier,
binary increasing trees (as well as recursive trees) have already been covered in [8]. Since the approach
in [8] is based on representations of binary increasing trees and recursive trees that are not available
for other classes of increasing trees, and the generating function method of [14] requires the resulting
differential equations to be explicitly solvable, which isalso not the case, we use a different approach
based on moments, as in a paper of Fuchs [7] on the number of fringe subtrees of given size (which is
also an additive functional). Although we only discuss the case ofd-ary increasing trees in (some) detail,
our method also applies to GPORTs, for which we only state thecorresponding result in the following
section.

This extended abstract only summarises the proof our main theorem and lists some interesting exam-
ples to which our result can be applied. Technical details and proofs of all intermediate lemmas will be
provided in the full version of this paper.

2 The general central limit theorem
Let us now formulate our main result. In the following,d is fixed, andTn always denotes a randomd-ary
increasing tree of ordern (except for Theorem 2). We assume that the toll functionf(T ) satisfies the
following conditions:

(C1) f(T ) is bounded,

(C2)
∑

k≥1

E|f(Tk)|
k

< ∞ andE|f(Tn)| → 0 asn → ∞.

Under these assumptions, our central limit theorem for additive functionals reads as follows:

Theorem 1 LetTn be a uniformly randomd-ary increasing tree withn vertices. If the toll functionf(T )
satisfies (C1) and (C2), then there exist constantsµ andσ such that the mean and variance ofF (Tn) are
asymptotically

E(F (Tn)) = µn+
µ

d− 1
+ o(1), Var(F (Tn)) = σ2n+ o(n).

The constantsµ andσ can be represented as

µ = (d− 1)
∑

T

f(T )

|T |∏

j=1

1

(d− 1)j + d
(3)

and

σ2 =− µ2

d− 1
− (d− 1)

∑

T

f(T )2 − 2f(T )(F (T )− µ|T |)
∏|T |

j=1((d − 1)j + d)
+

d
∑

T1

∑

T2

(d− 1)1−|T1|−|T2|f(T1)f(T2)

(|T1| − 1)!(|T2| − 1)!

∫ 1

0

φ|T1|(x)φ|T2|(x)dx,
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where

φk(x) = (1 − x)−1

∫ 1

x

(1− w)d/(d−1)wk−1dw.

The sums are taken over alld-ary increasing trees. Ifσ 6= 0, then the renormalised random variable
(F (Tn)− µn)/

√
σ2n converges weakly to a standard normal distribution.

Remark 2 We remark that the result remains true if conditions (C1) and(C2) hold for a shifted version
f(T ) + c (c any constant) of the toll function rather than the toll function itself, since this changesF (T )
only by the deterministic quantityc|T |.
Remark 3 By means of the Craḿer-Wold device, we also obtain joint normal distribution oftuples of
additive functionals.

As mentioned earlier, the method used in proving Theorem 1 also applies to GPORTs. Without going
into detail, let us just state the corresponding theorem:

Theorem 2 Let Tn be a random GPORT (with fixed parameterα) with n vertices. If the toll function
f(T ) satisfies (C1) and (C2), then there exist constantsµ and σ such that the mean and variance of
F (Tn) are asymptotically

E(F (Tn)) = µn− µ

α+ 1
+ o(1), Var(F (Tn)) = σ2n+ o(n).

The constantsµ andσ can be represented as

µ = (α+ 1)
∑

T

w(T )f(T )

|T |∏

j=1

1

(α+ 1)j + α

and

σ2 =
µ2

α+ 1
− (α+ 1)

∑

T

w(T )
f(T )2 − 2f(T )(F (T )− µ|T |)

∏|T |
j=1((α + 1)j + α)

+

α
∑

T1

∑

T2

w(T1)w(T2)
(α+ 1)1−|T1|−|T2|f(T1)f(T2)

(|T1| − 1)!(|T2| − 1)!

∫ 1

0

ϕ|T1|(x)ϕ|T2|(x)dx,

where

ϕk(x) =

∫ 1

x

(1− w)α/(α+1)wk−1dw.

The sums are taken over all PORTs, weighted byw(T ). If σ 6= 0, then the renormalised random variable
(F (Tn)− µn)/

√
σ2n converges weakly to a standard normal distribution.

3 Preliminaries
Recall that the exponential generating functionY (x) of d-ary increasing trees satisfies the differential
equation

Y ′(x) = Φ(Y (x)), Y (0) = 0, (4)
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whereΦ(t) = (1 + t)d. The explicit solution is given byY (x) = (1 − (d − 1)x)−1/(d−1) − 1, and the
total number ofd-ary increasing trees withn vertices is

Yn = n! · [xn]Y (x) =

n−1∏

j=1

((d− 1)j + 1).

Let us first define a multivariate generating function that also incorporates the tree functionalF and its
toll functionf . Specifically, we set

Y (x, a, b) =
∑

T

x|T |

|T |! e
aF (T )−bf(T ).

In view of the recursion satisfied byF , (4) becomes

∂

∂x
Y (x, a, a) =

∑

T

x|T |−1

(|T | − 1)!
ea(F (T )−f(T )) = Φ(Y (x, a, 0)), Y (0, a, b) = 0.

We set

Z(x, a, b) = 1 + Y (xe−aµ, a, b) = 1 +
∑

T

x|T |

|T |! e
aF (T )−aµ|T |−bf(T ),

whereµ will be determined later, so that

∂

∂x
Z(x, a, a) = e−aµΦ(Y (xe−aµ, a, 0)) = e−aµΦ(Z(x, a, 0)− 1) = e−aµZ(x, a, 0)d.

Note that

Mn(a) =
[xn]Z(x, a, 0)

[xn]Z(x, 0, 0)
=

n![xn]Z(x, a, 0)

Yn

is the moment generating function for the random variableF (Tn)−µ|Tn| = F (Tn)−µn when a random
d-ary increasing treeTn with n vertices is generated. Its derivatives with respect toa, evaluated at0, yield
the moments.

Let ther-th derivative ofZ with respect toa be denoted byZ(r)(x, a, b). Our first goal is to determine
a differential equation for the functionZ(r)(x, 0, 0). This is done by means of Faà di Bruno’s formula.
First, we need some further notation regarding integer partitions: we represent partitions of a positive
integerr as sequencesℓ = (ℓ1, ℓ2, . . .), whereℓj denotes the multiplicity ofj. Thusℓ is a partition ofr if∑

j jℓj = r. The set of all partitions ofr is denoted byP(r), and we write|ℓ| = ℓ1 + ℓ2 + · · · for the
total number of parts in the partitionℓ.

Lemma 3 The functionZ(r)(x, 0, 0) satisfies the differential equation

∂

∂x

(
Z(x, 0, 0)−dZ(r)(x, 0, 0)

)

= −Z(x, 0, 0)−dHr(x) +

r∑

s=0

(
r

s

)
(−µ)r−ss!

∑

ℓ∈P(s)
ℓr 6=1

d!

(d− |ℓ|)!
∏

j≥1

1

ℓj !j!ℓj

(Z(j)(x, 0, 0)

Z(x, 0, 0)

)ℓj
, (5)
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where

Hr(x) =
r∑

s=1

(
r

s

)∑

T

x|T |−1

(|T | − 1)!
(F (T )− µ|T |)r−s(−f(T ))s.

Note that at this stage,Hr(x) is only considered as a formal power series, convergence is not taken into
account. We first analyse this differential equation in the special casesr = 1 andr = 2 corresponding to
mean and variance before we move on to the central limit theorem.

4 Mean and variance
Let us now determine mean and variance ofF (Tn). Since the values of the toll functionf(T ) for |T | > n
will not affect the distribution ofF (Tn), we can assume in this section thatf(T ) = 0 for |T | > n. This

means in particular that the functionsHr(x) also depend onn, so we writeH(n)
r (x) to emphasize this

dependence. Forr = 1, Equation (5) becomes

∂

∂x

(
Z(x, 0, 0)−dZ(1)(x, 0, 0)

)
= −Z(x, 0, 0)−dH

(n)
1 (x) − µ,

so

Z(1)(x, 0, 0) = Z(x, 0, 0)d
∫ x

0

(
− Z(w, 0, 0)−dH

(n)
1 (w) − µ

)
dw,

where

H
(n)
1 (x) = −

∑

|T |≤n

x|T |−1

(|T | − 1)!
f(T ). (6)

If we chooseµ = µ(n) in such a way that

µ(n) = −(d− 1)

∫ 1/(d−1)

0

Z(w, 0, 0)−dH
(n)
1 (w) dw,

then we can write

Z(1)(x, 0, 0) =
µ(n)

d− 1
Z(x, 0, 0) +R(x), (7)

where

R(x) = Z(x, 0, 0)d
∫ 1/(d−1)

x

Z(w, 0, 0)−dH
(n)
1 (w) dw.

The first term on the right side of (7) contributesµ(n)

d−1 to the mean, so it suffices to determine the con-
tribution fromR(x). Note thatR(x) is a polynomial of degreen whose coefficients can be computed
explicitly using the following lemma:

Lemma 4 If

P (x) =

n−1∑

k=0

akx
k and Q(x) = (1− x)−β

∫ 1

x

(1− w)βP (w)dw,
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thenQ(x) is a polynomial of degreen with

[xm]Q(x) = − am−1

m+ β
+

n−1∑

k=m

(
β +m− 1

m

)
· Γ(β + 1)k!ak
Γ(β + k + 2)

= O
(
|am−1|
m

+mβ−1
n−1∑

k=m

k−β−1|ak|
)
.

This lemma gives us in particular an expression for[xn]R(x), since

[xn]R(x) = [xn](1− (d− 1)x)−d/(d−1)

∫ 1/(d−1)

x

(1− (d− 1)w)d/(d−1)H
(n)
1 (w) dw

= (d− 1)n−1[xn](1− x)−d/(d−1)

∫ 1

x

(1− u)d/(d−1)H
(n)
1

( u

d− 1

)
du.

Evaluating the integral in the expression forµ(n) explicitly gives us

µ(n) = d(d− 1)
∑

m≤n

1

((d− 1)m+ 1)((d− 1)m+ d)Ym

∑

|T |=m

f(T )

= d(d− 1)
∑

m≤n

E(f(Tm))

((d− 1)m+ 1)((d− 1)m+ d)
.

Putting everything together, we arrive at an explicit formula for the mean:

E(F (Tn)) = µ(n)n+
µ(n)

d− 1
+

n![xn]R(x)

Yn

= (d(d − 1)n+ d)
∑

m≤n

E(f(Tm))

((d− 1)m+ 1)((d− 1)m+ d)
+

n

(n+ d/(d− 1))Yn

∑

|T |=n

f(T )

= (d(d − 1)n+ d)
∑

m<n

E(f(Tm))

((d− 1)m+ 1)((d− 1)m+ d)
+ E(f(Tn)).

If we complete the series and make use of conditions (C1) and (C2), we arrive exactly at the desired
asymptotic formula for the mean in Theorem 1. The variance, which is obtained by using Equation (5) for
r = 2, can be treated in a similar fashion. Without going into detail, under our conditions (C1) and (C2),
we can show that

Var(F (Tn)) = c(n)n+ o(n),

wherec(n) is a truncated double series which converges to the constantσ2 in Theorem 1 asn → ∞.

5 The central limit theorem
We first consider the case thatf(T ) has finite support. Conditions (C1) and (C2) are then automatically
satisfied, hence the results in the previous section for the mean and variance are valid in this case as well.
For the central limit theorem, we also need higher moments, for which we have the following statement.
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Lemma 5 If the toll functionf has finite support, i.e. there exists a constantK such thatf(T ) = 0
whenever|T | > K, then the centred moments of the functionalF are asymptotically given by

E((F (Tn)− µn)r) =

{
(r − 1)!!σrnr/2 +O

(
nr/2−1

)
r even,

O
(
n(r−1)/2

)
r odd.

Here,µ andσ are as in Theorem 1. Consequently, ifσ 6= 0, then the renormalised random variable

F (Tn)− µn√
σ2n

converges weakly to a standard normal distribution.

The key to proving this lemma is the fact that the functionsHr are now given by finite sums and
therefore trivially represent entire functions. This enables us to apply singularity analysis to the functions
Z(r)(x, 0, 0) for arbitraryr, which yields the asymptotics of the centred moments.

To deal with toll functions that are not finitely supported, we employ a trick that was already used
in [8,10]: we approximate them by truncated versions to which we can apply Lemma 5. This approach is
based on the following simple yet general lemma.

Lemma 6 If (Xn)n≥1 and(Wm,n)m,n≥1 are sequences of centred random variables such that

• Wm,n
d→n Wm, andWm

d→m W, whereW has a continuous distribution function,

• Var(Xn −Wm,n) →n γ2
m andγm →m 0,

thenXn
d→n W.

We return to additive functionals and assume that the toll functionf(T ) satisfies conditions (C1) and
(C2). For every positive integerm, consider the truncated toll functionfm and the corresponding function
F :

fm(T ) =

{
f(T ) |T | ≤ m,

0 otherwise,
and Fm(T ) =

∑

S∈F(T )

fm(S) =
∑

S∈F(T ),|S|≤m

f(S).

From Section 4, we know that the mean and variance ofFm(T ) have the asymptotic estimates

E(Fm(T )) = µmn+
µm

d− 1
+ o(1) and Var(Fm(T )) = σ2

mn+ o(n)

asn → ∞. Furthermore, for eachm, if σ2
m 6= 0 thenFm(T ) satisfies the central limit theorem, and

µm → µ andσ2
m → σ asm → ∞. On the other hand, the functionalF (T )−Fm(T ) is also additive with

toll functionf(T )− fm(T ). The conditions (C1) and (C2) are both satisfied by the lattertoll function, so
from the asymptotic formula for the variance we know that

γ2
m = lim

n→∞
Var(F (Tn)− Fm(Tn))

n
→m 0

under the conditions on the toll functionf . Hence, Lemma 6 applies to the sequences

Wm,n =
Fm(Tn)− E(Fm(Tn))

n
andXn =

F (Tn)− E(F (Tn))

n
,

which proves Theorem 1 for arbitrary toll functionsf that satisfy (C1) and (C2).
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6 Some applications
6.1 Fringe subtrees of given size and occurrences of specific fringe subtrees
The simplest example of a toll function is perhaps the indicator function of a specific treeS:

f(T ) =

{
1 T = S,

0 otherwise.

The associated additive functional is simply the number of occurrences ofS on the fringe of a random
tree: by an occurrence ofS, we mean a fringe subtree that is isomorphic toS (including the relative order
of the labels).

In this case, we obtain a central limit theorem with mean and variance only depending on the size ofS:
if S hask vertices, then

µ =
d− 1

∏k
j=1((d− 1)j + d)

and σ2 = −µ2
(
2k +

1

d− 1

)
+ µ+

d(d− 1)1−2k

(k − 1)!2

∫ 1

0

φk(x)
2 dx.

A closely related functional is the number of fringe subtrees of some given sizek (equivalently, the
number of vertices with exactlyk − 1 descendants). In particular, the special casek = 1 corresponds to
the number of leaves. Here, the toll function is given by

f(T ) =

{
1 |T | = k,

0 otherwise,

and we obtain a central limit theorem with

µ =
d(d− 1)

((d− 1)k + d)((d − 1)k + 1)
and σ2 = −µ2

(
2k+

1

d− 1

)
+µ+

d(d− 1)1−2kY 2
k

(k − 1)!2

∫ 1

0

φk(x)
2 dx.

This was already shown by Fuchs [7], who also considered the case thatk is not fixed but rather tends to
infinity with the size of the tree as well.

6.2 The number of subtrees
The number of subtrees is already a somewhat more complicated example: for Galton-Watson trees,
binary increasing trees and recursive trees, it was alreadystudied in [14]. Here, we count all subtrees, i.e.
all induced subgraphs that are again trees, not just those onthe fringe. It is useful to study an auxiliary
quantity first, namely the number of subtrees containing theroot: we writes(T ) for this number. It is not
difficult to see that

s(T ) =

k∏

j=1

(1 + s(Bj)),

since each subtree induces either the empty set or a subtree containing the root in each of the branches.
Taking the logarithm gives us

log(1 + s(T )) =

k∑

j=1

log(1 + s(Bj)) + log(1 + s(T )−1),
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so log(1 + s(T )) is an additive functional with toll functionf(T ) = log(1 + s(T )−1). Simple a priori
estimates show that the technical conditions of our generalcentral limit theorem are satisfied: this is
becauses(T ) ≥ |T | (since every path from the root to a vertex is also a subtree),which implies that
f(T ) = O(|T |−1) for all T (even deterministically, not just on average). Thus our main result applies
to the functionals(T ). As it was shown in [14], the difference betweenF (T ) = log(1 + s(T )) and the
logarithm of the total number of subtrees (not necessarily containing the root) isO(log |T |), so the central
limit theorem remains correct for the total number of subtrees.

6.3 The size of the automorphism group
An important motivating example for this paper is the size ofthe automorphism group. In their article [2],
Bóna and Flajolet proved, motivated by questions in phylogenetics, that the logarithm of the size of the
automorphism group of uniformly random binary trees is asymptotically normally distributed (they proved
this limit law for the number of nodes for which the two branches are isomorphic, which is equivalent).
Here, we obtain an analogous statement ford-ary increasing trees. We remark that binary increasing
trees are also essentially equivalent to the Yule-Harding model (as opposed to the uniform model) of
phylogenetics [13, Section 2.5].

As it was mentioned in the introduction, the relevant toll function isf(T ) = log(R(T )), whereR(T )
is the size of the symmetry group of the collection of root branches. This simplifies considerably in the
case of binary trees, where we only have two branchesB1 andB2. In this case, it follows that

f(T ) =

{
log 2 if B1 andB2 are isomorphic,

0 otherwise.

As one would expect, it is very unlikely for large trees that the two branches are actually isomorphic,
which is why the technical condition on the toll function is satisfied. In fact, one can show thatE(|f(Tn)|)
decays exponentially for binary increasing trees. We find that the number of automorphisms of a random
binary increasing tree asymptotically follows a log-normal law, which parallels the aforementioned result
of Bóna and Flajolet.

The same holds more generally ford-ary trees, although the expected value of the toll functiondoes not
decay as quickly: in this case, the probability that two branches are isomorphic only decreases at a rate of
O(|T |−2/(d−1)), which however is still sufficient.

6.4 The number of orbits
Two vertices of a rooted tree (or generally any graph) are said to belong to the same orbit if there exists
an automorphism that maps one of the vertices to the other. The vertex set can thus be partitioned in
a natural way into orbits, and the number of orbits can also beregarded as an additive functional. Let
us illustrate this for binary increasing trees: if the two branchesB1 andB2 of T are isomorphic, then
F (T ) = F (B1) + 1 = F (B2) + 1, otherwise,F (T ) = F (B1) + F (B2) + 1. Hence, the toll function is
given by

f(T ) =

{
1− F (B1) if B1 andB2 are isomorphic,

1 otherwise.

Our technical conditions (C1) and (C2) are not completely satisfied in this examples, but it is possible
to work around that. First, the expected value of|f(Tn)| does not tend to0, but the expected value of
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|f(Tn) − 1| does, cf. Remark 2. Second,f(T ) is not bounded, but this condition can be replaced by the
fact thatf(T ) andF (T ) are bothO(|T |). Again, everything also remains valid ford-ary increasing trees,
although the details are somewhat more intricate.

References
[1] F. Bergeron, P. Flajolet, and B. Salvy. Varieties of increasing trees. InCAAP ’92 (Rennes, 1992),

volume 581 ofLecture Notes in Comput. Sci., pages 24–48. Springer, Berlin, 1992.
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Abstract. Let G(n, M) be the uniform random graph withn vertices andM edges. Let℘n,M be the maximum
block-size ofG(n, M) or the maximum size of its maximal2-connected induced subgraphs. We determine the
expectation of℘n,M near the critical pointM = n/2. Asn− 2M ≫ n2/3, we find a constantc1 such that

c1 = lim
n→∞

(
1− 2M

n

)
E(℘n,M ) .

Inside the window of transition ofG(n, M) with M = n
2
(1 + λn−1/3), whereλ is any real number, we find an

exact analytic expression for

c2(λ) = lim
n→∞

E
(
℘n, n

2
(1+λn−1/3)

)

n1/3
.

This study relies on the symbolic method and analytic tools coming from generating function theory which enable us

to describe the evolution ofn−1/3 E
(
℘n, n

2
(1+λn−1/3)

)
as a function ofλ.

Keywords: Random graph, Analytic Combinatorics, Maximum block-size

1 Introduction
Random graph theory Frieze and C. (1997); Bollobás (2001);Janson et al. (2000) is an active area of
research that combines algorithmics, combinatorics, probability theory and graph theory. The uniform
random graph modelG(n, M) studied in Erdos and Renyi (1960) consists inn vertices withM edges
drawn uniformly at random from the set of

(
n
2

)
possible edges. Erdős and Rényi showed that for many

properties of random graphs, graphs with a number of edges slightly less than a given threshold are un-
likely to have a certain property, whereas graphs with slightly more edges are almost guaranteed to satisfy
the same property, showing paramount changes inside their structures (refer to asphase transition). As
shown in their seminal paper Erdos and Renyi (1960), whenM = cn

2 for constantc the largest component
of G(n, M) has a.a.s.O(log n), Θ(n2/3) or Θ(n) vertices according to whetherc < 1, c = 1 or c > 1.

†Supported by ANR 2010 BLAN 0204 (MAGNUM) and PEPS FASCIDO INSMI-INS2I 2015.
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This double-jumpphenomenon about the structures ofG(n, M) was one of the most spectacular results
in Erdos and Renyi (1960) which later became a cornerstone ofthe random graph theory. Due to such a
dramatic change, researchers worked around the critical value n

2 and one can distinguish three different
phases:sub-criticalwhen(M − n/2)n−2/3 → −∞, critical M = n/2 + O(n2/3) andsupercriticalas
(M − n/2)n−2/3 → ∞. We refer to Bollobás Bollobás (2001) and Janson, Łuczak and Ruciński Janson
et al. (2000) for books devoted to the random graphsG(n, M) andG(n, p). If theG(n, p) model is the
one more commonly used today, partly due to the independenceof the edges, theG(n,M) model has
more enumerative flavors allowing generating functions based approaches. By settingp = 1

n + λ
n4/3 , the

stated results of this paper can be extended to theG(n, p) model.

Previous works. In graph theory, a block is a maximal 2-connected subgraph (formal definitions are given
in Section 2). The problem of estimating the maximum block size has been well studied for some class
of graphs. For a graph drawn uniformly from the class of simple labeled planar graphs withn vertices,
the expectation of the number of vertices in the largest block is αn asymptotically almost surely (a.a.s)
whereα ≈ 0.95982 Panagiotou and Steger (2010); Giménez et al. (2013). They found that the largest
block in random planar graphs is related to a distribution ofthe exponential-cubic type, corresponding to
distributions that involve the Airy function Banderier et al. (2001).

For the labeled connected class, these authors proved also independently that a connected random planar
graph has a unique block of linear size.

When we restrict to sub-critical graph (graph that the block-decomposition looks tree-like), Drmota
and Noy Drmota and Noy (2013) proved that the maximum block size of a random connected graph in an
aperiodic(i) sub-critical graph class isO(log n).

For random maps (a map is a planar graph embedded in the plane), Gao and Wormald Gao and Wormald
(1999) proved that a random map withn edges has almost surelyn/3 edges. That is, the probability that
the size of the largest block is aboutn/3 tends to1 asn goes to infinity. This result is improved by
Banderieret al.Banderier et al. (2001) by finding the density Airy distribution of the map type.

Panagiotou Panagiotou (2009) obtained more general results for any graph classC. He showed that the
size of largest block of a random graph fromC with n vertices andm edges belongs to one of the two
previous categories (Θ(n) andO(log n)). In particular, the author pointed out that random planar graphs
with cn edges belong to the first category, while random outerplanarand series-parallel graphs with fixed
average degree belong to the second category.

For the Erdős-RényiG(n,M) model, the maximum block-size is implicitly a well-studiedgraph prop-
erty whenM = cn

2 for fixedc < 1. For this range,G(n,M) contains only trees and unicyclic components
a.a.s. Erdos and Renyi (1960). So, studying maximum block-size and the largest cycle are the same in this
case. Denote by℘n,M the maximum block-size ofG(n, M). It is shown in (Bollobás, 2001, Corollary
5.8) that asM = cn

2 for fixed c < 1 then℘n,M is a.a.s at mostω for any functionω = ω(n) → ∞.
Pittel Pittel (1988) then obtained the limiting distribution (amongst other results) for℘n,M for c < 1.
Note that the results of Pittel are extremely precise and include other parameters of random graphs withc
satisfyingc < 1− ε for fixedε > 0.
Our results. In this paper, we study the fine nature of the Erdős and Rényiphase transition, with emphasis
on what happens as the number of edges is close ton

2 : within the window of the phase transition and near
to it, we quantify the maximum block-size ofG(n, M).

(i) In the periodic case,n ≡ 1 mod d for somed > 1 (see Drmota and Noy (2013) for more details)
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For sub-critical random graphs, our finding can be stated precisely as follows :

Theorem 1 If n− 2M ≫ n2/3, the maximum block-size℘n,M ofG(n, M) satisfies

E(℘n,M ) ∼ c1

(
n

n− 2M

)
, (1)

wherec1 ≈ 0.378 911 is the constant given by

c1 =

∫ ∞

0

(
1− e−E1(v)

)
dv with E1(x) =

1

2

∫ ∞

x

e−t dt

t
. (2)

For critical random graphs, we have the following :

Theorem 2 Let λ be any real constant andM = n
2 (1 + λn−1/3). The maximum block-size℘n,M of

G(n, M) verifies :
E(℘n,M ) ∼ c2(λ)n

1/3, (3)

where

c2(λ) =
1

α

∫ ∞

0


1−

√
2π
∑

r≥0

∑

d≥0

A

(
3r +

1

2
, λ

)
e−E1(u) er,d

(
e−u

)

 du (4)

E1(x) is defined in (2),α is the positive solution of

λ = α−1 − α , (5)

the functionA is defined by

A(y, λ) =
e−λ3/6

3(y+1)/3

∑

k≥0

(
1
23

2/3λ
)k

k! Γ
(
(y + 1− 2k)/3

) , (6)

and the(er,d(z)) are polynomials with rational coefficients defined recursively by (22).

The accuracy of our results is of the same vein as the one on theprobability of planarity of the Erdős-
Rényi critical random graphs Noy et al. (2015) or on the finite size scaling for the core of large random
hypergraphs Dembo and Montanari (2008) which have been alsoexpressed in terms of the Airy function.
This function has been encountered in the physics of random graphs Janson et al. (1993) and is shown
in Flajolet et al. (1989) related toA(y, λ) defined by (6) and appearing in our formula (4).

It is important to note that there isno discontinuitybetween Theorems 1 and 2. First, observe that as

M = n
2 − λ(n)n2/3

2 with 1 ≪ λ(n) ≪ n1/3, equation (1) states thatE(℘n,M ) is aboutc1 n1/3

λ(n) . Next, to
see that this value matches the one from (3), we argue briefly as follows. In (5), asλ(n) → −∞ we have
α ∼ |λ(n)| and (see (Janson et al., 1993, equation (10.3)))

A

(
3r +

1

2
, λ

)
∼ 1√

2π|λ(n)|3r
.
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Thus, all the terms in the inner double summation ’vanish’ except the one corresponding tor = 0 and
d = 0 (this term is the coefficient for graphs without multicycliccomponentse[k]0,0 = 1). It is then remark-
able that asλ(n) → −∞, c2(λ(n)) behaves as c1

|λ(n)| .

Outline of the proofs and organization of the paper.In (Flajolet and A., 1990, Section 4), Flajolet and
Odlyzko described generating functions based methods to study extremal statistics on random mappings.
Random graphs are obviously harder structures but as shown in the masterful work of Jansonet al.Janson
et al. (1993), analytic combinatorics can be used to study indepth the development of the connected
components ofG(n, M). As in Flajolet and A. (1990), we will characterize the expectation of℘n,M by
means of truncated generating functions.

Given a familyF of graphs, denote by(Fn) the number of graphs ofF with n vertices. Theexpo-
nential generating function(EGF for short) associated to the sequence(Fn) (or family F ) is F (z) =∑

n≥0 Fn
zn

n! . LetF [k](z) be the EGF of the graphs inF but with all blocks of size at mostk. From the
formula for the mean value of a discrete random variableX ,

E(X) =
∑

k≥0

kP [X = k] =
∑

k≥0

(1− P [X ≤ k]) ,

we get a generating function version to obtain

Ξ(z) =
∑

k≥0

[
F (z)− F [k](z)

]

and the expectation of the maximum block-size of graphs ofF is(ii) n![zn]Ξ(z)
Fn

. Turning back toG(n, M),
realizations of random graphs whenM is close ton

2 contain a set of trees, some components with one
cycle and complex components with3-regular3-cores a.a.s. In this paper, our plan is to apply this scheme
above by counting realizations ofG(n, M) with all blocks of size less than a certain value. Once we get
the forms of their generating functions, we will use complexanalysis techniques to get our results.

This extended abstract is organized as follows. Section 2 starts with the enumeration of trees of given
degree specification. We then show how to enumerate2-connected graphs with3-regular3-cores. Com-
bining the trees and the blocks graphs lead to the forms of thegenerating functions of connected graphs
under certain conditions. Section 2 ends with the enumeration of complex connected components with all
blocks of size less than a parameterk. Based on the previous results and by means of analytic methods,
Section 3 (resp. 4) offers the proof of Theorem 1 (resp. 2).

2 Enumerative tools
Trees of given degree specification.LetU(z) be the exponential generating function of labelled unrooted
trees andT (z) be the EGF of rooted labelled trees, it is well-known that(iii) :

U(z) =

∞∑

n=1

nn−2 z
n

n!
= T (z)− T (z)2

2
and T (z) =

∞∑

n=1

nn−1 z
n

n!
= zeT (z). (7)

(ii) For any power seriesA(z) =
∑

anzn, [zn]A(z) denotes then-th coefficient ofA(z), viz. [zn]A(z) = an.
(iii) We refer for instance to Goulden and Jackson Goulden and Jackson (1983) for combinatorial operators, to Harary and Palmer

Harary and Palmer (1973) for graphical enumeration and to Flajolet and Sedgewick Flajolet and Sedgewick (2009) for the sym-
bolic method of generating functions.
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For a tree with exactlymi vertices of degreei, define itsdegree specificationas the(n − 1)-tuple
(m1, m2, · · · , mn−1). We have the following.

Lemma 1 The number of labeled trees withn vertices and degree specification(m1, m2, · · ·mn−1) with∑n
i=1 mi = n and

∑n
i=1 imi = 2n− 2 is

an(m1,m2, . . . ,mn−1) =
(n− 2)!∏n−1

i=1 ((i − 1)!)
mi

(
n

m1, m2, · · · , mn−1

)
.

Proof (sketched). Using Prüfer code, the number of trees with degree sequenced1, d2, · · · , dn (that is
with node numberedi of degreedi) is (n−2)!∏

n
i=1(di−1)! . The result is obtained by regrouping nodes of the

same degree.
Define the associated EGF toan(m1,m2, . . . ,mn−1) with

U(δ1, δ2, · · · ; z) =
∞∑

n=2

∑
an(m1,m2, . . . ,mn−1)δ

m1
1 δm2

2 · · · δmn−1

n−1

zn

n!
(8)

where the inner summation is taken other alli such that
∑

imi = 2n − 2 and
∑

mi = n. Define
Un(δ1, δ2, . . . , δn−1) as

Un(δ1, δ2, . . . , δn−1) = [zn]U(δ1, δ2, . . . , δn−1; z) . (9)

The following result allows us to compute recursivelyUn(δ1, · · · , δn−1).

Lemma 2 The generating functionsUn defined in(9) satisfyU2(δ1) =
δ21
2 and for anyn ≥ 3,

Un(δ1, . . . , δn−1) = δ2Un−1(δ1, . . . , δn−2)

+

n−2∑

i=2

δi+1

∫ δ1

0

∂

∂δi
Un−1(x, δ2, . . . , δn−2)dx .

Proof. Postponed in the Appendix – 6.1.
Enumerating 2-connected graphs whose kernels are 3-regular.A bridgeor cut-edgeof a graph is an
edge whose removal increases its number of connected components. Especially, the deletion of such an
edge disconnects a connected graph. Similarly anarticulation pointor cut-vertexof a connected graph is
a vertex whose removal disconnects a graph. A connected graph without an articulation point is called a
blockor a2-connectedgraph.

Following the terminology of Janson et al. (1993), a connected graph hasexcessr if it has r edges
more than vertices. Trees (resp.unicyclesor unicyclic components) are connected components with
excessr = −1 (resp.r = 0). Connected components with excessr > 0 are calledcomplex connected
components. A graph (not necessarily connected) is calledcomplexwhen all its components are complex.
The total excessof a graph is the number of edges plus the number of acyclic components, minus the
number of vertices.

Given a graph, its2-coreis obtained by deleting recursively all nodes of degree1. A smoothgraph is a
graph without vertices of degree one.

The3-core (also calledkernel) of a complex graph is the graph obtained from its2-core by repeating
the following process on any vertex of degree two : for a vertex of degree two, we can remove it and splice
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together the two edges that it formerly touched. A graph is said cubicor 3-regular if all of its vertices are
of degree3. Denote byBr the family of2-connected smooth graphs of excessr with 3-regular3-cores
and let

B =

∞⋃

r=1

Br . (10)

In this paragraph, we aim to enumerate asymptotically the graphs ofBr. In Chae et al. (2007), the authors
established recurrence relations for the numbers of labeled cubic multigraphs with given connectivity,
number of double edges and number of loops. For instance, they were able to rederive Wormald’s result
about the numbers of labeled connected simple cubic graphs with 3n simple edges and2n vertices (Chae
et al., 2007, equation (24)). They proved that the number of such objects is given by

(2n)!

3n2n
(tn − 2tn−1), n ≥ 2 (11)

with

t1 = 0, t2 = 1 andtn = 3ntn−1 + 2tn−2 + (3n− 1)

n−3∑

i=2

titn−1−i, n ≥ 2 . (12)

From the sequence(tn), they found the number of2-connected multigraphs.

Lemma 3 (Chae, Palmer, Robinson)Let g(s, d) be the number of cubic block (2-connected labelled)
multigraphs withs single edges andd double-edges. Then, the numbersg(s, d) satisfy

g(s, d) = 0 if s < 2 , g(s, s) = (2s− 1)! andg(3s, 0) =
(2s)!

3s2s
(ts − 2ts−1)

with ts defined as in (12). In all other cases,

g(s, d) = 2n(2n− 1)

(
(s− 1)

d
g(s− 1, d− 1) + g(s− 3, d)

)
.

We are now ready to enumerate asymptotically the familyBr. Throughout the rest of this paper ifA(z)
andB(z) are two EGFs we write

A(z) ≍ B(z) if and only if [zn]A(z) ∼ [zn]B(z) as n → +∞ .

Lemma 4 For r ≥ 1, let Br(z) be the EGF of smooth graphs of excessr whose kernels are3-regular
and2-connected.Br(z)satisfiesBr(z) ≍ br

(1−z)3r
whereb1 = 1

12 and forr ≥ 2

br =
∑

s+2d=3r

g(s, d)

2d(2r)!
(13)

with theg(s, d) defined as in lemma 3.

Proof. Postponed in the Appendix – 6.2.
We need to count graphs of excessr with at mostk vertices so that all the blocks of such structures are of
size at mostk. We begin our task with the graphs with cubic and2-connected kernels.
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Lemma 5 LetB[k]
r be the family of2-connected graphs of excessr, with at mostk− 2r vertices of degree

two in their2-cores and whose3-cores are cubic. For any fixedr ≥ 1, we have

B[k]
r (z) ≍ br

1− zk

(1− z)3r
.

Proof. Postponed in the Appendix – 6.3.
Let B•s

r be the set of graphs ofBr such thats vertices of degree two of their2-cores are distinguished
amongst the others. In other words, an element ofB•s

r can be obtained from an element ofBr by marking
(or pointing)s unordered vertices of its2-core. In terms of generating functions, we simply get (see Harary
and Palmer (1973); Goulden and Jackson (1983); Flajolet andSedgewick (2009)) :

B•s
r (z) =

zs

s!

∂s

∂zs
Br(z, t)

∣∣∣∣∣
t=z

=
zs

s!

∂s

∂zs

(
br

t2r

(1− z)3r

) ∣∣∣∣∣
t=z

, (14)

whereBr(z, t) is the bivariate EGF ofBr with t the variable for the vertices of degree3. (The substitution
t = z is made after the derivations.)
Define

b•sr =
1

s!
br

s∏

i=1

[3r + (s− i)]

so thatB•s
r (z) ≍ b•sr

(1−z)3r+s . Now if we switch to the class of graphs with blocks of size at mostk then
by similar arguments, the asymptotic number of graphs ofB•s

r with s distinguished vertices and at most
k vertices on their2-cores behaves as

B•s, [k]
r (z) ≍ b•sr

1− zk

(1− z)3r+s .

Counting 2-cores with cubic kernels by number of bridges.In this paragraph, we aim to enumerate
connected smooth graphs whose3-cores are3-regular according to their number of bridges (or cut-edges)
and their excess. To that purpose, letCr be the family of such graphs with excessr ≥ 0, and for anyd ≥ 0
let

Cr,d def
= {G ∈ Cr : G is a cycle or its3-core is3-regular and hasd bridges} .

Clearly, we haveCr,0 = Br. If we want to mark the excess of these graphs by the variablew, we simply
have

Cr,d(w, z) = wrCr,d(z) .

Lemma 6 For anyr ≥ 1 andd ≥ 1,

Cr,d(z) = [wr]Ud+1

(
B•1(w, z), 2!B•2(w, z), 3!B•3(w, z) + w−1z,

4!B•4(w, z), . . . , d!B•d(w, z)

)
wd

(1− z)d
,
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whereUd+1 are the EGF given by lemma 2,B0(w, z) = − 1
2 log (1 − z) − z/2 − z2/4, B•s

0 (w, z) =
1
s!

∂s

∂zs B0(w, z) andB•s(w, z) =
∑

r≥0 w
rB•s

r (z).

Proof. Postponed in the Appendix – 6.4

Lemma 7 For r ≥ 1 andd ≥ 1, we have

Cr, d(z) ≍
cr, d

(1 − z)3r

where the coefficientscr, d are defined by

cr, d = [wr]Ud+1

(
β1(w), β2(w), β3(w) + w−1, β4(w), . . . , βd(w)

)
wd,

with bℓ given by (13) and

βs(w) =
(s− 1)!

2
+

r−1∑

ℓ=1

wℓbℓ

s∏

i=1

[3ℓ+ (s− i)] with s ≥ 1.

Proof. Postponed in the Appendix – 6.5.
Let us restrict our attention to elements ofCr, d with blocks of size at mostk. Denote byC[k]

r, d this set of
graphs. Since they can be obtained from a tree withd+1 vertices by replacing each vertex of degrees by
a s-marked block (block with a distinguished degree of degree two) of the family

⋃∞
r=0 B•s, [k], we infer

the following :

Lemma 8 For fixed values ofr, the EGF of graphs ofC[k]
r,d verifies

C
[k]
r, d ≍ cr, d

(1− zk)d+1

(1− z)3r
.

From connected components to complex components.Denote byE [k]
r the family of complex graphs

(not necessarily connected) of total excessr with all blocks of sized≤ k. Let E[k]
r be the EGF ofE [k]

r .
Using the symbolic method and sprouting the rooted trees from the smooth graphs counted byC [k]

r, d(z),
we get

∞∑

r=0

wrE[k]
r (z) = exp




∞∑

r=1

wr
2r−1∑

d≥0

C
[k]
r, d (T (z) )


 .

We now use a general scheme which relates behavior of connected components and complex components
(see for instance (Janson et al., 1993, Section 8)). IfE(w, z) = 1 +

∑
r≥1w

rEr(z) with Er(z) ≍
er

(1−T (z))3r andCr(z) ≍ cr
(1−T (z))3r are EGFs satisfying

1 +
∑

r≥1

wrEr(z) = exp

( ∞∑

r=1

wrCr(z)

)
.

then the coefficients(er) and(cr) are related by

e0 = 1 and er = cr +
1

r

r−1∑

j=1

jcjer−j asr ≥ 1 .
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Similarly, after some algebra we get

Lemma 9 For fixedr ≥ 1,

E[k]
r (z) ≍

2r−1∑

d=0

e
[k]
r,d (T (z) )

(1− T (z))3r

where the functions(e[k]r,d) are defined recursively bye[k]0,0(z) = 1, e[k]r,d(z) = 0 if d > 2r − 1 and

e
[k]
r,d(z) = cr,d

(
1− zk

)d+1
+

1

r

r−1∑

j=1

jcj,d e
[k]
r−j,d(z)

(
1− zk

)d+1
. (15)

Remark. Note that the maximal range2r − 1 of d appears when the2-core is a cacti graph (each edge
lies on a path or on a unique cycle), each cycle have exactly one vertex of degree three and its3-core is
3-regular.

3 Proof of Theorem 1
Following the work of Flajolet and Odlyzko Flajolet and A. (1990) on extremal statistics of random
mappings, let us introduce the relevant EGF for the expectation of the maximum block-size inG(n,M).

On the one hand, if there aren vertices,M edges and with a total excessr there must be exactly
n −M + r acyclic components. Thus, the number of(n,M)-graphs(iv) of total excessr without blocks
of size larger thank is

n![zn]
U(z)n−M+r

(n−M + r)!

(
eW0(z)−

∑∞
i=k+1

T (z)i

2i

)
E[k]

r (z) .

whereW0(z) = − 1
2 log(1 − T (z)) − T (z)

2 − T (z)2

4 is the EGF of connected graphs of excessr = 0
(see (Janson et al., 1993, equation (3.5))).

On the other hand, the EGF of all(n,M)-graphs is

Gn,M (z) =
∑

n≥0

((n
2

)

M

)
zn

n!
.

Define

Ξ(z) =
∑

k≥0


Gn,M (z)−

∑

n≥0

(
n![zn]

U(z)n−M+r

(n−M + r)!

(
eW0(z)−

∑∞
i=k+1

T(z)i

2i

)
E[k]

r (z)

)
zn

n!


 , (16)

so that

n![zn]
((n2)
M

) Ξ(z) =
∑

k≥0


1− n!

((n2)
M

) [zn]
U(z)n−M+r

(n−M + r)!

(
eW0(z)−

∑∞
i=k+1

T (z)i

2i

)
E[k]

r (z)


 , (17)

(iv) Graph withn vertices andM edges
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is the expectation of℘n,M .
We know from the theory of random graphs that in the sub-critical phase whenn− 2M ≫ n2/3 G(n,M)

has no complex components with probability1 − O
(

n2

(n−2M)3

)
(cf (Daudé and Ravelomanana, 2009,

Theorem 3.2)). In this abstract, we restrict our attention to the typical random graphs. Otherwise, we will
obtain the same result as stated by bounds on theE

[k]
r (z) in (16) since

1 ≤ E[k]
r (z) ≤ Er(z) ≤

erT (z)

(1 − T (z))3r

(where inequality between the EGFs means that the coefficients of every power ofz obeys the same rela-
tion and the last inequality is (Janson et al., 1993, equation (15.2)) wither =

(6r)!
25r32r(3r)! (2r)! ). Assuming

that the graphs are typical (i.e. without complex components),Ξ(z) behaves as

Ξ(z) ≍
∑

k≥0


Gn,M (z)−

∑

n≥0


n![zn]

U(z)n−M

(n−M)!

e−
T (z)

2 −T (z)2

4

(1− T (z))1/2
exp


−

∑

j≥k+1

T (z)j

2j




 zn

n!


 (18)

We need the following Lemma to quantify large coefficients of(18).

Lemma 10 Let a and b be any fixed rational numbers. For any sequence of integersM(n) such that
δn < M for someδ ∈

[
0, 12
]

butn− 2M ≫ n2/3, define

fa,b(n,M) =
n!
((n2)
M

) [zn]
U(z)n−M

(n−M)!

U(z)b e−T (z)/2−T (z)2/4

(1− T (z))a
.

We have

fa,b(n,M) ∼ 2b
(
M

n

)b (
1− M

n

)b(
1− 2M

n

)1/2−a

.

Proof. Postponed in the Appendix – 6.6.
Using Lemma 10 witha = 1/2 and b = 0, after a bit of algebra (change of variableu = T (z) and
approximating the sum by an integral), we first obtain

E(℘n,M ) ∼
∑

k≥0

(
1− exp

(
−1

2

∫ ∞

(k+1)(1− 2M
n )

e−v dv

v

))
.

Then by Euler-Maclaurin summation formula and after a change of variable ((k + 1)(1 − 2M
n ) = u so

dk = (1− 2M
n )−1du), we get the result.

4 Proof of Theorem 2
The following technical result is essentially (Janson et al., 1993, Lemma 3). We give it here in a modified
version tailored to our needs (namely involving truncated series). We refer also to the proof of (Flajolet
et al., 1989, Theorem 5) and Banderier et al. (2001) for integrals related to the Airy function.
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Lemma 11 LetM = n
2

(
1 + λn−1/3

)
. Then for any natural integersa, k andr we have

n!
((n2)
M

) [zn]
U(z)n−M+r

(n−M + r)!

T (z)a
(
1− T (z)k

)

(1− T (z))3r
exp

(
W0(z)−

∞∑

i=k

T (z)i

2i

)

=
√
2 π exp


−

∞∑

j=k

e−jαn−1/3

2j



(
1− e−kαn−1/3

)
A

(
3r +

1

2
, λ

) (
1 +O

(
λ4

n1/3

))
,

(19)

uniformly for|λ| ≤ n1/12 whereA(y, µ) is defined by (6) andα is given by (5).

Proof. Postponed in the Appendix – 6.7.
Using this lemma, equation (17) and next approximating a sumby an integral using Euler-Maclaurin
summation, the expectation of℘n,M is about

n∑

k=0


1−

∑

r

∑

d

√
2π exp


−

∞∑

j=k

e−jαn−1/3

2j


 e

[k]
r,d

(
e−kαn−1/3

)
A

(
3r +

1

2
, λ

)
 (20)

= α−1n1/3

∫ αn2/3

0

(
1−

∑

r

∑

d

√
2π exp

(
−
∫ ∞

u

e−v

2v
dv

)
er,d

(
e−u

)
A

(
3r +

1

2
, λ

))
du (21)

where

er,d(z) = cr,d (1− z)d+1 +
1

r

r−1∑

j=1

jcj,d er−j,d(z) (1− z)d+1 . (22)

5 Conclusion
We have shown that the generating function approach is well suited to make precise the expectation of
maximum block-size of random graphs. Our analysis is a first step towards a fine description of the various
graph parameters inside the window of transition of random graphs.
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6 Appendix
6.1 Proof of Lemma 2

The casen = 2 is immediate. LetUn be the family of trees of sizen andU•
n be the family of rooted trees

of sizen whose roots are of degree1. Deleting the root of the latter trees gives unrooted trees of size
n − 1. Conversely, an element ofU•

n can be obtained from an element ofUn−1, by choosing any vertex
and by attaching to this vertex a new vertex which is the root of the newly obtained tree. In terms of EGF,
we have :

U•
n(δ1, . . . , δn−1) =

n−2∑

i=1

δ1δi+1
∂

∂δi
Un−1(δ1, . . . , δn−2).

The combinatorial operator that consists to choose a vertexof degreei and add the root isδ1δi ∂
∂δi

. The

multiplication by the termsδi+1δ
−1
i reflects the fact that we have a vertex of degreei that becomes a

vertex of degreei+1 after the addition of the new vertex of degree1 (thus the termδ1). Next, we have to
unmark the root which is by construction of degree1. After a bit of algebra, we obtain the result.

6.2 Proof of Lemma 4

The numbersg(s, d) count labeled cubic multigraphs. Ifs + 2d = 3r, these multigraphs are exactly
the3-cores of the graphs of the familyBr. Starting from the EGFg(s, d)w

3rz2r

(2r)! – with the variablew
(resp.z) marking the edges (resp. vertices) – if we want to reconstruct from these multigraphs the graphs
of the familyBr each edgew of these multigraphs is substituted by a sequence of vertices of degree2
introducing the term 1

(1−z) (for each of the3r edges of the multigraphs). Next, we have to compensate

the symmetry of each double-edge introducingd times the factor12! .

6.3 Proof of Lemma 5

The3-cores of the graphs ofBr have as bivariate EGFbrw3rt2r (with w the variable for the edges andt
for the vertices of degree3). In order to reconstruct the2-cores ofB[k]

r , we insert at mostk − 2r vertices
on each of the3r paths between the vertices of degree3. Hence,

br

k−2r∑

i=0

(
3r + i− 1

i

)
zit2r = br

k−2r∑

i=0

(3r + i− 1)(3r + i− 2) · · · (i+ 1)

(3r − 1)!
zit2r

≍ br
1− zk+1−2r

(1− z)3r
t2r ≍ br

1− zk

(1− z)3r
t2r
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6.4 Proof of Lemma 6

Any element of the familyCrd can be obtained from a tree withd+1 vertices as follows. Consider a treeT
of sized+ 1. For each vertexv of T of degrees, we can substitutev by an element ofB•s in s! manners.
We distinguish two cases according to the degree ofv : vertices of degree3 can be left unchanged or
substituted by elements ofB•3. Thus, the term3!B•s(w, z) + w−1z in (15). Next, each edge ofT can
be substituted by a path of length at least1 with a factorw which parametrizes the excess of the obtained
graph. Thus, the factor wd

(1−z)d
.

6.5 Proof of Lemma 7

Applying the operator ofz
s

s!
∂s

∂zs on unicyclic components givesb•s0 = 1
s!

(s−1)!
2 . Define the ordinary

generating function of(b•sℓ )ℓ≥0 as

b•s(w) =
∞∑

ℓ=0

b•sℓ wℓ =
1

s!

(
(s− 1)!

2
+

∞∑

ℓ=1

bℓ

s∏

i=1

[3ℓ+ (s− i)]wℓ

)
. (23)

After a bit of algebra, we get

cr, d = [wr ]Ud+1

(
b•1(w), 2!b•2(w), 3!b•3(w) + w−1, 4!b•4(w), . . . , d!b•d(w)

)
wd. (24)

Observe that for anyd ≥ 1, each involved block to obtain an element ofCr, d is necessarily of excess at
mostr − 1. So, the summation in (23) can be truncated tor − 1.

6.6 Proof of Lemma 10

We split the formula in two parts :fa,b(m,n) = St(m,n) · Ca(m,n) with

St(m,n) =
n!

((n2)
m

)
(n−m)!

and Ca(m,n) = [zn]
U(z)n−m

(n−m)!

U(z)b e−t(z)/2−t(z)2/4

(1− T (z))a
.

Using Stirling’s formula, we have for the stated range ofm

n!m!

(n−m)!
=

√
2 π

nn+1/2mm+1/2

(n−m)n−m+1/2
e−2m

(
1 +O

(
1

n

))
.

We also have
((n

2

)

m

)
=

n2m

2mm!
exp

(
−m

n
− m2

n2
+O

(m
n2

)
+O

(
m3

n4

))
.

Next, we get

St(m,n) =

(
2πnm

n−m

)1/2
2mnnmm

n2m(n−m)n−m
exp

(
−2m+

m

n
+

m2

n2

) (
1 +O

(
1

n

))
. (25)
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ForCa(m,n), in using Cauchy integral’s formula and substitutingz by ze−z, we obtain :

Ca(m,n) =
2m−n

2πi

∮ (
2T (z)− T (z)2

)n−m U(z)b e−T (z)/2−T (z)2/4

(1− T (z))a
dz

zn+1
(26)

=
2m−n

2πi

∮
g(z)enh(z)

dz

z
(27)

where

g(z) =
(z − z2/2)b e−z/2−z2/4

(1 − z)a−1
,

h(z) = z − m

n
log z +

(
1− m

n

)
log (2 − z) .

h′(z) = 0 for z = 1 or z = 2m/n. h′′(1) = 2m/n− 1 < 0 andh′′(2m/n) = n(n−2m)
4m(n−m) > 0. As in

Flajolet et al. (1989), we can apply the saddle-point methodintegrating around a circular path|z| = 2m/n.
LetΦ(θ) be the real part ofh(2m/neiθ). We have

Φ(θ) = 2
m

n
cos θ +

(
1− 2

m

n

)
log 2− m

n
log
(m
n

)
+

(
1− m

n

)

2
log

(
1 +

m2

n2
− 2

m

n
cos θ

)

and

Φ′(θ) = −2
m

n
sin θ +

(1−m/n)m

n (1 +m2/n2 − 2m/n cosθ)
sin θ .

We note thatΦ(θ) is a symmetric function ofθ. Fix sufficiently small positive constantθ0. Then,Φ(θ)
takes its maximum value atθ = θ0 asθ ∈ [−π,−θ0] ∪ [θ0, π]. In fact,

Φ(θ)− Φ(π) = 4
m

n
+
(
1− m

n

)
log

(
n−m

n+m

)
+O(θ2) .

Therefore, ifθ → 0 Φ(θ) > Φ(π). Also,Φ′(θ) = 0 for θ = 0 andθ = θ1 (for someθ1 > 0). Standard
calculus show thatΦ(θ) is decreasing from0 to θ1 and then increasing fromθ1 to π. We also have

h(p)(z) = (p− 1)!

(
(−1)p

m

nzp
− (n−m)

n (2− z)p

)
, p ≥ 2 .

Hence,

h(2meiθ/n) = h(2m/n) +
∑

p≥2

ξp(e
iθ − 1)p ,

whereξp = (2m/n)p

p! h(p)(2m/n) and|ξp| ≤ m
np

(
2m
n

)p
+ n−m

np . We then have

|
∑

p≥4

ξp(e
iθ − 1)p| = O(θ4) .
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This allows us to write

h(2m/neiθ) = h(2m/n)− m(n− 2m)

2n(n−m)
θ2 − i

(n2 − 5nm+ 2m2)m

6n(n−m)2
θ3 +O(θ4) .

Let τ = n(n−m)/ (m(n− 2m)) and

θ0 =

(
(n−m)

(n− 2m)m

)1/2

· ω(n) =
√

τ

n
· ω(n)

where we need a functionω(n) satisfyingnθ20 ≫ 1 butnθ30 ≪ 1 asn → ∞. We choose

ω(n) =
(n− 2m)1/4

n1/6
. (28)

We can now use the magnitude of the integrand atθ0 to bound the error and our choice ofθ0 verifies

|g(2m/neiθ0)
(
exp

(
nh(2m/neiθ0)

)
− exp (nh(2m/n))

)
| = O

(
e−ω(n)2/2

)
.

Thus, we obtain

Ca(m,n) =
2m−n

2π

∫ θ0

−θ0

g
(
2
m

n
eiθ
)
exp

(
nh(2m/neiθ)

)
dθ ×

(
1 +O

(
e−ω(n)2/2

))
.

We replaceθ by τ1/2

n1/2 t. The integral in the above equation leads to

( τ
n

)1/2 ∫ ω(n)

−ω(n)

g

(
2m

n
exp (it

√
τ/n)

)
exp

(
nh

(
2m

n
exp (it

√
τ/n)

))
dt .

Expandingg(2m/neit
√

τ/n), we obtain

( τ
n

)1/2 ∫ ω(n)

−ω(n)

g (2m/n)

(
1− i

2mτ1/2(n2 − 2m2)

n5/2(n− 2m)
t+ O

(
n2

(n− 2m)3
t2
))

× exp

(
nh

(
2m

n
exp (it

√
τ/n)

))
dt .

Observe that our choice ofω(n) in (28) and the hypothesisn − 2m ≫ n2/3 justify such an expansion.

Similarly, using the expansion ofh(2m/neit
√

τ/n) yields

( τ
n

)1/2 ∫ ω(n)

−ω(n)

g (2m/n)

(
1− i

2mτ1/2(n2 − 2m2)

n5/2(n− 2m)
t+ O

(
n2

(n− 2m)3
t2
))

× exp

(
nh

(
2m

n

)
− 1

2
t2
)

×
(
1− i

(n2 − 5nm+ 2m2)

6(n−m)1/2m1/2(n− 2m)3/2
t3 +O

(
n

(n− 2m)2
t4
))

dt .
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Using the symmetry of the function, we can cancel terms such as it andit3 (in fact all odd powers oft).
Standard calculations show also that form in the stated ranges, the multiplication of the factors ofit and
it3 leads to a term of order of magnitudeO(n2/(n− 2m)3t4). Therefore we obtain,

Ca(m,n) =
2m−n

2π

( τ
n

)1/2
g (2m/n) enh(2m/n)

∫ ω(n)

−ω(n)

e−t2/2

(
1−O

(
n2

(n− 2m)3
t4
))

dt

Ca(m,n) = 2m−n
( τ

2π n

)1/2
g (2m/n) enh(2m/n)

(
1− e−O(ω(n)2) −O

(
n2

(n− 2m)3

))
.

(29)

Multiplying (25) and (29) leads to the result after nice cancellations. (Note that the error termse−O(ω(n)2)

andO(1/n) can be regrouped with theO(n2(n− 2m)−3).)

6.7 Proof of Lemma 11
Proof. Using Stirling’s formula, we get

St(M,n) =
n!
((n2)
M

)
1

(n−M + r)!

=
√
2πn

2n−M+r

nr
exp

(
−λ3

6
+

3

4
− n

)

×
(
1 + O

(
λ4

n1/3

))
. (30)

Using Cauchy integral’s formula and substitutingz by ze−z, we obtain :

Ca(M,n) = [zn]U(z)n−M+r T (z)a (1 − T (z)k)

(1 − T (z))3r
e(V (z)−∑∞

j=k
T (z)j

2j )

=
1

2πi

∮ (
T (z)− T (z)2

2

)n−M+r
T (z)a e−T (z)/2−T (z)2/4−∑∞

j=k T (z)j/2j

(1 − T (z))3r+1/2

dz

zn+1

=
2M−n−ren

2πi

∮
g(u) exp (nh(u))

du

u
, (31)

where the integrand has been splitted into

g(u) =
ua (2u− u2)r e−u/2−u2/4−∑∞

j=k uj/2j (1 − uk)

(1− u)3r−1/2

and

h(u) = u− 1− log u−
(
1− M

n

)
log

1

1− (u − 1)2
.

The contour in (31) should keep|u| < 1. Precisely at the critical valueM = n
2 we also haveh(1) =

h′(1) = h′′(1) = 0. This triple zero accounts in the procedure Janson, Knuth, Łuczak and Pittel used
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when investigating the value of the integral for largen. Let ν = n−1/3, and letα be the positive solution
of (5). Following the proof of (Janson et al., 1993, Lemma 3),we will evaluate (31) on the pathz =
e−(α+it)ν , wheret runs from−πn1/3 to πn1/3:

∮
f(z)

dz

z
= iν

∫ πn1/3

−πn1/3

f(e−(α+it)ν) dt .

The main contribution to the value of this integral comes from the vicinity of t = 0. The magnitude of
eh(z) depends on the real part ofh(z), viz. ℜh(z). ℜh(e−(α+it)ν) decreases as|t| increases and|enh(z)|
has its maximum on the circlez = e−(α+it)ν whent = 0.

We havenh(e−sν)

nh(e−sν) = 1
3 s

3 + 1
2λs

2 +O
(
(λ2s2 + s4)ν

)
,

uniformly in any region such that|sν| < log 2. In (Janson et al., 1993, equation (10.7)), the authors define

A(y, µ) =
1

2πi

∫

Π(1)

s1−yeK(µ,s) ds ,

whereK(µ, s) is the polynomial

K(µ, s) =
(s+ µ)2(2s− µ)

6
=

s3

3
+

µs2

2
− µ3

6

andΠ(α) is a path in the complex plane that consists of the following three straight line segments:

s(t) =





−e−πi/3 t, for −∞ < t ≤ −2α;
α+ it sinπ/3, for − 2α ≤ t ≤ +2α;

e+πi/3 t, for + 2α ≤ t < +∞ .

In particular, they proved thatA(y, µ) can be expressed as (6).
For the functiong(u), we have

g(e−sν) =

(
2e−sν − e−2sν

)r

(1− e−sν)
3r−1/2

e−asν−e−sν/2−e−2sν/4−∑∞
j=k e

−jsν
2j

(1− e−ksν)

= (sν)1/2−3re−3/4−∑∞
j=k e−jsν/2j

(
1− e−ksν

)
(1 +O(sν)) .

Forg(u)enh(u) in the integrand of (31), we have

e−λ3/6f(e−sν) = e−3/4−∑∞
j=k e−jsν/2jν1/2−3r

(
1− e−ksν

)
, s1−(3r+1/2)eK(λ, s)

×
(
1 +O(sν) +O(λ2s2ν) +O(s4ν)

)

whens = O(n1/12). Finally,

e−λ3/6

2πi

∮
g(u)enh(u)

du

u
= exp


−3/4−

∞∑

j=k

e−jαν/2j


 (

1− e−kαν
)
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× ν3/2−3r A(3r +
1

2
, λ) +O

(
ν5/2−3re−λ3/6λ3r/2+1/4

)

where the error term has been derived from those already in Janson et al. (1993). The proof of the lemma
is completed by multiplying (30) and (31).
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Abstract. The deterministic random walkis a deterministic process analogous to a random walk. Whilethere are
some results on the cover time of therotor-router model, which is a deterministic random walk corresponding to a
simple random walk, nothing is known about the cover time of deterministic random walks emulating general transi-
tion probabilities. This paper is concerned with theSRT-routermodel with multiple tokens, which is a deterministic
process coping with general transition probabilities possibly containing irrational numbers. For the model, we give
an upper bound of the cover time, which is the first result on the cover time of deterministic random walks for general
transition probabilities. Our upper bound also improves the existing bounds for the rotor-router model in some cases.

Keywords: rotor router model, stack walk, multiple random walk, mixing time, cover time

1 Introduction
Previous works for the cover time of random walks A random walkis a fundamental stochastic
process on a graph, in which a token successively transits toneighboring vertices chosen at random. The
expected cover time (this paper simply sayscover time) of a random walk on a finite graph is the expected
time until every vertex has been visited by the token. The cover time is a fundamental measure of a
random walk, and it has been well investigated.

Aleliunas et al. [3] showed that the cover time of asimple random walk, in which a neighboring vertex
is chosen uniformly at random, is upper bounded by2m(n−1) for any connected graph, wherem denotes
the number of edges andn denotes the number of vertices. Feige [16, 17] showed that the cover time is
lower bounded by

(
1− o(1)

)
n logn and upper bounded by

(
1 + o(1)

)
(4/27)n3 for any graph.

Motivated by a faster cover time, the cover time by more than one token has also been investigated.
Broder et al. [8] gave an upper bound of the cover time ofk independent parallel simple random walks (k-
simple random walks) when tokens start from stationary distribution. For an arbitrary initial configuration
of tokens, Alon et al. [4] showed that the cover time ofk-simple random walks is upper bounded by(
(e + o(1))/k

)
thit logn for any graph ifk ≤ logn, wheree is Napier’s constant andthit denotes the

(maximum)hitting time. Elsasser and Sauerwald [15] gave an better upper bound for largek of O
(
t∗ +

(thit logn)/k
)

for any graph ifk ≤ n, wheret∗ is themixing time.

†Supported by JSPS KAKENHI Grant Number 15J03840.
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Ikeda et al. [21] took another approach for speeding up, which usesgeneraltransition probabilities
(beyond simple random walks). They inventedβ-random walk, consisting of irrational transition prob-
abilities in general, and showed that the cover time isO(n2 logn). Nonaka et al. [26] showed that the
cover time of aMetropolis-walk, which is based on theMetropolis-Hastings algorithm, isO(n2 logn) for
any graph.

Little is known about the cover time by multiple tokens with general transition probabilities. Elsasser
and Sauerwald [15] gave a general lower bound ofΩ

(
(n logn)/k

)
for any transition probabilities and for

anynε ≤ k ≤ n, where0 < ε < 1 is a constant.

Previous works for the cover time of deterministic random walks From the view point of thedeter-
ministicgraph exploration, therotor-router model, which is a deterministic process analogous to a simple
random walk, is well studied recently. In this model, each vertexu sends tokens one by one to neighbor-
ing vertices in the round robin fashion, i.e.,u serves tokens to a neighboring vertexv with a ratio about
1/δ(u), whereδ(u) is the number of neighbors.

Yanovski et al. [31] studied the asymptotic behavior of the rotor-router model, and proved that any
rotor-router model always stabilizes to a traversal of an Eulerian cycle after2mD steps at most, where
D denotes the diameter of the graph. Bampas et al. [6] gave examples of which the stabilization time
getsΩ(mD). Their results imply that the cover time of a single token version of a rotor-router model is
Θ(mD) in general. Another approach to examine the cover time of therotor-router model is connecting

qualities of a random walk and thevisit frequencyX(T )
v of the rotor-router model, whereX(T )

v denotes
the total number of times that tokens visited vertexv by timeT . Holroyd and Propp [20] showed that
|πv −X

(T )
v /T | ≤ Kπv/T , whereK is an constant independent ofT , andπ is the stationary distribution

of the corresponding random walk. This theorem says thatX
(T )
v /T converges toπv asT increasing.

Using this fact, Friedrich and Sauerwald [19] gave upper bounds of the cover time for many classes of
graphs.

To speed up the cover time, the rotor-router model withk > 1 tokens is studied by Dereniowski et
al. [13]. They gave an upper boundO(mD/ log k) for any graph whenk = O

(
poly(n)

)
or 2O(D), and

also gave an example ofΩ(mD/k) as a lower bound. Kosowski and Pajak [24] gave a modified upper

bound of the cover time for many graph classes by connectingX
(T )
v and the corresponding simple random

walk. They showed that the upper bound isO
(
t∗ + (∆/δ)(mt∗/k)

)
for general graphs, where∆/δ is the

maximum/minimum degree.
Beyond the rotor-router model, which corresponds to a simple random walk, thedeterministic random

walk for general transition probabilities has been invented, that is each vertexu deterministically serves
tokens onu to a neighboring vertexv with a ratio aboutPu,v, wherePu,v denotes the transition probability
from u to v of a corresponding random walk (See Section 2.2 for the details). Holroyd and Propp [20]
provides thestack walk(Shiraga et al. [28] called itSRT-router model), and showed a connection between
the visit frequency and hitting probabilities. Shiraga et al. [28] investigated functional-router model,
which is a more general framework, and gave an analysis on thesingle vertex discrepancybetween the
SRT-router model and its corresponding random walk. As far as we know, nothing is known about the
cover time of deterministic random walks for general transition probabilities.

Our results This paper is concerned with the cover time of the deterministic random walk according
to general transition probabilities withk tokens, while previous results studied the rotor-router model
(corresponding to simple transition probabilities). We give an upper bound of the cover time for any SRT-
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router model imitating any ergodic and reversible transition matrix possibly containing irrational numbers
(Theorem 4.1). Precisely, the upper bound isO

(
t∗ + m′t∗/k

)
for any number of tokensk ≥ 1, where

m′ = maxu∈V (δ(u)/πu). This is the first result of an upper bound of the cover time fordeterministic
random walks imitating general transition probabilities,as far as we know. Theorem 4.1 implies that the
upper bound of the cover time of the rotor-router model isO

(
t∗ +mt∗/k

)
for any graph (Corollary 4.2).

For k = 1, this bound matches to the existing boundO(mD) by [31] whent∗ = O(D). This bound is
better thanO(mD/ log k) by [13] whent∗ is small ork is large. Our bound also improves the bound
O
(
t∗ + (∆/δ)(mt∗/k)

)
by [24] in ∆/δ factor for inhomogeneous graphs.

In our proof, we investigate the connection between the visit frequencyX(T )
v of the SRT-router model

and the corresponding multiple random walks with general transition probabilities. This approach is an
extension of [20, 19, 24]. In precise, we show that|πv − (X

(T )
v /kT )| < Kπv/T holds for any reversible

and ergodic transition matrices, whereπv is the stationary distribution of the corresponding transition
matrix andK is constant independent ofT . This upper bound extends the result of [20] tok > 1 tokens
and general transition probabilities.

Related topics for deterministic random walks As a highly related topic, there are several results
on the single vertex discrepancy between a configuration of tokens of a multiple deterministic random
walk and an expected configuration of tokens of its corresponding random walk. Rabani et al. [27] gave
an upper bound of the single vertex discrepancy of thediffusive model, and gave the framework of the
analysis. The single vertex discrepancy on several basic structures were widely studied, e.g., constant
upper bound for the lattice [12, 11, 14], lower bound for the tree [10],d-dimensional hyper cube [18, 1],
etc. Berenbrink et al. [7] gave a sophisticated upper bound on d-regular graphs. To cope with general
rational transition probabilities, rotor-router model onmultidigraphs is studied in [23, 22]. The SRT-
router model is investigated in [28, 29]. They examined the discrepancy between this model and general
Markov chains under natural assumptions. Recently, Chalopin et al. [9] gave the upper and lower bound
of the stabilization time for the rotor-router model with many tokens.

2 Preliminaries

2.1 Random walk / Markov chain

Let V = {1, 2, . . . , n} be a finite state set, and letP ∈ Rn×n
≥0 be a transition matrix onV . P satisfies∑

v∈V Pu,v = 1 for anyu ∈ V , wherePu,v denotes the(u, v)-entry ofP . It is well known that any
ergodic(i) P has a uniquestationary distributionπ ∈ Rn

>0 (i.e.,πP = π), and the limit distribution isπ
(i.e., limt→∞ ξP = π for any probability distributionξ onV ). To discuss theconvergenceformally, we
introduce thetotal variation distanceand themixing time. Let ξ andζ be probability distributions onV ,
then the total variation distanceDtv betweenξ andζ is defined by

Dtv(ξ, ζ)
def.
= max

A⊆V

∣∣∣∣∣
∑

v∈A

(ξv − ζv)

∣∣∣∣∣ =
1

2
‖ξ − ζ‖1 =

1

2

∑

v∈V

|ξv − ζv|. (1)

(i) P is ergodic ifP is irreducible (∀u, v ∈ V,∃t > 0, P t
u,v > 0) and aperiodic (∀v ∈ V,GCD{t ∈ Z>0 | P t

v,v > 0} = 1).
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Themixing timeof P is defined by(ii)

τ(ε)
def.
= max

u∈V
min

{
t ∈ Z≥0 | Dtv(P

t
u,·, π) ≤ ε

}
(2)

for ε > 0, and

t∗
def.
= τ(1/4), (3)

which is often used as an important characterization ofP (cf.[25]).
In this paper, we assumeP is ergodic andreversible. We call aP is reversible ifπuPu,v = πvPv,u

holds for anyu, v ∈ V . For example, transition matrices of theβ-random walk [21] and the Metropolis
walk [26] are both reversible.

Notations of multiple random walks Letµ(0) = (µ
(0)
1 , . . . , µ

(0)
n ) ∈ Zn

≥0 denote an initial configuration
of k tokens overV . At each time stept ∈ Z≥0, each token onv ∈ V moves independently tou ∈ V

with probabilityPu,v. Let µ(t) = (µ
(t)
1 , . . . , µ

(t)
n ) ∈ Rn

≥0 denote theexpectedconfiguration of tokens

at time t ∈ Z≥0: thenµ(t) = µ(0)P t holds(iii) . Note that the definitions of the mixing times say that
Dtv(µ

(t)/k, π) ≤ ε aftert ≥ τ(ε).

2.2 SRT-router model
To imitate random walks with general transition probabilities possibly containing irrational numbers, the
deterministic process based onlow-discrepancy sequences(cf. [5, 30]) were proposed, calledstack walk
in [20] andSRT-router modelin [28]. In this section, we describe the definition of this model.

Let N (v) denote the (out-)neighborhood(iv) of v, i.e.,N (v) = {u ∈ V | Pv,u > 0}. In this model,k
tokens move according toSRT-routerσv : Z≥0 → N (v) defined on eachv ∈ V for a givenP . Given
σv(0), . . . , σv(i − 1), inductivelyσv(i) is defined as follows. First, let

Ti(v) = {u ∈ N (v) | |{j ∈ [0, i) | σv(j) = u}| − (i+ 1)Pv,u < 0},

where[z, z′) = {z, z + 1, . . . , z′ − 1} (and we remark[z, z) = ∅). Then, letσv(i) be u∗ ∈ Ti(v)
minimizing the value

∣∣{j ∈ [0, i) | σv(j) = u}
∣∣+ 1

Pv,u

over choicesu ∈ Ti(v). If there are two or more suchu ∈ Ti(v), then letu∗ be the minimum in them in
an arbitrary prescribed order. Then, the sequenceσv(0), σv(1), . . . satisfies the followinglow-discrepancy
propertyfor anyv andP (cf. [5, 30]).

Proposition 2.1 [5, 30] For anyP ,
∣∣∣
∣∣{j ∈ [0, z) | σv(j) = u}

∣∣− z·Pv,u

∣∣∣ < 1

holds for anyv, u ∈ V and for any integerz > 0.

(ii) P t
u,v denotes the(u, v) entry ofP t, andP t

u,· denotes theu-th row vector ofP t.
(iii) In this paper,(µ(0)P t)v denotes thev-th element of the vectorµ(0)P t, i.e.,(µ(0)P t)v =

∑
u∈V µ

(0)
u P t

u,v .
(iv) If P is reversible,u ∈ N (v) if and only if v ∈ N (u), and then we abuseN (v) for in-neighborhood ofv ∈ V
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Let χ(0) = µ(0) andχ(t) ∈ Zn
≥0 denote the configuration ofk tokens at timet ∈ Z≥0 in a SRT-router

model (
∑

v∈V χ
(t)
v = k). Then, SRT-router model works as follows. At first time step(t = 0), there are

χ
(0)
v tokens on vertexv, and eachv serves tokens to neighbors according toσv(0), σv(1), . . . , σv(χ

(0)
v −1).

In other words,|{j ∈ [0, χ
(0)
v ) | σv(j) = u}| tokens move fromv tou, andχ(1)

u =
∑

v∈V |{j ∈ [0, χ
(0)
v ) |

σv(j) = u}|. Next time step (t = 1), there areχ(1)
v tokens on vertexv, and eachv serves tokens to

neighbors according toσv(χ
(0)
v ), σv(χ

(0)
v + 1), . . . , σv(χ

(0)
v + χ

(1)
v − 1), andχ(2) is defined in a similar

way. In general, letZ(t)
v,u denote the number of tokens moving fromv to u at timet. ThenZ(t)

v,u is defined
as

Z(t)
v,u =

∣∣∣
{
j ∈ [0, χ(t)

v ) | σv(X
(t)
v + j) = u

}∣∣∣ , (4)

whereX(T ) =
∑T−1

t=0 χ(t) (and we remarkX(0)
v = 0 for anyv ∈ V ), andχ(t+1) is defined by

χ(t+1)
u =

∑

v∈V

Z(t)
v,u =

∑

v∈N (u)

Z(t)
v,u (5)

for anyu ∈ V . Note that

∑

u∈V

Z(t)
v,u =

∑

u∈N (v)

Z(t)
v,u = χ(t)

v (6)

holds for anyv ∈ V . For the SRT-router model, we have the following basic proposition, based on
Proposition 2.1.

Proposition 2.2

∣∣∣∣∣
T∑

t=0

(Z(t)
v,u − χ(t)

v Pv,u)

∣∣∣∣∣ < 1

holds for anyP and for anyT ≥ 0.

Proof: From the definition ofZ(t)
v,u, it is not difficult to check that

T∑

t=0

Z(t)
v,u =

T∑

t=0

∣∣∣
{
j ∈ [0, χ(t)

v ) | σv(X
(t)
v + j) = u

}∣∣∣

=

T∑

t=0

∣∣∣
{
j ∈ [X(t)

v , X(t)
v + χ(t)

v ) | σv(j) = u
}∣∣∣ =

∣∣∣
{
j ∈ [0, X(T+1)

v ) | σv(j) = u
}∣∣∣

and
∑T

t=0 χ
(t)
v Pv,u = X

(T+1)
v Pv,u. Then, Proposition 2.2 is obtained by Proposition 2.1 by letting z =

X
(T+1)
v . ✷
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3 Analysis of the Visit Frequency
As a preliminary of the analysis of the cover time of the SRT-router model, we investigate the upper
bound of|X(T )

w −M
(T )
w |, whereM (T ) =

∑T−1
t=0 µ(t) (and we remark thatM (0)

v = 0 for anyv ∈ V ). Let
δ(v) = |N (v)| and∆ = maxv∈V δ(v).

Theorem 3.1 Suppose thatP is ergodic and reversible. Then,

∣∣∣X(T )
w −M (T )

w

∣∣∣ ≤ 3πwt
∗ max

u∈V

δ(u)

πu
= O

(
πmax

πmin
t∗∆

)

holds for anyw ∈ V and for anyT > 0.

From Theorem 3.1, we get the following corollary 3.2, like Theorem 4 of [20].

Corollary 3.2 Suppose thatP is ergodic and reversible. Then,

∣∣∣∣∣πw − X
(T )
w

kT

∣∣∣∣∣ ≤
3t∗

2T
+

3πwt
∗ maxu∈V

δ(u)
πu

kT
=

Kπw

T

holds for anyw ∈ V and for anyT > 0, whereK = O( t∗

πw
+ t∗∆

πmink
) is a constant independent ofT .

Note that Corollary 3.2 gives the upper bound for SRT-routermodels withk tokens, while Theorem 4

of [20] is for rotor-router models with a single token. Corollary 3.2 also means that
∣∣∣πw − X(T )

w

kT

∣∣∣ ≤ ε if

T ≥ 3
(

1
2 + πw∆

πmink

)
t∗ε−1.

To prove the Theorem 3.1, we begin with the following lemma. In the following arguments, we assume
thatP is ergodic and reversible.

Lemma 3.3

X(T )
w −M (T )

w =

T−2∑

t=0

∑

u∈V

∑

v∈N (u)

T−t−2∑

t′=0

(Z(t′)
v,u − χ(t′)

v Pv,u)(P
t
u,w − πw)

holds for anyw ∈ V and for anyT > 1.

Proof: We use the following lemma to prove Lemma 3.3.

Lemma 3.4 [28] (Lemma 4.1.)

χ(T )
w − µ(T )

w =

T−1∑

t=0

∑

u∈V

∑

v∈N (u)

(Z(t)
v,u − χ(t)

v Pv,u)(P
T−t−1
u,w − πw)

holds for anyw ∈ V and for anyT > 0. �
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By the definitions ofX(T ),M (T ) and Lemma 3.4,

X(T )
w −M (T )

w =

T−1∑

t′=0

(χ(t′) − µ(t′)) =

T−1∑

t′=1

(χ(t′) − µ(t′))

=

T−1∑

t′=1

t′−1∑

t=0

∑

u∈V

∑

v∈N (u)

(Z(t)
v,u − χ(t)

v Pv,u)(P
t′−t−1
u,w − πw) (7)

holds. The second equation holds sinceχ(0) = µ(0). Let φ(t)
u =

∑
v∈N (u)(Z

(t)
v,u − χ

(t)
v Pv,u), for conve-

nience. Then,

(7) =

T−1∑

t′=1

t′−1∑

t=0

∑

u∈V

φ(t)
u (P t′−t−1

u,w − πw) =
∑

u∈V

T−1∑

t′=1

t′−1∑

t=0

φ(t′−t−1)
u (P t

u,w − πw) (8)

holds. Carefully exchanging the variables of the summation, we obtain

T−1∑

t′=1

t′−1∑

t=0

φ(t′−t−1)
u (P t

u,w − πw) =

T−2∑

t=0

T−1∑

t′=t+1

φ(t′−t−1)
u (P t

u,w − πw) =

T−2∑

t=0

T−t−2∑

t′=0

φ(t′)
u (P t

u,w − πw). (9)

Combining (8) and (9), we obtain

(8) =
∑

u∈V

T−2∑

t=0

T−t−2∑

t′=0

φ(t′)
u (P t

u,w − πw)

=
∑

u∈V

T−2∑

t=0

T−t−2∑

t′=0

∑

v∈N (u)

(Z(t′)
v,u − χ(t′)

v Pv,u)(P
t
u,w − πw).

✷

Proof of Theorem 3.1: It is trivial for T = 1, hence we assumeT > 1. By Lemma 3.3 and Proposi-
tion 2.2,

∣∣∣X(T )
w −M (T )

w

∣∣∣ =

∣∣∣∣∣∣

T−2∑

t=0

∑

u∈V

∑

v∈N (u)

T−t−2∑

t′=0

(Z(t′)
v,u − χ(t′)

v Pv,u)(P
t
u,w − πw)

∣∣∣∣∣∣

≤
T−2∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣∣∣∣
T−t−2∑

t′=0

(Z(t′)
v,u − χ(t′)

v Pv,u)

∣∣∣∣∣
∣∣P t

u,w − πw

∣∣

<

T−2∑

t=0

∑

u∈V

∑

v∈N (u)

∣∣P t
u,w − πw

∣∣ =
T−2∑

t=0

∑

u∈V

δ(u)
∣∣P t

u,w − πw

∣∣ (10)

holds. By the reversibility ofP ,

(10) =

T−2∑

t=0

∑

u∈V

δ(u)

∣∣∣∣
πw

πu
(P t

w,u − πu)

∣∣∣∣ ≤ πw max
u∈V

δ(u)

πu

T−2∑

t=0

∑

u∈V

∣∣P t
w,u − πu

∣∣ (11)
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holds. By the definition of total variation distance (1),

T−2∑

t=0

∑

u∈V

∣∣P t
w,u − πu

∣∣ = 2

T−2∑

t=0

Dtv(P
t
w,·, π) (12)

holds. Now, we use the following lemma.

Lemma 3.5 [28] (Lemma 4.2.) For anyv ∈ V and for anyT > 0,

T−1∑

t=0

Dtv

(
P t
v,·, π

)
≤ 1− γ

1− 2γ
τ(γ)

holds for anyγ (0 < γ < 1/2).

Thus, we have

(12)≤ 2· 1− (1/4)

1− 2· (1/4)τ(1/4) = 3t∗ (13)

and we obtain the claim. ✷

Proof of Corollary 3.2: Notice that

∣∣∣∣∣πw − X
(T )
w

kT

∣∣∣∣∣ =

∣∣∣kTπw −X
(T )
w

∣∣∣
kT

≤

∣∣∣kTπw −M
(T )
w

∣∣∣+
∣∣∣M (T )

w −X
(T )
w

∣∣∣
kT

≤

∣∣∣M (T )
w − kTπw

∣∣∣
kT

+
3πwt

∗ maxu∈V
δ(u)
πu

kT
,

where the last inequality follows Theorem 3.1. Thus, it is sufficient to prove that|M (T )
w − kTπw| ≤

3kt∗/2. Note that
∑T−1

t=0

∑
u∈V µ(0)πw = kTπw holds since

∑
v∈V µ(0) = k from the definition, and

also note thatM (T )
w =

∑T−1
t=0 µ

(t)
w =

∑T−1
t=0

∑
u∈V µ

(0)
u P t

u,w holds by the definitions. Then,

∣∣∣M (T )
w − kTπw

∣∣∣ =

∣∣∣∣∣
T−1∑

t=0

∑

u∈V

µ(0)
u P t

u,w −
T−1∑

t=0

∑

u∈V

µ(0)πw

∣∣∣∣∣ =
∣∣∣∣∣
T−1∑

t=0

∑

u∈V

µ(0)
u (P t

u,w − πw)

∣∣∣∣∣

≤
∑

u∈V

µ(0)
u

T−1∑

t=0

|P t
u,w − πw| (14)

holds. By Lemma 3.5 and the definition of total variation distance (1),

T−1∑

t=0

|P t
u,w − πw| ≤

T−1∑

t=0

Dtv(P
t
u,·, π) ≤

3

2
t∗. (15)

Combining (14) and (15),|M (T )
w − kTπw| ≤ 3kt∗/2 holds, and we obtain the claim. ✷
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4 Bound of the Cover Time
Combining techniques of the analysis of the visit frequencyand reversible Markov chains, we obtain the
cover time of SRT-router models. Let

Tcover = min
{
T ∈ Z≥0 | X(T )

v ≥ 1 holds for any v ∈ V
}
. (16)

First, we show the following theorem.

Theorem 4.1 SupposeP be ergodic and reversible. Then,

Tcover ≤ 2t∗ + 1 +
12maxu∈V

δ(u)
πu

· t∗
k

= O

(
max

{
t∗∆
πmink

, t∗
})

holds for any initial configuration ofk ≥ 1 tokens.

Theorem 4.1 is the first result of the cover time for deterministic random walks imitating general transition
probabilities possibly containing irrational transitionprobabilities. Applying Theorem 4.1 to the transition
matrix of simple random walk onG, we obtain the following corollary.

Corollary 4.2 For anyG and for any initial configuration ofk ≥ 1 tokens,

Tcover ≤ 2t∗ + 1 +
24mt∗

k
= O

(
max

{
mt∗

k
, t∗

})

holds for any rotor-router model onG, wheret∗ is the mixing time of the simple random walk onG.

The upper bound of [24] (Theorem 4.1, proposition 4.2, and Theorem 4.5) isO
(
t∗ + (∆/δ)(mt∗/k)

)
,

where∆/δ is the maximum/minimum degree of the graph. Hence Corollary4.2 improves this bound
for inhomogeneous graphs. Compare to theO(mD/ log k) by [13] (Theorem 3.3 and 3.7), our bound is
better whent∗ = O

(
D(k/ log k)

)
(whent∗ is small ork is large).

To prove Theorem 4.1, we check the following lemma.

Lemma 4.3 SupposeP is ergodic and reversible. Then,

P t
u,w ≥ πw

4

folds for anyu,w ∈ V if t ≥ 2t∗.

Proof: Theseparation distance[2] is defined by

s(t) = max
u,v∈V

(
1−

P t
u,v

πv

)
. (17)

This distance satisfiess(t + t′) ≤ s(t)s(t′) for anyt, t′ ≥ 1 (submultiplicativity property, Lemma 3.7 of
[2]). We have the following lemma for the reversibleP .

Lemma 4.4 [25] (Lemma 19.3.) SupposeP is reversible. then,

s(2t) ≤ 1−
(
1− d̄(t)

)2

holds for anyt ≥ 0, whered̄(t) = maxu,v∈V Dtv(P
t
u,·, P

t
v,·).
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It is known that

d̄(t∗) ≤ 1

2
(18)

holds whenP is ergodic (see (4.34) of [25]). Combining these facts, we have

1−
P t
u,w

πw
≤ s(t) ≤ s(2t∗) ≤ 1− (1− d̄(t∗))2 ≤ 1−

(
1− 1

2

)2

=
3

4
,

and we obtain the claim. ✷

Proof of Theorem 4.1: Lemma 4.3 gives us a lower bound ofP t
u,w for anyu,w ∈ V , t ≥ 2t∗ and for

any reversible and ergodicP . It provides a lower bound ofM (T )
w , like [24].

M (T )
w =

T−1∑

t=0

∑

u∈V

µ(0)
u P t

u,w ≥
T−1∑

t=2t∗

∑

u∈V

µ(0)
u P t

u,w ≥
T−1∑

t=2t∗

∑

u∈V

µ(0)
u

πw

4
=

kπw(T − 2t∗)
4

. (19)

By Theorem 3.1 and (19), we obtain that

X(T )
w ≥ M (T )

w − 3πwt
∗ max

u∈V

δ(u)

πu
≥ kπw(T − 2t∗)

4
− 3πwt

∗ max
u∈V

δ(u)

πu
. (20)

Notice that (20) implies

X(T ′)
w > 0

for anyw ∈ V and foranyT ′ ∈ Z≥0 satisfying

T ′ > 2t∗ +
12t∗maxu∈V

δ(u)
πu

k
.

The fact (21) implies thatTcover ≤ T ′, and we obtain the claim. ✷

Proof of Corollary 4.2: Note that a SRT-router model corresponding to a simple random walk onG is
exactly a rotor-router model onG, and we see thatmaxu∈V

δ(u)
πu

= 2m, sinceπu = δ(u)
2m . Thus,

Tcover ≤ 2t∗ + 1 +
24mt∗

k

holds by Theorem 4.1. ✷

5 Concluding Remarks
In this paper, we gave techniques to examine the visit frequency X

(T )
v of the SRT-router model with

k > 1 tokens, and gave an upper bound of the cover time for any ergodic and reversibleP . Also, our
upper bound improve the upper bound of the previous results of the rotor-router model withk > 1 tokens
in many cases. A better upper bound of the cover time by derandomizing a specificfast random walk
(e.g.,β-random walk, Metropolis walk) is a challenge.



The Cover Time of Deterministic Random Walks for General Transition Probabilities 11

Acknowledgements
The author would like to thank Prof. Kijima for his comments on the manuscript. The author is also
grateful to Prof. Sauerwald and Dr. Pajak for a discussion onthe topic. This work is supported by JSPS
KAKENHI Grant Number 15J03840. The author also gratefully acknowledge to the ELC project (Grant-
in-Aid for Scientific Research on Innovative Areas MEXT Japan) for encouraging the research presented
in this paper.

References
[1] H. Akbari and P. Berenbrink, Parallel rotor walks on finite graphs and applications in discrete load

balancing, Proc. SPAA 2013, 186–195.

[2] D. Aldous and P. Diaconis, Strong uniform times and finiterandom walks, Advances in Applied
Mathematics,8 (1987), 69–97.

[3] R. Aleliunas, R. Karp, R. Lipton, L. Lovasz and C. Rackoff, Random walks, universal traversal
sequences, and the complexity of maze problems, Proc. FOCS 1979, 218–223.

[4] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, M. R. Tuttle, Many random walks are faster
than one, Combinatorics, Probability & Computing,20 (2011), 481–502.

[5] O. Angel, A.E. Holroyd, J. Martin, and J. Propp, Discretelow discrepancy sequences,
arXiv:0910.1077.

[6] E. Bampas, L. Gasieniec, N. Hanusse, D. Ilcinkas, R. Klasing, and A. Kosowski, Euler tour lock-in
problem in the rotor-router model, Proc. DISC 2009, 423–435

[7] P. Berenbrink, R. Klasing, A. Kosowski, F. Mallmann-Trenn, and P. Uznanski, Improved analysis of
deterministic load-balancing schemes, Proc. PODC 2015, 301–310.

[8] A. Broder, A. Karlin, P. Raghavan, E. Upfal, Trading space for time in undirecteds–t connectivity,
SIAM Journal on Computing23 (1994) 324–334.

[9] J. Chalopin, S. Das, P. Gawrychowski, A. Kosowski, A. Labourel and P. Uznanski, Lock-in problem
for parallel rotor-router walks, arXiv:1407.3200.

[10] J. Cooper, B. Doerr, T. Friedrich, and J. Spencer, Deterministic random walks on regular trees,
Random Structures & Algorithms,37 (2010), 353–366.

[11] J. Cooper, B. Doerr, J. Spencer, and G. Tardos, Deterministic random walks on the integers, Euro-
pean Journal of Combinatorics,28 (2007), 2072–2090.

[12] J. Cooper and J. Spencer, Simulating a random walk with constant error, Combinatorics, Probability
and Computing,15 (2006), 815–822.

[13] D. Dereniowski, A. Kosowski, D. Pajak, and P. Uznanski,Bounds on the cover time of parallel rotor
walks, LIPICS,25 (STACS 2014), 263–275.



12 Takeharu Shiraga

[14] B. Doerr and T. Friedrich, Deterministic random walks on the two-dimensional grid, Combinatorics,
Probability and Computing,18 (2009), 123–144.

[15] R. Elsasser and T. Sauerwald, Tight bounds for the covertime of multiple random walks, Theoretical
Computer Science,412 (2011), 2623–2641.

[16] U. Feige, A tight upper bound for the cover time of randomwalks on graphs, Random Structures
and Algorithms,6 (1995), 51–54.

[17] U. Feige, A tight lower bound for the cover time of randomwalks on graphs, Random Structures
and Algorithms,6 (1995), 433–438.

[18] T. Friedrich, M. Gairing, and T. Sauerwald, Quasirandom load balancing, SIAM Journal on Com-
puting,41 (2012), 747–771.

[19] T. Friedrich and T. Sauerwald, The cover time of deterministic random walks, The Electronic Journal
of Combinatorics,17 (2010), R167. Lecture Notes in Computer Science,6196 (COCOON 2010),
130–139.

[20] A. E. Holroyd and J. Propp, Rotor walks and Markov chains, M. Lladser, R.S. Maier, M. Mishna,
A. Rechnitzer, (eds.), Algorithmic Probability and Combinatorics, The American Mathematical So-
ciety, 2010, 105–126.

[21] S. Ikeda, I. Kubo, and M. Yamashita, The hitting and cover times of random walks on finite graphs
using local degree information, Theoretical Computer Science,410 (2009), 94–100.

[22] H. Kajino, S. Kijima, and K. Makino, Discrepancy analysis of deterministic random walks on finite
irreducible digraphs, discussion paper.

[23] S. Kijima, K. Koga, and K. Makino, Deterministic randomwalks on finite graphs, Random Struc-
tures & Algorithms,46 (2015), 739–761.

[24] A. Kosowski and D. Pajak, Does adding more agents make a difference? A case study of cover time
for the rotor-router, Proc. ICALP 2014, 544–555.

[25] D. A. Levine, Y. Peres, and E. L. Wilmer, Markov Chain andMixing Times, The American Mathe-
matical Society, 2008.

[26] Y. Nonaka, H. Ono, K. Sadakane, M. Yamashita, The hitting and cover times of Metropolis walks,
Theoretical Computer Science,411 (2010), 1889–1894.

[27] Y. Rabani, A. Sinclair, and R. Wanka, Local divergence of Markov chains and analysis of iterative
load balancing schemes, Proc. FOCS 1998, 694–705.

[28] T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita, Deterministic random walks for rapidly
mixing chains, arXiv:1311.3749.

[29] T. Shiraga, Y. Yamauchi, S. Kijima, and M. Yamashita, Total variation discrepancy of deterministic
random walks for ergodic Markov chains, Proc. ANALCO 2016, 138–148.



The Cover Time of Deterministic Random Walks for General Transition Probabilities 13

[30] R. Tijdeman, The chairman assignment problem, Discrete Mathematics.32 (1980), 323–330.

[31] V. Yanovski, I.A. Wagner, and A.M. Bruckstein, A distributed ant algorithm for efficiently patrolling
a network, Algorithmica,37 (2003), 165–186.



Proceedings of the 27th International Conference on Probabilistic, Combinato-
rial and Asymptotic Methods for the Analysis of Algorithms
Kraków, Poland, 4-8 July 2016

A half-normal distribution scheme for generating
functions and the unexpected behavior of
Motzkin paths
Michael Wallner1

1Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstr. 8-10/104, A-1040 Wien,
Austria

We present an extension of a theorem by Michael Drmota and Michèle Soria [Images and Preimages in
Random Mappings, 1997] that can be used to identify the limiting distribution for a class of combinatorial
schemata. This is achieved by determining analytical and algebraic properties of the associated bivariate
generating function. We give sufficient conditions implying a half-normal limiting distribution, extending
the known conditions leading to either a Rayleigh, a Gaussian, or a convolution of the last two distributions.
We conclude with three natural appearances of such a limiting distribution in the domain of Motzkin paths.

Keywords: Lattice path, analytic combinatorics, singularity analysis, limit laws

1 Introduction
Generating functions have proved very useful in the analysis of combinatorial questions. The
approach builds on general principles of the correspondence between combinatorial constructions
and functional operations. The symbolic method [14] provides a direct translation of the struc-
tural description of a class into an equation on generating functions. In [11], Drmota and Soria
provided general methods for the analysis of bivariate generating functions F (z, u) =

∑
fnkz

nuk.
In general, n is the length or size, and k is the value of a “marked” parameter.

They continued their work in [12], wherein they derived three general theorems which identify
the limiting distribution for a class of combinatorial schemata from certain properties of their
associated bivariate generating function. These lead to a Rayleigh, a Gaussian, or a convolu-
tion of both distributions. Especially for a Gaussian limit distribution there are many schemata
known: Hwang’s quasi-powers theorem [16] or [14, Theorem IX.8], the supercritical composition
scheme [14, Proposition IX.6], the algebraic singularity scheme [14, Theorem IX.12], an implicit
function scheme for algebraic singularities [10, Theorem 2.23], or the limit law version of the
Drmota-Lalley-Woods theorem [2, Theorem 8]. But such schemata also exist for other distribu-
tions, like e.g., the Airy distribution, see [4]. In general it was shown in [1] and [2, Theorem 10]
that even in simple examples “any limit law”, in the sense that the limit curve can be arbitrarily
close to any càdlàg multi-valued curve in [0, 1]2, is possible.

In this paper we extend the work of [12], by providing an additional limit theorem, Theorem 2.1,
which reveals a half-normal distribution. This distribution is generated by the absolute value |X|
of a normally distributed random variable X with mean 0. We will encounter several distributions,
whose most important properties are summarized in Table 1.

We also present three natural appearances of this distribution in combinatorial constructions.
In particular we consider Motzkin walks. Despite them being well-studied objects [7, 9, 17], they
still hide some mysterious properties. Our applications extend some examples of random walks
presented by Feller in [13, Chapter III] to Motzkin walks. We show that the same phenomena
appear which, to quote Feller, “not only are unexpected but actually come as a shock to intuition
and common sense”.
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Geometric Normal Half-normal Rayleigh

Geom(p) N (µ, σ) H(σ) R(σ)

Graph

Support x ∈ {0, 1, . . .} x ∈ R x ∈ R≥0 x ∈ R≥0

PDF (1− p)kp 1√
2πσ2 exp

(
− (x−µ)2

2σ2

) √
2
πσ2 exp

(
− x2

2σ2

)
x
σ2 exp

(
− x2

2σ2

)

Mean 1−p
p µ σ

√
2
π σ

√
π
2

Variance 1−p
p2 σ2 σ2 (1− 2

π

)
σ2 (2− π

2
)

Table 1: A comparision of the geometric, normal, half-normal, and Rayleigh distribution. We will
encounter all four of them in the context of Motzkin walks.

Plan of this article. First, in Section 2, we present our main contribution: a scheme for
bivariate generating functions leading to a half-normal distribution. In Section 3, we introduce
Motzkin paths and establish the analytic framework which will be used in the subsequent sections.
In Section 4, we apply our result to three properties of Motzkin walks: the number of sign changes,
the number of returns to zero, and the height. In the case of zero drift a half-normal distribution
appears. In Section 5, we give a summary of our results.

2 The half-normal theorem
Let c(z) =

∑
n cnz

n be the generating function of a combinatorial structure and c(z, u) =∑
cnkz

nuk be the bivariate generating function where a parameter of interest has been marked,
i.e., c(z, 1) = c(z). We introduce a sequence of random variables Xn, n ≥ 1, defined by

P[Xn = k] = cnk
cn

= [znuk]c(z, u)
[zn]c(z, 1) ,

where P denotes the probability. As we are interested in the asymptotic distribution of the marked
parameter among objects of size n where n tends to infinity, the probabilistic point of view is given
by finding the limiting distribution of Xn.

Important combinatorial constructions are “sequences” or “sets of cycles” (in the case of expo-
nential generating functions) which imply the following decomposition

c(z, u) = 1
1− a(z, u) ,

with a generating function a(z, u) corresponding to the elements of the sequence, or the cycles,
respectively. Another important and recurring phenomenon is the one of an algebraic singular-
ity ρ(u) of the square-root type such that a(ρ(1), 1) = 1. According to further analytic properties
of a(z, u) the limiting distribution of Xn is shown to be either Gaussian, Rayleigh, the convolution
of Gaussian and Rayleigh (see [12, Theorems 1-3]), or half-normal (see Theorem 2.1).

We start with the general form of the analytic scheme. In contrast to the original hypothesis [H]
in [12] we call our hypothesis [H’] because we drop the condition that h(ρ, 1) > 0 and we require
it only for ρ(u) = const.
Hypothesis [H’]: Let c(z, u) =

∑
n,k cnkz

nuk be a power series in two variables with non-negative
coefficients cnk ≥ 0 such that c(z, 1) has a radius of convergence of ρ > 0.
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We suppose that 1/c(z, u) has the local representation
1

c(z, u) = g(z, u) + h(z, u)
√

1− z

ρ
, (1)

for |u− 1| < ε and |z− ρ| < ε, arg(z− ρ) 6= 0, where ε > 0 is some fixed real number, and g(z, u),
and h(z, u) are analytic functions. Furthermore, these functions satisfy g(ρ, 1) = 0.

In addition, z = ρ is the only singularity on the circle of convergence |z| = |ρ|, and 1/c(z, u),
respectively c(z, u), can be analytically continued to a region |z| < ρ + δ, |u| < 1 + δ, |u − 1| > ε

2
for some δ > 0. ♦

Theorem 2.1 (Half-normal limit theorem) Let c(z, u) be a bivariate generating function sat-
isfying [H’]. If gz(ρ, 1) 6= 0, hu(ρ, 1) 6= 0, and h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0, then the sequence
of random variables Xn defined by

P[Xn = k] = [znuk]c(z, u)
[zn]c(z, 1) ,

has a half-normal limiting distribution, i.e.,
Xn√
n

d→ H(σ),

where σ =
√

2 hu(ρ,1)
ρgz(ρ,1) , and H(σ) has density

√
2√
πσ2 exp

(
− z2

2σ2

)
for z ≥ 0. Expected value and

variance are given by

E[Xn] = σ

√
2
π

√
n+O(1) and V[Xn] = σ2

(
1− 2

π

)
n+O(

√
n).

Moreover, we have the local law

P[Xn = k] = 1
σ

√
2
πn

exp
(
−k

2/n

2σ2

)
+O

(
kn−3/2

)
+O

(
n−1) ,

uniformly for all k ≥ 0.

Remark 2.2 (Non-trivial dependency of ρ on u) The assumption of a constant singularity
in z given by ρ can be weakened to a singularity ρ(u) = ρ(1) +O((u− 1)3), i.e., ρ′(1) = ρ′′(1) = 0.
However, no example is known where ρ(u) is not constant in a neighborhood of u ∼ 1. �

Proof (Sketch): The proof ideas are similar to the ones of [12, Theorem 1]. For details on the
half-normal distribution we refer to [19], but all we need is the characteristic function. The main
idea is to derive the asymptotic form of the characteristic function of Xn/

√
n. Since

E[eitXn/
√
n] = [zn]c(z, e

it√
n )

[zn]c(z, 1) ,

we need to expand [zn]c(z, u) for u = eit/
√
n = 1 + it√

n
+O(n−1). To achieve this, we will apply

Cauchy’s integral formula for the following path of integration Γ = Γ1 ∪ Γ2:

Γ1 =
{
z = ρ

(
1 + s

n

)
: s ∈ γ′

}
,

Γ2 =
{
z = Reiϑ : R = ρ

∣∣∣∣1 + log2 n+ i

n

∣∣∣∣ , arg
(

1 + log2 n+ i

n

)
≤ |ϑ| ≤ π

}
,

where γ′ = {s : |s| = 1, <s ≤ 0} ∪ {s : 0 < <s < log2 n, =s = ±1} is the major part of a Hankel
contour γ, see Figure 1.

What remains is to investigate the parts separately: The first part gives the claimed result,
whereas the second one is asymptotically negligible. Note that the changes in the hypothesis [H]
are responsible for the appearance of characteristic function of the half-normal distribution in the
limit. We omit these technical steps. �



4 M. Wallner

ρ
n

ρ

Γ1

ρ
(
1 + log2 n

n

)

R

Γ2

1
n

1
n

1 + log2 n
n

1
n

Figure 1: Hankel contour decomposition (left), and contour of γ′ (right).

3 Motzkin paths
In this section we present needed, known results on directed lattice paths. Readers familiar with
the exposition of Banderier and Flajolet [3] or related results may skip this section.
Definition 3.1 (Lattice paths) A step set S ⊂ Z2 is a fixed, finite set of vectors {(a1, b1), . . . ,
(am, bm)}. An n-step lattice path or walk is a sequence (v1, . . . , vn) of vectors, such that vj is in S.
Geometrically, it is a set of points {ω0, ω1, . . . , ωn} where ωi ∈ Z2, ω0 = (0, 0) and ωi − ωi−1 = vi
for i = 1, . . . , n. The elements of S are called steps or jumps. The length |ω| of a lattice path is
its number n of jumps. ♦

We restrict our attention to simple directed paths for which every element in the step set S is of
the form (1, b). In other words, these walks constantly move one step to the right. We introduce
the abbreviation S = {b1, . . . , bm} in this case.

Along these restrictions, we introduce the following classes (see Table 2): A bridge is a path
whose end-point ωn lies on the x-axis. A meander is a path that lies in the quarter plane Z2

+. An
excursion is a path that is at the same time a meander and a bridge. Their generating functions
have been fully characterized in [3] by means of analytic combinatorics, see [14].

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W) bridge (B)
W (z) = 1

1−zP (1) B(z) = z
u′1(z)
u1(z)

constrained
(on Z+)

meander (M) excursion (E)
M(z) = 1−u1(z)

1−zP (1) E(z) = u1(z)
p−1z

Table 2: The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for Motzkin paths [3, Fig. 1].

Definition 3.2 (Motzkin paths) A Motzkin path is a path that starts at the origin and is
given by the step set S = {−1, 0,+1}. ♦

We will refer to Motzkin walks/meanders/bridges/excursions depending on the different restric-
tions. In the literature Motzkin paths are often defined as Motzkin excursions, e.g. in [9].
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In many situations it is useful to associate weights to single steps.
Definition 3.3 (Weights) For a given step set S, we define the respective system of weights as
{ps | s ∈ S} where ps > 0 is the associated weight to step s ∈ S. The weight of a path is defined
as the product of the weights of its individual steps. ♦

A typical weighted lattice path model is ps = 1 (enumeration of paths), or
∑
s ps = 1 (proba-

bilistic model of paths, i.e., step s is chosen with probability ps).
The following definition is the algebraic link between weights and steps. It is given only for the

case of Motzkin paths, which is sufficient for our purpose.
Definition 3.4 (Jump polynomial of Motzkin paths) The jump polynomial is defined as
the polynomial in u, u−1 (a Laurent polynomial)

P (u) := p−1u
−1 + p0 + p1u, with p−1, p0, p1 > 0.

The kernel equation is defined by
1− zP (u) = 0, or equivalently u− z(uP (u)) = 0.

The quantity K(z, u) := u− zuP (u) is called kernel. ♦
A walk is called periodic with period p if there exists a polynomial H(u) and integers b ∈ Z and

p ∈ N, p > 1 such that P (u) = ubH(up). Otherwise its called aperiodic. The condition p0 > 0
implies aperiodicity for Motzkin paths. Note that generating functions of aperiodic walks possess
a unique singularity on the positive real axis [3].

The kernel plays a crucial rôle and is name-giving for the kernel method, which is the key tool
characterizing this family of lattice paths. The interested reader is referred to [3, Chapter 2]. In
the heart of this method lies the observation that the kernel equation is of degree 2 in u, and
therefore has generically 2 roots. These correspond to branches of an algebraic curve given by the
kernel equation.
Proposition 3.5 (Roots of the kernel) The kernel equation 1− zP (u) = 0 has 2 solutions:

u1,2(z) = 1− p0z ∓
√

(1− p0z)2 − 4p−1p1z2

2p1z
.

It holds that limz→0 u1(z) = 0, and limz→0 u2(z) =∞. Because of that, we call u1(z) the small
branch, and u2(z) the large branch.

Banderier and Flajolet showed that the generating functions of bridges, excursions and meanders
can be expressed in terms of the small branch(es) and the jump polynomial, see Table 2. The
branch u1(z) is real positive near 0. It is responsible for the asymptotic behavior of bridges,
excursions and meanders, compare [3, Theorem 3 and 4].

In order to understand their behavior we need the following constants:
Lemma 3.6 (Structural constants) The structural constant τ , which is the unique positive
solution of P ′(u) = 0, is τ =

√
p−1
p1

. The structural radius is ρ = 1
P (τ) = 1

p0+2√p−1p1
.

The theory of Newton-Puiseux series implies that the small branch u1(z) is analytic on the open
interval (0, ρ), and satisfies the singular expansion

u1(z) = τ − C
√

1− z

ρ
+O

(
1− z

ρ

)
, (2)

for z → ρ−, where C =
√

2 P (τ)
P ′′(τ) . This is a direct consequence of the implicit function theorem.

Proposition 3.7 (Square-root singularity) There exists a neighborhood Ω \ (ρ,∞) such that
for z → ρ in Ω \ (ρ,∞) u1(z) has a local representation of the kind

u1(z) = a(z) + b(z)
√

1− z/ρ, with a(ρ) = τ, and b(ρ) = −C,
where a(z) and b(z) are analytic functions for every point z ∈ Ω \ (ρ,∞), z 6= z0.
Proof: This is a direct consequence of the explicit structure of u1(z) from Proposition 3.5. �
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4 Properties of Motzkin paths
The following examples are motivated by the very nice presentation of Feller [13, Chapter III]
about one-dimensional symmetric, simple random walks. Therein, the discrete time stochastic
process (Sn)n≥0 is defined by S0 = 0 and Sn =

∑n
j=1 Xj , n ≥ 1, where the (Xi)i≥1 are iid

Bernoulli random variables with P[Xi = 1] = P[Xi = −1] = 1
2 . These results are generalized to

the case of Motzkin paths. In particular compare [13, Problems 9-10] and [18, Remark of Barton]
for returns to zero of symmetric and asymmetric random walks, respectively. Furthermore, see [13,
Chapter III.5] for sign changes, and [13, Chapter III.7] for the height. See also the recent paper
of Döbler [8] on Stein’s method for this questions in which he derives bounds for the convergence
rate in the Kolmogorov and the Wasserstein metric.

Let us now analyze these properties in the case of Motzkin walks. For the sake of brevity we will
only mention the weak convergence law. However, in all cases the local law and the asymptotic
expansions for mean and variance hold as well.

4.1 Returns to zero
A return to zero is a point of a walk of altitude 0, except for the starting point; in other words
a return to the x-axis, see Figure 3. In order to count them we consider “minimal” bridges, in
the sense that the bridges touch the x-axis only at the beginning and at the end. We call them
arches. As a bridge is a sequence of such arches, we get their generating function in the form of
A(z) = 1− 1

B(z) .

Lemma 4.1 The generating function of arches A(z) is for z → ρ of the kind

A(z) = a(z) + b(z)
√

1− z/ρ,

where a(z) and b(z) are analytic functions in a neighborhood Ω\(ρ,∞) of ρ (i.e., for z ∈ Ω\(ρ,∞)
it holds that z /∈ (ρ,∞)).

Proof: We know that B(z) = z
u′1(z)
u1(z) is analytic for |z| < ρ, see [3, Theorem 3]. Due to p0 > 0

(aperiodicity) ρ is the only singular point on the circle of convergence. Hence,

B(z) = C1√
1− z/ρ

+O(1), C1 = C

2τ , (3)

by (2) for z → ρ. Proposition 3.7 together with (3) implies the desired decomposition. �

Here, we are interested in the number of returns to zero of walks which are unconstrained by
definition. Every walk can be decomposed into a maximal initial bridge, and a walk that never
returns to the x-axis, see Figure 2 . Let us denote the generating function of this tail by T (z).

bridge tail

Figure 2: A walk with 9 returns to zero decomposed into a bridge and a tail.

As we want to count the number of returns to zero, we mark each arch by an additional parameter
u and reconstruct the generating function of walks. This gives

W (z, u) = 1
1− uA(z)T (z) = W (z)

u+ (1− u)B(z) , with T (z) = W (z)
B(z) .
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Let us define the random variable Xn which stands for the number of returns to zero of a random
meander of length n. Thus, P[Xn = k] = [ukzn]W (z,u)

[zn]W (z,1) .

Theorem 4.2 (Limit law for returns to zero) Let Xn denote the number of returns to zero
of a walk of length n. Let δ = P ′(1) be the drift.

1. For δ 6= 0 we get convergence to a geometric distribution:

Xn
d→ Geom

( |p1 − p−1|
P (1)

)
.

2. For δ = 0 we get convergence to a half-normal distribution:

Xn√
n

d→ H
(√

P (1)
P ′′(1)

)
.

Proof: First of all, we see that [zn]W (z, 1) = [zn]W (z) = P (1)n. Note that because of p0 > 0
(aperiodicity) B(z) is singular only at ρ. Obviously, W (z) is singular at ρ1 := 1

P (1) .
Note that P (τ) is the unique minimum of P (u) on the positive real axis. Hence, only two cases

are possible: ρ1 < ρ, if τ 6= 1; or ρ1 = ρ, if τ = 1. These cases are equivalent to δ 6= 0 and δ = 0,
respectively. In the first case W (z) is responsible for the dominant singularity. Then we get (B(z)
is analytic for |z| < ρ)

[zn]W (z, u) = 1
B (ρ1)

P (1)n

1− u
(

1− 1
B(ρ1)

) + o(P (1)n).

Thus, the limit distribution is a geometric distribution with parameter λ = 1
B(ρ1) . Distinguishing

between a positive and a negative drift, and some tedious calculations with the help of relations
implied by the kernel equation, give the final result for δ 6= 0.

In the second case τ = 1 or δ = 0, we apply Theorem 2.1. By Lemma 4.1 it holds that 1/W (z, u)
has a decomposition of the kind (1). In particular, from (3) we directly get that

1
W (z, u) =

(
1− z

ρ

)
u+ C

2 (1− u)
√

1− z

ρ
+O

((
1− z

ρ

)
(1− u)

)
,

for z → ρ and u→ 1, with g(ρ, 1) = h(ρ, 1) = gu(ρ, 1) = guu(ρ, 1) = 0; and gz(ρ, 1) = −P (1) and
hu(ρ, 1) = −

√
P (1)

2P ′′(1) . Hence, Theorem 2.1 yields the result. �

4.2 Sign changes of Motzkin walks
We say that nodes which are strictly above the x-axis have a positive sign denoted by “+”, whereas
nodes which are strictly below the x-axis have a negative sign denoted by “−”, and nodes on the x-
axis are neutral denoted by “0”. This notion easily transforms a walk ω = (ωn)n≥0 into a sequence
of signs. In such a sequence a sign change is defined by either the pattern +(0)− or −(0)+,
where (0) denotes a non-empty sequence of 0’s, see Figure 3.

The main observation in this context is the non-emptiness of the sequence of 0’s. Geometrically
this means that it has to touch the x-axis when passing through it. This means that we can count
the number of sign changes by counting the number of maximal parts above or below the x-axis.
The idea is to decompose a walk into an alternating sequence of positive (above the x-axis) and
negative (below) excursions terminated by a positive or negative meander.

We introduce two new terms: positive excursions are “traditional” excursions, i.e., they are
required to stay above the x-axis, whereas negative excursions are walks which start at zero, end
on the x-axis, but are required to stay below the x-axis.
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+
0 0

+
+ +

+
0 0 -

-
-

-
-

-
-

-
- 0

+
0 -

-
- 0

+
0

Figure 3: A Motzkin walk with 7 returns to zero and 4 sign changes. The positive, neutral or negative
signs of the walks are indicated by +, 0, or −, respectively.

Lemma 4.3 Among all walks of length n, the number of positive excursions is equal to the number
of negative excursions.
Proof: Mirroring bijectively maps positive excursions to negative ones. �

We define the bivariate generating function B(z, u) = bn,kz
nuk, where bn,k denotes the number

of bridges of size n having k sign changes. Furthermore, we define

C(z) = 1
1− p0z

,

as the generating function of chains, which are walks constructed solely from the jumps of height 0.
Then the generating function of excursions starting with a +1 jump is given by

E1(z) = E(z)
C(z) − 1,

because we need to exclude all excursions which start with a chain or are a chain. Due to Lemma 4.3
this is also the generating function for excursions starting with a −1 jump.
Theorem 4.4 The bivariate generating function of bridges (where z marks the length, and u
marks the number of sign changes of the walk) is given by

B(z, u) = C(z)
(

1 + 2E1(z)
1− uE1(z)

)
.

Proof: A bridge is either a chain, which has zero sign changes, or it is not a chain. In the latter
it is an alternating sequence of positive and negative excursions, starting with either of them. We
decompose it uniquely into such excursions, by requiring that all except the first one start with
a non-zero jump. Therefore the first excursion is counted by E(z)− C(z), whereas all others are
counted by E1(z). The decomposition is shown in Figure 4. �

E(z)− C(Z)

E1(z)

E1(z)

E1(z)

Figure 4: A bridge is an alternating sequence of positive and negative excursions. Here, it starts with a
positive excursion, followed by excursions starting with a non-zero jump.

Let Xn be the random variable for the number of sign changes of a random bridge of length n.
Thus, P[Xn = k] = [ukzn]B(z,u)

[zn]B(z,1) .
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Theorem 4.5 (Limit law for returns to zero for bridges) Let Xn denote the number of sign
changes of a Motzkin bridge of length n. Then for n→∞ the normalized random variable has a
Rayleigh(i) limit distribution

Xn√
n

d→ R (σ) and σ = τ

2

√
P ′′(τ)
P (τ) ,

where τ =
√

p−1
p1

and R(σ) has the density x
σ2 exp

(
− x2

2σ2

)
for x ≥ 0.

Proof (Sketch): We apply the first limit theorem of Drmota and Soria, [12, Theorem 1]. Propo-
sition 3.7 implies that E1(z) and therefore B(z, u) has a decomposition of the desired form (1).
Checking the other conditions with the help of Lemma 3.6 yields the result. �

Finally, we consider sign changes of walks. Since we want to count the number of sign changes
we need to know whether a bridge ended with a positive or negative sign. Let positive bridges
be bridges whose last non-zero signed node was positive, and negative bridges be bridges whose
last non-zero signed node was negative. Their generating functions are denoted by B+(z, u) and
B−(z, u), respectively. Figure 4 shows a negative bridge.

Lemma 4.6 The number of positive and negative bridges is the same and given by

B+(z, u) = B(z, u)− C(z)
2 = E(z)− C(z)

1− uE1(z) .

Proof: The result is a direct consequence of Lemma 4.3, because a positive bridge is either a non
trivial excursion or a negative bridge where an additional excursion starting with a +1 jump was
appended. For negative bridges an analogous construction holds. �

Proposition 4.7 The bivariate generating function of walks W (z, u) =
∑
n,k≥0 wnkz

nuk where
wnk is the number of all walks of length n with k sign changes, is given by

W (z, u) = B(z, u)W (z)
B(z) +B+(z, u)

(
W (z)
B(z) − 1

)
(u− 1),

where W (z) = 1
1−zP (1) is the generating function of walks.

Proof: Combinatorially, a walk is either a bridge or a bridge concatenated with a meander that
does not return to the x-axis again. In the second case an additional sign change appears if the
bridge ends with a positive sign and continues with a meander always staying above the x-axis,
or vice versa. By Lemma 4.6 the desired form follows. �

The next theorem concludes this discussion. Its proof is similar to the one of Theorem 4.2.

Theorem 4.8 (Limit law for sign changes) Let Xn denote the number of sign changes of
Motzkin walks of length n. Let δ = P ′(1) be the drift.

1. For δ 6= 0 we get convergence to a geometric distribution:

Xn
d→ Geom (λ) , with λ =

{
p1
p−1

, for δ < 0,
p−1
p1
, for δ > 0.

2. For δ = 0 we get convergence to a half-normal distribution:

Xn√
n

d→ H
(

1
2

√
P ′′(1)
P (1)

)
.
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Figure 5: A Motzkin walk of height 2. The relative heights are given at every node.

4.3 Height of Motzkin walks
For a path of length n we define the height as its maximally attained y-coordinate, see Figure 5.
Formally, let ω = (ωk)nk=0 be a walk. Then its height is given by maxk∈{0,...,n} ωk.

In order to analyze the distribution of heights, we define the bivariate generating function
F (z, u) =

∑
n,h≥0 fnhz

nuh. The coefficient fnh represents the number of walks of height h among
walks of length n. First we need a relation between the branches of the kernel equation:

Lemma 4.9 Let P (u) = p−1u
−1 + p0 + p1u. Then the small branch u1(z) and the large branch

u2(z) of the kernel equation 1− zP (u) = 0 fulfil

u1(z)u2(z) = p−1
p1

and u1(z) + u2(z) = 1− zp0
zp1

.

Proof: The kernel equation factorizes into u(1−zP (u)) = −zp1(u−u1(z))(u−u2(z)). Comparing
the coefficients gives the results. �

This relation gives us an explicit expression of F (z, u) in terms of the large and small branch.
For the final analysis we will use the latter.

Theorem 4.10 The bivariate generating function of Motzkin walks (where z marks the length,
and u marks the height of the walk) is given by

F (z, u) = 1
1− zP (1)

u2(z)− 1
u2(z)− u = 1

1− zP (1)
1− p1

p−1
u1(z)

1− u p1
p−1

u1(z) .

Proof: Banderier and Nicodème derived in [5, Theorem 2] the generating function F [−∞,h](z) for
walks staying always below a wall y = h. For the case of Motzkin walks we get F [−∞,h](z) =
1−
(

1
u2(z)

)h+1

1−zP (1) , where u2(z) is the large branch of the kernel equation. From this we directly get
the generating function F [h](z) for walks that have height exactly h. For h ≥ 1 it equals

F [h](z) = F [−∞,h](z)− F [−∞,h−1](z) = u2(z)− 1
1− zP (1)

(
1

u2(z)

)h
.

The last formula also holds for h = 0. Finally, marking the heights by u and summing over all
possibilities yields the result. The second formula is a consequence of Lemma 4.9. �

Let Xn be the random variable for the height of a random walk of length n. Thus, P[Xn = k] =
[ukzn]F (z,u)

[zn]F (z,1) = [ukzn]F (z,u)
P (1)n . This time the behavior will be different for δ < 0 and δ > 0. We omit

its proof, however the ideas are again similar to the ones of Theorem 4.2.

(i) The parameter λ = σ−2 was used in [12, Theorem 1].
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Theorem 4.11 (Limit law for the height) Let Xn denote the height of a Motzkin walk of
length n. Let δ = P ′(1) be the drift.

1. For δ < 0 we get convergence to a geometric distribution:

Xn
d→ Geom

(
p1
p−1

)
.

2. For δ = 0 the standardized random variable converges to a half-normal distribution:

Xn√
n

d→ H
(√

P ′′(1)
P (1)

)
.

3. For δ > 0 the standardized random variable converges to a normal distribution:

Xn − µn
σ
√
n

d→ N (0, 1) , µ = δ

P (1) , σ2 = 1− p0
P (1) −

(
δ

P (1)

)2
.

5 Conclusion
Drmota and Soria [12] presented three schemata leading to three different limiting distributions:
Rayleigh, normal, and a convolution of both. This paper can be seen as an extension, by adding
Theorem 2.1 yielding a half-normal distribution to this family. Other popular limit theorems are
Hwang’s quasi-powers theorem [16], and (implied by it) the supercritical composition scheme [14,
Proposition IX.6]. These lead to a normal distribution.

The question may arise, how Theorem 2.1 behaves in the situation of a singularity ρ(u) with
ρ′(1) 6= 0 and ρ′′(1) 6= 0, compare Remark 2.2. This remains an object for future research.

However, the more interesting question is if more “natural” appearances of such situations exist.
Another known example is the limit law of the final altitude of meanders with zero drift in the
reflection-absorption model in [6]. Chronologically, this was the starting point for the research of
this paper. But this distribution also appears in number theory, see [15].

Yet another question is how the zero drift behavior of the analyzed parameters generalizes to
other lattice path models. We will comment on these questions in the full version of this work.

Summing up, the applications to Motzkin paths show that intuition might lead you into the
wrong direction. In Table 3 we see a comparison of the parameters. Obviously, the situation
depends strongly on the drift. The critical case of a 0 drift seems to be the most delicate one, as
it changes the nature of the law. In this case the limiting probability functions are concentrated
at 0. In particular the expected value for Θ(n) trials grows like Θ(

√
n) and not linearly. Equipped

with the presented tools they might still be a “shock to intuition and common sense” but should
not come “unexpected” anymore.

drift returns to zero sign changes height

δ < 0 Geom
(
p−1−p1
P (1)

)
Geom

(
p1
p−1

)
Geom

(
p1
p−1

)

δ = 0 H
(√

P (1)
P ′′(1)

)
H
(

1
2

√
P ′′(1)
P (1)

)
H
(√

P ′′(1)
P (1)

)

δ > 0 Geom
(
p1−p−1
P (1)

)
Geom

(
p−1
p1

)
Normal distribution

Table 3: Summary of the limit laws for Motzkin paths.
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Abstract. We prove that the characteristic function of the quicksort distribution is exponentially decreasing at infinity.
As a consequence it follows that the density of the quicksort distribution can be analytically extended to the vicinity
of the real line.

Keywords: Quicksort, characteristic function, density, Laplace transform, analytic continuation

1 Introduction
LetXn be the number of steps required by Quicksort algorithm to sort the list of values σ(1), σ(2), . . . , σ(n)
where σ is a random permutation chosen with uniform probability from the set of all permutations Sn of
order n. It has been proven by Régnier (1989) and Rösler (1991) that the appropriately scaled distribution
of Xn converges to some limit law

Xn − EXn

n
→d Y

as n→∞. Let us denote as f(t) the characteristic function of the limiting distribution

f(t) = EeitY

Tan and Hadjicostas (1995) proved that the characteristic function f(t) has a density p(x). Knessl and
Szpankowski (1999) using heuristic approach established a number of very precise estimates for the be-
havior of p(x) at infinity. Later Fill and Janson (2000) showed that the characteristic function f(t) of the
limit quicksort distribution together with its all derivatives decrease faster than any polynomial at infinity.
More precisely they showed that for all real p > 0 there is such a constant cp that

|f(t)| 6 cp
|t|p , for all t ∈ R.

They also proved that
cp 6 2p

2+6p.
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2 Vytas Zacharovas

Hence

|f(t)| 6 inf
p>0

2p
2+6p

|t|p .

The infimum in the above inequality can be evaluated as

|f(t)| 6 inf
p>0

2p
2+6p

|t|p 6 |t|3e−
log2 |t|
4 log 2 .

The main result of this paper is the following theorem stating that the characteristic function f(t) of
limiting Quicksort distribution decreases exponentially at infinity.

Theorem 1 There is a constant η > 0 such that

f(t) = O(e−η|t|)

as |t| → ∞.

Corollary 2 Quicksort distribution has a bounded density that can be extended analytically to the vicinity
of the real line |=(s)| < η. Where η is the same positive number as in the formulation of Theorem 1.

2 Proofs
It has been shown in Rösler (1991) that the characteristic function f(t) satisfies the functional equation

f(t) = eit
∫ 1

0

f(tx)f
(
t(1− x)

)
e2itx log x+2it(1−x) log(1−x) dx

which after a change of variables x→ y/t becomes

tf(t)e2it log t = eit
∫ t

0

f(y)f(t− y)e2iy log y+2i(t−y) log(t−y) dy

It follows hence by taking Laplace transform of the both sides that function

ψ(s) =

∫ ∞

0

f(t)e2it log te−st dt

satisfies an equation
−ψ′(s) = ψ2(s− i). (1)

The Laplace transform ψ(s) together with the above differential equation will be the main tool of proving
the result stated in the introduction.

It is well known that the quicksort distribution has finite moments of all orders. In the following
analysis we will only need the fact that it has finite first moment, which implies that |f ′(t)| is bounded.
Thus integrating by parts we conclude that

ψ(s) =

∫ ∞

0

f(t)e2it log te−st dt

=
1

s
+

1

s

∫ ∞

0

(
f ′(t)e2it log t + f(t)e2it log t(2i log t+ 2i)

)
e−st dt

6 A

|s|

(
1 +
| log<s|
<s

)
,

(2)
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for all s lying in the right half-plane <s > 0 and A > 0 being some positive absolute constant.

Lemma 3 For all s lying in the right half-plane <s > 0 and all integer n > 0 holds the inequality

∣∣ψ(n)(s)
∣∣ 6 n!

(
max

r∈{0,1,...,n}

∣∣ψ(s− ir)
∣∣
)n+1

Proof: The proof is done by applying mathematical induction on n and using the fact that the differential
equation for ψ(s) allows us to express the derivatives ψ(n)(s) as a polynomial function of ψ(s− ik) with
0 6 k 6 n.

Indeed, for n = 0 the above inequality becomes an identity. Suppose this identity holds for all n not
exceeding m. Let us consider now n = m + 1. Replacing the first derivative of ψ(s) by −ψ2(s − i) we
obtain

ψ(m+1)(s) =
(
ψ′(s)

)(m)
= −

(
ψ2(s− i)

)(m)

= −
m∑

k=0

(
m

k

)
ψ(k)(s− i)ψ(m−k)(s− i).

Thus applying the inductive hypothesis to the derivatives of ψ(s− i) we get

∣∣ψ(m+1)(s)
∣∣ 6

m∑

k=0

(
m

k

)
k!

(
max

r∈{0,1,...,k}

∣∣ψ(s− i− ir)
∣∣
)k+1

(m− k)!

(
max

r∈{0,1,...,m−k}

∣∣ψ(s− i− ir)
∣∣
)m−k+1

6 (m+ 1)!

(
max

r∈{0,1,...,n}

∣∣ψ(s− ir)
∣∣
)m+2

.

The last inequality is the same as stated in the lemma with n = m + 1. This completes the proof of the
lemma 2

Lemma 4 For all s lying in the lower part of the right half-plane<s > 0 and=s < 0 holds the inequality

∣∣ψ(n)(s)
∣∣ 6 n!

(
C(σ)

|s|

)n+1

Where σ = <s and

C(σ) = A

(
1 +
| log σ|
σ

)

with some absolute constant A > 0.

Proof: Our upper bound (2) for ψ(s) implies that for <s > 0 and =s < 0 we have

max
r∈{0,1,...,n}

∣∣ψ(s− ir)
∣∣ 6 max

r∈{0,1,...,n}
C(σ)

|s− ir| 6
C(σ)

|s| .

Since imaginary part of s is negative so |s − ir| > |s|. Using this inequality to evaluate the right hand
side of the inequality of Lemma 3 we complete the proof of the lemma.

2



4 Vytas Zacharovas

Proposition 5 The function ψ(s) can be continued analytically to the whole complex plane. Moreover,
for all s belonging to the lower half-plane =(s) < 0 and <s > −B with any fixed B > 0 holds the
estimate

ψ(s) = OB(1/|s|)

Proof: For <(s) > 1 the estimate of the proposition already follows from (2). By this estimate of Lemma
4 we have that the Taylor series

ψ(s) =
∞∑

j=0

ψ(j)(1− iK)

j!

(
s− (1− iK)

)j

converges in the circle |1− iK − s| < |1− iK|/C(1) and moreover in this circle holds the estimate

|ψ(s)| 6
∞∑

j=0

(
C(1)

|1− iK|

)j+1 ∣∣s− (1− iK)
∣∣j =

C(1)

|1− iK|
1

1− C(1)
|1−iK| |1− iK − s|

.

This means that ψ(s) can be analytically continued to the region of complex plane that consists of such s
that are contained in any of the circles of radius |1− iK|/C(1) with center at 1− iK with some K > 0.
Note that all complex number s with negative imaginary part such that 1 + =(s)

C(1) 6 <(s) satisfy such
condition. See the figure 1.

Note that ψ(s) satisfies a shift-differential equation (1) which is by integrating its both sides yields the
identity

ψ(s) = ψ(s− i) + i

∫ 1

0

ψ(s− i− it)2 dt.

The repeated application of the above identity allows us to continue ψ(s) analytically to the whole com-
plex plane.

2

We have already proven that for =(s) 6 0 we have

ψ(s) = O

(
1

|s|

)

when <(s) > −H with an arbitrary fixed H > 0. Let us now try to obtain a similar estimate for the
values of s lying in the upper half-plane.

Lemma 6 For all σ > 0 we have
sup
y∈R
|ψ(σ + iy)| < 1

σ
.

Proof: The proof of the lemma relies on a standard trick that is used to prove that if a modulus of a
characteristic function of a random variable reaches 1 at some point other than 0 then the random variable
has a lattice distribution. We have

|ψ(σ + iy)| =
∣∣∣∣
∫ ∞

0

f(t)e2it log te−(σ+it)t dt

∣∣∣∣ 6
∣∣∣∣
∫ ∞

0

e−σt dt

∣∣∣∣ 6
1

σ
,
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Fig. 1: The continuation of ψ(s) to the left half-plane
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for σ > 0. Note that the estimate 2 for fixed σ > 0 implies that ψ(σ+ iy) = O(1/|y|) as |y| → ∞ which
means that the supremum of |ψ(σ + iy)| will be reached on some finite point y0 = y0(σ). It remains to
prove that this supremum cannot be equal to 1/σ. Indeed if

|ψ(σ + iy0)| = 1

σ
,

then recalling the definition of ψ we can rewrite this identity as
∣∣∣∣
∫ ∞

0

f(t)e2it log te−σte−iy0t dt

∣∣∣∣ =

∫ ∞

0

e−σt dt

or equivalently

eiθ
∫ ∞

0

f(t)e2it log te−σte−iy0t dt =

∫ ∞

0

e−σt dt

for some real θ. Since |f(t)| 6 1 taking the real part of the above equation we have

<
(
eiθf(t)e2it log te−iy0t

)
≡ 1.

The above identity together with the fact that
∣∣eiθf(t)e2it log te−iy0t

∣∣ 6 1 implies that=
(
eiθf(t)e2it log te−iy0t

)
≡

0 and thus
eiθf(t)eit log te−iy0t ≡ 1.

Which means that

ψ(s) =

∫ ∞

0

f(t)e2it log te−st dt = e−iθ
∫ ∞

0

e−steiy0t dt =
e−iθ

s− iy0
.

However such function does not satisfy the equation −ψ′(s) = ψ2(s− i). 2 With the help of the just

proven lemma we can obtain an upper bound for ψ(s) in the vicinity of the imaginary line =(s) = 0.

Lemma 7 We have
|ψ(s)| 6 1− ε

1− |<(s)− 1|(1− ε) ,

for s belonging to the vertical strip− ε
1−ε < <(s) < 2−ε

1−ε , where ε is such that supy∈R |ψ(1+iy)| = 1−ε.

Proof: Applying the inequality of Lemma 6 with σ = 1 we have

ψ(1 + iy) 6 1− ε

for all y ∈ R and some fixed ε > 0. Hence inequality of Lemma 3 yields that

ψ(k)(1 + iy) 6 k!(1− ε)k+1 (3)

uniformly for y ∈ R. This implies that ψ(s) is bounded in the vicinity of the imaginary line <(s) > −ε′
where ε′ < ε. Indeed by Taylor expansion

ψ(s) =
∞∑

k=0

ψ(k)(1 + iy)

k!
(s− 1− iy)k
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Thus

|ψ(s)| 6
∞∑

k=0

(1− ε)k+1|s− 1− iy|k =
1− ε

1− |s− 1− iy|(1− ε)

for |s− 1− iy| < 1
1−ε . Suppose |<(s)− 1| < 1

1−ε then taking y = =(s) we get

|ψ(s)| 6 1− ε
1− |<(s)− 1|(1− ε) ,

for all s lying in the strip |<(s)− 1| < 1
1−ε . 2

A more precise estimate can be obtained combining the obtained two upper bounds for derivatives of
ψ(s).

Lemma 8 We have an upper bound

|ψ(s)| = O

(
1

|s|

)

in the region <(s) > − ε′

1−ε′ . Where ε′ is a fixed number that 0 < ε′ < ε = 1− supy∈R |ψ(1 + iy)|, the
constant in the symbol depends on ε′ only.

Proof: Putting σ = 1 in our non-uniform bound (2) for ψ(s) we have

|ψ(1 + iy)| 6 D/|y|

for some fixed D > 0. Again by induction for k 6 |y|/2 we have

|ψ(k)(1 + iy)| 6 k!

(
2D

|y|

)k+1

.

Suppose |<(s)− 1| < 1
1−ε′ . Let us take y = =(s). Combining the above upper bound with our previous

uniform estimate (3) for the derivatives of ψ(j)(1 + iy) we get

|ψ(s)| 6
∑

k6|y|/2

(
2D

|y|

)k+1

|s− 1− iy|k +
∑

k>|y|/2
|s− 1− iy|k+1(1− ε)k

6 2D

|y|
1

1− 2D
|y| |s− 1− iy| +

|s− 1− iy|
(
|s− 1− iy|(1− ε)

)|y|/2

1− |s− 1− iy|(1− ε)

6 2D

|y| − 2D
(1−ε′)

+

(
1−ε
1−ε′

)|y|/2

(1− ε′)
(

1− 1−ε′
1−ε

) ,

for |<(s)− 1| < 1
1−ε′ and |y| > 2D

1−ε′ . Since 1−ε
1−ε′ < 1 we have

|ψ(s)| = O

(
1

|s|

)
.
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2 A number of conclusions can be drawn from the estimate of the just proven lemma.

Proof of Theorem 1: The Laplace transform of tf(t)e2it log t is−ψ′(s) so, by inversion formula we have

−f(t)e2it log t =
1

2πi

∫ σ+i∞

σ−i∞
ψ′(s)ets ds =

−1

2πit

∫ σ+i∞

σ−i∞
ψ2(s− i)ets ds

and taking into account that |ψ(s − i)| � 1/|s| in the region <(s) > −2η for some fixed η > 0 we can
shift the integration line to the left and obtain

f(t)e2it log t =
1

2πit

∫ −η+i∞

−η−i∞
ψ2(s− i)ets ds� e−ηt.

2

Proof of Corollary 2: The density is given by formula

p(x) =
1

2π

∫ ∞

−∞
f(t)e−ixt dt.

The fact that f(t) is exponentially decreasing |f(t)| � e−η|t| at infinity |t| → ∞ immediately implies
that the integral

1

2π

∫ ∞

−∞
f(t)e−ist dt.

is absolutely convergent in the vicinity of the real line |=(s)| < η where it defines an analytic function
that coincides with the density of the quicksort distribution p(x) on the real line s = x ∈ R. 2

Corollary 9 The density function p(x) of the quicksort distribution can have only finite number of zeros
in any finite interval. The same is true for the derivatives of p(x) of all orders.

Proof: Since an analytic function that is not identically equal to zero can have only finite number of zeros
in any closed circle |s−x| 6 r/2 for any x ∈ R, so the density p(x) can have only finite number of zeros
in any finite interval [x− r/2, x+ r/2] with all x ∈ R. 2
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